Leitung:
Markus Kantner, Thomas Koprucki
Mitarbeiter:
Lasse Ermoneit, Lutz Mertenskötter
Assoziierte Mitglieder:
Uwe Bandelow, Patricio Farrell, Jürgen Fuhrmann, Mindaugas Radziunas, Burkhard Schmidt
Ehemalige Mitglieder:
Oliver Marquardt
Die Fokus-Plattform SemQuTech ist Teil der Forschungsgruppen Partielle Differentialgleichungen und Laserdynamik. In Zusammenarbeit mit der Forschungsgruppe Numerische Mathematik und Wissenschaftliches Rechnen und der Leibniz-Gruppe Numerische Methoden für innovative Halbleiterbauelemente trägt sie zum Hauptanwendungsgebiet Nano- und Optoelektronik bei.
Forschung
Einen Überblick über Forschungsaktivitäten der Fokus-Plattform finden Sie auf der englischsprachigen Version dieser Webseite.
Aktuelles
Aktuelle Informationen sind leider nur auf Englisch verfügbar.
- 2023-07-03 – Workshop on Nonlinear Dynamics in Semiconductor Lasers
We co-organize the workshop NDSL 2023 to be held on July 3–5 at WIAS. Lutz will give a talk on our activities in modeling of laser noise and estimation of laser linewidth on Tuesday. - 2023-06-25 – Meet us at the World of Quantum / Laser World of Photonics Congress in Munich
We particpate in the World of Quantum 2023 and Laser World of Photonics Congress in Munich. - 2023-06-17 – Lange Nacht der Wissenschaften / Long Night of Science
Lasse will present our activities at the Long Night of Science at the WIAS Booth in the Atrium of the Leibniz Association Headquarters. Click here for details. - 2023-06-12 – International Workshop on Computational Nanotechnology
Our recent results on modeling of SiGe Spin Qubit Shuttles will be presented by Lasse at the IWCN 2023 in Barcelona. - 2023-05-15 – Conference on Nonlinear Dynamics
Lutz will present our results on Bayesian methods for laser linewidth estimation at the CSNDD 2023 in Marrahech. - 2023-05-12 – New Preprint
We submitted our preprint on Bayesian estimation of laser linewidth from delayed self-heterodyne measurements, which is now available on arXiv. - 2023-04-27 – New Publication in Optics Express
Our paper on evaluation of delayed self-heterodyne laser linewidth measurements has appeared in Optics Express. We are grateful to MATH+ for the financial support. - 2023-04-18 – Job Advertisement: Post-Doc Position
We are offering a Post-Doc postion for two years. See the job advertisement here. - 2023-04-17 – Leibniz MMS Days 2023
Lasse has presented a poster on Device-Scale Simulation of a SiGe Quantum Bus for Coherent Spin-Qubit Shuttling at the Meeting of the Leibniz Network "Mathematical Modeling and Simulation" in Potsdam. - 2023-04-03 – Visit to Einhoven
Markus has been invited by Oliver Tse for a visit at the Centre for Analysis, Scientific Computing and Applications (CASA), TU Eindhoven, to discuss modeling and optimal control of open quantum systems. - 2023-04-01 – Start of MATH+ Project AA2-17
Today our new project AA2-17 within the Cluster of Excellence MATH+ starts together with Tobias Breiten (TU Berlin). The goal of the project is the modeling, simulation and optimal control of quantum bus shuttles for future quantum computers based on gate-defined semiconductor quantum dots. Our work is carried out in close collaboration with experimental physicists from JARA FIT Institute for Quantum Information and RWTH Aachen University. - 2022-12-15 – New Preprint on Theory of Laser Linewidth Measurement
We have submitted a preprint on self-heterodyne laser linewidth measurement. Using parametric Wiener filters, we demonstrate how to extract the phase noise power spectral density from experimental time series data without any artifacts even at strong measurement noise levels. - 2022-12-05 – Winter Quantum Networking
We have presented our research on the Winter Quantum Networking meeting of the Optics & Photonics Cluster Berlin-Brandenburg. - 2022-09-13 – Project Approval
We are delighted to have acquired a new project AA2-17 on "Coherent Transport of Semiconductor Spin-Qubits: Modeling, Simulation and Optimal Control" in the MATH+ Cluster of Excellence together with Tobias Breiten (TU Berlin). The project will start in April 2023 and is devoted to modeling of qubit shuttles for quantum computers based on quantum dots in SiGe-heterostructures in cooperation with RWTH Aachen. - 2022-09-12 – NUSOD 2022: Top 10 Paper
Lutz will present our work on data-driven modeling of non-Markovian stochastic laser dynamics and parameter estimation (Kalman filtering) at the NUSOD 2022 (online). We are proud that our contribution was ranked among the top ten submissions. - 2022-09-04 – DPG Spring Meetings (Condensed Matter Section)
Our recent advances on modeling of SiGe-based quantum bus devices will be presented by Lasse at the DPG Spring Meeting of the Condensed Matter Section (Regensburg).
