Die Gruppe arbeitet zu den folgenden mathematischen Forschungsthemen des WIAS:
Analysis partieller Differentialgleichungen und Evolutionsgleichungen
Partielle Differentialgleichungen bieten einen leistungsstarken und vielseitigen Rahmen für eine Kontinuumsbeschreibung von Phänomenen in Naturwissenschaft und Technik mit komplexen Wechselwirkungen und Abhängigkeiten. Am Weierstrass-Institut hat die Forschung hierzu drei hauptsächliche Schwerpunkte: (a) Mathematische Analysis allgemeiner Evolutionsgleichungen im Hinblick auf Existenz, Einzigkeit und Regularität von verschiedener Begriffen von Lösungen, (b) Entwicklung von variationellen Methoden unter Verwendung des Werkzeugkastens der Variationsrechnung, (c) Regularitätsergebnisse für Lösungen von elliptischen und parabolischen partiellen Differentialgleichungen. [>> more]
Freie Randwertprobleme für partielle DifferentialgleichungenFreie Randwertprobleme für partielle Differentialgleichungen beschreiben Situationen, in denen eine partielle Differentialgleichung auf einen Gebiet betrachtet wird, welches von der Lösung der Gleichung abhängt. Im Zusammenhang mit freien Randwertproblemen werden am WIAS Themen wie Eigenschaften von Lösungen, Phasenfeld-Approximationen, Kompatibilität mit der Thermodynamik, Beschreibung dünner Filme, Variationelle Ungleichungen, (implizite) Hindernisprobleme und Anwendungen beim Warmformen behandelt. [>> more]
Modellierung, Analysis und Numerik von PhasenfeldmodellenDie Phasenfeldtheorie hat sich in den vergangenen Jahren als ein mächtiges Werkzeug zur Modellierung von Mikroprozessen und Morphologien auf der Mesoskala entwickelt. Sie wird beispielsweise zur Beschreibung von Erstarrungsvorgängen in Metallschmelzen, Entmischungen in Legierungen, Rissausbreitung in Werkstoffen und martensitischen Umwandlungen bei Stählen eingesetzt. [>> more]
VariationsrechnungViele physikalische Phänomene lassen sich durch Extremalprinzipien für geeignete Funktionale beschreiben, deren kritische Punkte als Gleichgewichtslösungen relevant sind, insbesondere lokale und globale Minimierer. Die Seifenblase minimiert die Oberfläche bei gegebenem Volumen und ein elastischer Körper minimiert die gespeicherte Energie unter gegebenen Randbedingungen. Am WIAS werden Methoden aus der Variationsrechnung angewandt und weiterentwickelt für Probleme aus verschiedenen Bereichen der Physik, wie z.B. in der Kontinuumsmechanik, der Quantenmechanik und der optimalen Steuerung. [>> more]