Die Gruppe arbeitet zu den folgenden mathematischen Forschungsthemen des WIAS:
Große AbweichungenDie Theorie der Großen Abweichungen, ein Zweig der Wahrscheinlichkeitstheorie, stellt Mittel bereit zur Beschreibung der asymptotischen exponentiellen Abfallrate von sehr kleinen Wahrscheinlichkeiten für sehr große oder sehr kleine Werte eines Parameters. Beispiele für solche Parameter sind große Zeiten, große Anzahlen von Zufallsgrößen, der Radius großer Boxen, tiefe Temperaturen oder Approximationsparameter. Diese probabilistische Theorie ist auch unverzichtbar bei der Behandlung etlicher Modelle der statistischen Physik, denn sie macht sie einer Analyse mit Hilfe von Variationstechniken zugänglich. Am WIAS werden sowohl Theorie als auch diffizile Anwendungen in Physik und Chemie vorangetrieben. [>> more]
Interagierende stochastische VielteilchensystemeBei der mathematischen Modellierung vieler Vorgänge und Phänomene in Natur und Technik werden Systeme mit vielen zufälligen Teilchen und Wechselwirkungen eingesetzt. Unser Verständnis von "Partikelsysteme" schließt dabei auch Punktprozesse mit Perkolationseigenschaften und zufälligen Graphenstrukturen sowie Gibbs'schen Interaktionen ein. Auch zufällige Bewegungen dieser Partikel gehören dazu, wie sie etwa in räumlichen Modellen für Kommunikation auftreten. Untersucht werden viele makroskopische Eigenschaften dieser Systeme, die sich aus den mikroskopischen Regeln ergeben, wie Phasenübergänge (Kondensation, Perkolation, Kristallisation) und kritische Eigenschaften wie Reskalierungsgrenzwerte. [>> more]
Zufällige geometrische SystemeSysteme mit vielen zufälligen, im Raum verteilen Komponenten (Punkte, Kanten, Graphen, Trajektorien etc.) mit vielen kurz- oder auch langreichweitigen Interaktionen werden am WIAS auf ihre makroskopischen Eigenschaften hin untersucht. Besonderes Augenmerk wird gerichtet auf Formierung besonders großer Strukturen in dem System oder andere Phasenübergänge. [>> more]
Flexible Forschungsplattform
- Datengetriebene Optimierung und Steuerung
- Erhaltungssätze und Bilanzgleichungen für Multikomponentensysteme
- Numerische Methoden für innovative Halbleiter-Bauteile
- Probabilistische Methoden für dynamische Kommunikationsnetzwerke
- Simulation von Halbleiterbauelementen für Quantentechnologien
- Ehemalige Gruppen