Drittmittel-Projekte
Projekte im Exzellenzcluster MATH+
-
MATH+ AA2-17: Coherent Transport of Semiconductor Spin-Qubits: Modeling, Simulation and Optimal Control
Leitung: T. Breiten (TUB), M. Kantner (WIAS) aud T. Koprucki (WIAS)
Mitarbeiter: L. Ermoneit (WIAS)
Laufzeit: 04/2023 – 03/2026 -
MATH+ AA2-13: Data-Driven Stochastic Modeling of Semiconductor Lasers
Leitung: U. Bandelow (WIAS), M. Kantner (WIAS), W. Stannat (TUB) und H. Wenzel (FBH)
Mitarbeiter: L. Mertenskötter (WIAS)
Laufzeit: 01/2022 – 12/2024 -
MATH+ IN-7: Electronic Properties of Gate-Confined Quantum Dots in Si-Ge Heterostructures for Qubit Generation
Leitung: T. Koprucki (WIAS), A. Mielke (WIAS), T. Boeck (IKZ) und O. Brandt (PDI)
Mitarbeiter: O. Marquardt (WIAS)
Laufzeit: 01/2022 – 12/2022
Forschungs- und Entwicklungsprojekte
-
Simulation of External Cavity and Multi-Section Semiconductor Lasers
Leitung: U. Bandelow (WIAS), M. Kantner (WIAS) und M. Radziunas (WIAS)
Finanzierung: Ferdinand-Braun-Institute Berlin
Laufzeit: 01/2021 – 07/2021
Veranstaltungen
- NDSL 2023: International Workshop on Nonlinear Dynamics in Semiconductor Lasers
Organizers: M. Kantner (WIAS), M. Radziunas (WIAS), A. G. Vladimirov (WIAS) und H. Wenzel (FBH)
Weierstraß Institut Berlin, 3.–5. Juli 2023
Referenzen
- M. O'Donovan, P. Farrell, T. Streckenbach, T. Koprucki, and S. Schulz, "Multiscale simulations of uni-polar hole transport in (In,Ga)N quantum well systems," Opt. Quant. Electron. 54, 405 (2022)
- H. Wenzel, M. Kantner, M. Radziunas, and U. Bandelow, "Semiconductor laser linewidth theory revisited," Appl. Sci. 11, 6004 (2021)
- M. O'Donovan, D. Chaudhuri, T. Streckenbach, P. Farrell, S. Schulz, and T. Koprucki, "From atomistic tight-binding theory to macroscale drift-diffusion: Multiscale modeling and numerical simulation of uni-polar charge transport in (In,Ga)N devices with random fluctuations," J. Appl. Phys. 130, 065702 (2021)
- D. Chaudhuri, M. O'Donovan, T. Streckenbach, O. Marquardt, P. Farrell, S. K. Patra, T. Koprucki, and S. Schulz, "Multiscale simulations of the electronic structure of III-nitride quantum wells with varied indium content: Connecting atomistic and continuum-based models," J. Appl. Phys. 129, 073104 (2021)
- O. Marquardt, "Simulating the electronic properties of semiconductor nanostructures using multiband k∙p models," Comp. Mater. Sci. 194, 110318 (2021)
- M. Kantner, "Electrically driven quantum dot based single-photon sources: Modeling and simulation," Springer Theses, Springer Nature, Cham (2020)
