Die Gruppe arbeitet zu den folgenden mathematischen Forschungsthemen des WIAS:


Analysis gewöhnlicher und partieller stochastischer Differentialgleichungen

Gewöhnliche Differentialgleichungen werden häufig verwendet, um Bewegungen von Partikeln zu modellieren. In ähnlicher Weise können partielle Differentialgleichungen zur Beschreibung der gesamten Trajektorien der Partikel eingesetzt werden. Es ist natürlich, zufälliges Rauschen in solche Modelle einzubauen: Teils kann man durch Einbeziehung von Zufälligkeit realistischere Modellierungen erhalten, teils ist sie inhärent fundamental für das Modell wie zum Beispiel bei der Beschreibung von Finanzmärkten. [>> more]

Analysis partieller Differentialgleichungen und Evolutionsgleichungen

Partielle Differentialgleichungen bieten einen leistungsstarken und vielseitigen Rahmen für eine Kontinuumsbeschreibung von Phänomenen in Naturwissenschaft und Technik mit komplexen Wechselwirkungen und Abhängigkeiten. Am Weierstrass-Institut hat die Forschung hierzu drei hauptsächliche Schwerpunkte: (a) Mathematische Analysis allgemeiner Evolutionsgleichungen im Hinblick auf Existenz, Einzigkeit und Regularität von verschiedener Begriffen von Lösungen, (b) Entwicklung von variationellen Methoden unter Verwendung des Werkzeugkastens der Variationsrechnung, (c) Regularitätsergebnisse für Lösungen von elliptischen und parabolischen partiellen Differentialgleichungen. [>> more]

Direkte und inverse Probleme für die Maxwellgleichungen

Die Arbeiten umfassen Modelle für die induktive Erwärmung von Stahloberflächen und für die Streuung von Lichtwellen an periodischen Oberflächenstrukturen. Dazu wird die quasistationäre Maxwell-Gleichung mit nichtlinearen partiellen Differentialgleichungen gekoppelt bzw. es wird die zeitharmonische Maxwell-Gleichung kombiniert mit speziellen Ausstrahlungsbedingungen gelöst. Konvergenz numerischer Verfahren und verschiedene inverse Promblemstellungen werden analysiert. [>> more]

Freie Randwertprobleme für partielle Differentialgleichungen

Freie Randwertprobleme für partielle Differentialgleichungen beschreiben Situationen, in denen eine partielle Differentialgleichung auf einen Gebiet betrachtet wird, welches von der Lösung der Gleichung abhängt. Im Zusammenhang mit freien Randwertproblemen werden am WIAS Themen wie Eigenschaften von Lösungen, Phasenfeld-Approximationen, Kompatibilität mit der Thermodynamik, Beschreibung dünner Filme, Variationelle Ungleichungen, (implizite) Hindernisprobleme und Anwendungen beim Warmformen behandelt. [>> more]

Hysterese-Operatoren und ratenunabhängige Systeme

Zeitabhängige Prozesse in Physik, Biologie und Wirtschaft zeigen häufig ein ratenunabhängiges Eingangs-Ausgangs-Verhalten. In diesen Prozessen treten häufig Hystereseeffekte auf, die von einem dem Prozess innewohnenden Gedächtnis hervorgerufen werden. Am WIAS werden zwei Methoden verwendet, um derartige Systeme zu beschreiben: Ratenunabhängige Systeme sind ratenunabhängige quasistatische Evolutionsgleichungen, die mit einem Energiefunktional und einem Dissipationspotential formuliert werden. Hysterese-Operatoren bilden zeitabhängige (input-)Funktionen auf zeitabhängige (Output-) Funktionen ab, wobei der Operator raten-unabhängig und kausal ist. [>> more]

Mehrskalenmodellierung, asymptotische Analysis und Hybridmodelle

Um das Zusammenspiel von verschiedenen physikalischen Effekten zu verstehen, müssen häufig mehrere Längenskalen in das Modell einbezogen werden. Dabei ist ein Ziel, die Beschreibungen uber partielle Differentialgleichungen zu vereinfachen. Um den effektiven Einfluss zwischen den Skalen zu verstehen, werden mathematische Methoden wie Homogenisierung, asymptotische Analysis oder Gamma-Konvergenz verwendet. Die entstehenden Effektivmodelle sind gekoppelte Systeme partieller Differentialgleichungen, die sowohl Volumen- als auch Oberflächeneffekte enthalten. [>> more]

Modellierung, Analysis und Numerik von Phasenfeldmodellen

Die Phasenfeldtheorie hat sich in den vergangenen Jahren als ein mächtiges Werkzeug zur Modellierung von Mikroprozessen und Morphologien auf der Mesoskala entwickelt. Sie wird beispielsweise zur Beschreibung von Erstarrungsvorgängen in Metallschmelzen, Entmischungen in Legierungen, Rissausbreitung in Werkstoffen und martensitischen Umwandlungen bei Stählen eingesetzt. [>> more]

Systeme partieller Differentialgleichungen: Modellierung, numerische Analysis und Simulation

Die mathematische Beschreibung einer großen Zahl von Fragestellungen aus Wissenschaft und Technik führt auf (Anfangs-) Randwert-Probleme mit Systemen partieller Differentialgleichungen (PDEs). [>> more]


Archiv

Weitere mathematische Forschungsthemen, in denen das WIAS Kompetenz besitzt:

Magnetohydrodynamik

Bei der Züchtung von Halbleiterkristallen zur Herstellung von Halbleiterbauteilen werden oft elektromagnetische Felder zur Induktionsheizung eingesetzt. Die Modellierung der Kristallzüchtung führt in diesem Umfeld auf Systeme gekoppelter partieller Differentialgleichungen. [>> more]

Nichtlineare kinetische Gleichungen

Kinetische Gleichungen beschreiben die Rate, mit der ein System oder eine Mischung seine chemischen Eigenschaften wechselt. Soche Gleichungen sind oft nichtlinear, da die Wechselwirkungen in dem Material komplex sind und die Geschwindigkeit des Wechselns abhängt von der Größe des Systems sowie von der Stärke der externen Einflüsse. [>> more]

Platten, Balken, Schalen und Bögen

Eine effiziente Beschreibung des mechanischen Verhaltens von speziellen 3D-Körpern, deren Abmessungen in einer oder zwei Richtungen klein gegenüber den übrigen Abmessungen sind, ist durch sogenannte Platten- oder Balkenmodelle möglich. [>> more]