Die Gruppe arbeitet zu den folgenden mathematischen Forschungsthemen des WIAS:


Analysis partieller Differentialgleichungen und Evolutionsgleichungen

Partielle Differentialgleichungen bieten einen leistungsstarken und vielseitigen Rahmen für eine Kontinuumsbeschreibung von Phänomenen in Naturwissenschaft und Technik mit komplexen Wechselwirkungen und Abhängigkeiten. Am Weierstrass-Institut hat die Forschung hierzu drei hauptsächliche Schwerpunkte: (a) Mathematische Analysis allgemeiner Evolutionsgleichungen im Hinblick auf Existenz, Einzigkeit und Regularität von verschiedener Begriffen von Lösungen, (b) Entwicklung von variationellen Methoden unter Verwendung des Werkzeugkastens der Variationsrechnung, (c) Regularitätsergebnisse für Lösungen von elliptischen und parabolischen partiellen Differentialgleichungen. [>> more]

Direkte und inverse Probleme in der Thermomechanik

Thermomechanische Modelle bilden die Grundlage für die Beschreibung zahlreicher technischer Prozesse. Die Berücksichtigung von Phasenübergängen und die Verwendung inelastischer konstitutiver Gesetze werfen spannende neue Fragen sowohl bei der Analysis der direkten Probleme als auch bei der Identifizierung der Materialparameter auf. [>> more]

Funktionalanalysis und Operatortheorie

Funktionalanalysis und Operatortheorie sind am WIAS im Besonderen mit Problemen partieller Differentialgleichungen sowie mit der Analysis von mehrskalen, Hybrid- und ratenunabängigen Modellen verbunden. [>> more]

Große Abweichungen

Die Theorie der Großen Abweichungen, ein Zweig der Wahrscheinlichkeitstheorie, stellt Mittel bereit zur Beschreibung der asymptotischen exponentiellen Abfallrate von sehr kleinen Wahrscheinlichkeiten für sehr große oder sehr kleine Werte eines Parameters. Beispiele für solche Parameter sind große Zeiten, große Anzahlen von Zufallsgrößen, der Radius großer Boxen, tiefe Temperaturen oder Approximationsparameter. Diese probabilistische Theorie ist auch unverzichtbar bei der Behandlung etlicher Modelle der statistischen Physik, denn sie macht sie einer Analyse mit Hilfe von Variationstechniken zugänglich. Am WIAS werden sowohl Theorie als auch diffizile Anwendungen in Physik und Chemie vorangetrieben. [>> more]

Hysterese-Operatoren und ratenunabhängige Systeme

Zeitabhängige Prozesse in Physik, Biologie und Wirtschaft zeigen häufig ein ratenunabhängiges Eingangs-Ausgangs-Verhalten. In diesen Prozessen treten häufig Hystereseeffekte auf, die von einem dem Prozess innewohnenden Gedächtnis hervorgerufen werden. Am WIAS werden zwei Methoden verwendet, um derartige Systeme zu beschreiben: Ratenunabhängige Systeme sind ratenunabhängige quasistatische Evolutionsgleichungen, die mit einem Energiefunktional und einem Dissipationspotential formuliert werden. Hysterese-Operatoren bilden zeitabhängige (input-)Funktionen auf zeitabhängige (Output-) Funktionen ab, wobei der Operator raten-unabhängig und kausal ist. [>> more]

Interagierende stochastische Vielteilchensysteme

Bei der mathematischen Modellierung vieler Vorgänge und Phänomene in Natur und Technik werden Systeme mit vielen zufälligen Teilchen und Wechselwirkungen eingesetzt. Unser Verständnis von "Partikelsysteme" schließt dabei auch Punktprozesse mit Perkolationseigenschaften und zufälligen Graphenstrukturen sowie Gibbs'schen Interaktionen ein. Auch zufällige Bewegungen dieser Partikel gehören dazu, wie sie etwa in räumlichen Modellen für Kommunikation auftreten. Untersucht werden viele makroskopische Eigenschaften dieser Systeme, die sich aus den mikroskopischen Regeln ergeben, wie Phasenübergänge (Kondensation, Perkolation, Kristallisation) und kritische Eigenschaften wie Reskalierungsgrenzwerte. [>> more]

Mehrskalenmodellierung, asymptotische Analysis und Hybridmodelle

Um das Zusammenspiel von verschiedenen physikalischen Effekten zu verstehen, müssen häufig mehrere Längenskalen in das Modell einbezogen werden. Dabei ist ein Ziel, die Beschreibungen uber partielle Differentialgleichungen zu vereinfachen. Um den effektiven Einfluss zwischen den Skalen zu verstehen, werden mathematische Methoden wie Homogenisierung, asymptotische Analysis oder Gamma-Konvergenz verwendet. Die entstehenden Effektivmodelle sind gekoppelte Systeme partieller Differentialgleichungen, die sowohl Volumen- als auch Oberflächeneffekte enthalten. [>> more]

Modellierung, Analysis und Numerik von Phasenfeldmodellen

Die Phasenfeldtheorie hat sich in den vergangenen Jahren als ein mächtiges Werkzeug zur Modellierung von Mikroprozessen und Morphologien auf der Mesoskala entwickelt. Sie wird beispielsweise zur Beschreibung von Erstarrungsvorgängen in Metallschmelzen, Entmischungen in Legierungen, Rissausbreitung in Werkstoffen und martensitischen Umwandlungen bei Stählen eingesetzt. [>> more]

Optimaler Transport: Statistik, Numerik und Partielle Differentialgleichungen

Die Theorie des Optimalen Transports verbindet partielle Differentialgleichungen, Geometrie und Stochastik. Die Forschung am WIAS konzentriert sich einerseits darauf, Methoden und Werkzeuge aus der Theorie des Optimalen Transports auf Probleme in der Statistik anzuwenden, wie beispielsweise halbüberwachtes und unüberwachtes Lernen, Clustering und Textklassifikation, sowie in der Bildrecherche durch Entwicklung und Analysis neuer numerischer Algorithmen und Schemata. Andererseits wird die Theorie des optimalen Transports erweitert, beispielsweise in Richtung unbalanciertem optimalen Transports und der Verbindung zu Evolutionsgleichungen über Gradientensysteme. [>> more]

Systeme partieller Differentialgleichungen: Modellierung, numerische Analysis und Simulation

Die mathematische Beschreibung einer großen Zahl von Fragestellungen aus Wissenschaft und Technik führt auf (Anfangs-) Randwert-Probleme mit Systemen partieller Differentialgleichungen (PDEs). [>> more]

Variationsrechnung

Viele physikalische Phänomene lassen sich durch Extremalprinzipien für geeignete Funktionale beschreiben, deren kritische Punkte als Gleichgewichtslösungen relevant sind, insbesondere lokale und globale Minimierer. Die Seifenblase minimiert die Oberfläche bei gegebenem Volumen und ein elastischer Körper minimiert die gespeicherte Energie unter gegebenen Randbedingungen. Am WIAS werden Methoden aus der Variationsrechnung angewandt und weiterentwickelt für Probleme aus verschiedenen Bereichen der Physik, wie z.B. in der Kontinuumsmechanik, der Quantenmechanik und der optimalen Steuerung. [>> more]