- U. W. Pohl, A. Strittmatter, A. Schliwa, M. Lehmann, T. Niermann, T. Heindel, S. Reitzenstein, M. Kantner, U. Bandelow, T. Koprucki, and H.-J. Wünsche, "Stressor-induced site control of quantum dots for single-photon sources," in Semiconductor Nanophotonics, Chap. 3, Eds.: M. Kneissl, A. Knorr, S. Reitzenstein, and A. Hoffmann, pp. 53–90, Springer, Cham (2020)
- M. Kantner, T. Höhne, T. Koprucki, S. Burger, H.-J. Wünsche, F. Schmidt, A. Mielke, and U. Bandelow, "Multi-dimensional modeling and simulation of semiconductor nanophotonic devices," in Semiconductor Nanophotonics, Chap. 7, Eds.: M. Kneissl, A. Knorr, S. Reitzenstein, and A. Hoffmann, pp. 241–283, Springer, Cham (2020)
- S. Rodt, P.-I. Schneider, L. Zschiedrich, T. Heindel, S. Bounouar, M. Kantner, T. Koprucki, U. Bandelow, S. Burger, and S. Reitzenstein, "Deterministic quantum devices for optical quantum communication," in Semiconductor Nanophotonics, Chap. 8, Eds.: M. Kneissl, A. Knorr, S. Reitzenstein, and A. Hoffmann, pp. 285–359, Springer, Cham (2020)
- O. Marquardt, M. A. Caro, T. Koprucki, P. Mathé, and M. Willatzen, "Multiband k∙p model and fitting scheme for ab initio based electronic structure parameters for wurtzite GaAs," Phys. Rev. B. 101, 235147 (2020)
- M. Krüger, V. Z. Tronciu, A. Bawamia, C. Kürbis, M. Radziunas, H. Wenzel, A. Wicht, A. Peters, and G. Tränkle, "Improving the spectral performance of extended cavity diode lasers using angled-facet laser diode chips," Appl. Phys. B 125, 66 (2019)
- M. Kantner, "Hybrid modeling of quantum light emitting diodes: Self-consistent coupling of drift-diffusion, Schrödinger–Poisson, and quantum master equations," in Proc SPIE Photonics West: Physics and Simulation of Optoelectronic Devices XXVII 10912, 109120U (2019)
- M. Kantner, A. Mielke, M. Mittnenzweig, and N. Rotundo, "Mathematical modeling of semiconductors: From quantum mechanics to devices," in Topics in Applied Analysis and Optimisation: Partial Differential Equations, Stochastic and Numerical Analysis, Eds.: M. Hintermüller and J. F. Rodrigues, CIM Series in Mathematical Sciences, pp. 269–293, Springer, Cham, (2019)
- M. Kantner, M. Mittnenzweig, and T. Koprucki, "Hybrid quantum-classical modeling of quantum dot devices," Phys. Rev. B 96, 205301 (2017)
- M. Kantner and T. Koprucki, "Numerical simulation of carrier transport in semiconductor devices at cryogenic temperatures," Opt. Quantum. Electron. 48, 543 (2016)
- M. Kantner, U. Bandelow, T. Koprucki, J.-H. Schulze, A. Strittmatter, and H.-J. Wünsche, "Efficient current injection into single quantum dots through oxide-confined p-n-diodes," IEEE Trans. Electron Devices 63, 2036–2042 (2016)
- M. Ehrhardt and T. Koprucki, "Multi-band effective mass approximations – Advanced mathematical models and numerical techniques," Lecture Notes in Computational Science and Engineering, Vol. 94, Springer, Cham (2014)
