Mathematischen Modellierung und Optimierung leistet wichtige Beiträge für die wirtschaftliche Nutzung energetischer Ressourcen. Hierbei spielen Nachhaltigkeit und Aspekte der Elektromobilität eine wichtige Rolle. Lithium-Ionen-Batterien gehören zu den Schlüsseltechnologien bei der Speicherung erneuerbarer Energie. Forschungen am WIAS befassen sich mit der Modellierung von Transportprozessen und ihrer Simulation. Ein weiterer Schwerpunkt liegt auf der Phasenfeldmodellierung der Flüssigphasenkristallisation von Silizium zur Entwicklung optimierter Dünnschicht-Solarzellen. Darüberhinaus werden Unsicherheitsaspekte im Energiemanagement mittels stochastischer Optimierung oder Uncertainty Quantification untersucht. Hierbei stehen Gasnetzwerke und erneuerbare Energien im Mittelpunkt, in deren Kontext unsichere Parameter sich etwa in Bedarfen, Niederschlägen oder technischen Koeffizienten manifestieren können. Zugleich eröffnen sich neue Perspektiven in der Modellierung und Analysis von zufallsbehafteten Gleichgewichten in Energiemärkten sowie der Kopplung von Märkten mit den zugrundeliegenden physikalischen und kontinuumsmechanischen Eigenschaften des Energieträgers in einem Netzwerk.

Optimierungsprobleme in der Energiewirtschaft
Optimierungsprobleme in der Energiewirtschaft befassen sich mit der Produktionsplanung und Verteilung verschiedener Energieträger (Strom, Gas) zur Deckung eines gegebenen Kundenbedarfs. Hierbei stellt die Betrachtung von Unsicherheiten (z.B. Lasten, meteorologische Parameter, Preise) in Transportnetzwerken eine besondere Herausforderung dar. Das Ziel besteht in der Auffindung kostenoptimaler Entscheidungen, die zugleich robust gegenüber den Unsicherheiten sind. Die zusätzliche Berücksichtigung von Märkten und der Transportphysik führen auf risiko-averse Optimalsteuerungsprobleme mit Gleichgewichtsrestriktionen.

Thermodynamische Modelle elektrochemischer Systeme
Das Verhalten elektrochemischer Systeme wird auf der Basis von Kontinuumsmodellen untersucht. Solche Modelle lassen sich u.a. auf Gebieten wie Elektrochemie an Einkristalloberflächen, Lithium-Ionen-Batterien, Brennstoffzellen, Nanoporen in biologischen Membranen, Elektrolyse und Korrosion einsetzen.

Modellierung und Simulation von Halbleiterstrukturen
Moderne Halbleiter- und Optoelektronik wie Halbleiterlaser oder organische Feldeffekttransistoren basieren auf Halbleiterstrukturen, die z.B. durch Dotierungsprofile, Heterostrukturen oder Nanostrukturen gegeben sein können. Um das Verhalten dieser Bauelemente qualitativ und quantitativ zu beschreiben und zu optimieren, ist die mathematische Modellierung und Simulation der funktionsbestimmenden bzw. -limitierenden Ladungstransportvorgänge notwendig. Im Rahmen der Green Photonics Initiative stehen auch energieeffizientere Bauteile sowie neue Anwendungen im Bereich der erneuerbaren Energien, Kommunikationstechnologien und Beleuchtung im Vordergrund.

Mathematische Modelle und Methoden für Lithium-Ionen-Batterien
In modernen Lithium-Ionen-Batterien laufen eine Vielzahl von physikochemischen Prozessen parallel auf verschiedenen Größen- und Zeitskalen ab. Um ihren Einfluss sowie ihre Wechselwirkung innerhalb einer Batterie systematisch untersuchen zu können, werden mathematische Modelle entwickelt, die mithilfe von partiellen Differentialgleichungen die entsprechenden Prozesse abbilden. Mithilfe numerischer Methoden können spezifische Kenngrößen einer Batterie berechnet werden, wie zum Beispiel die Zellspannung in Abhängigkeit des Ladezustands. Die Modelle werden kontinuierlich weiterentwickelt, um beispielsweise Alterungseffekte berücksichtigen zu können.

Modellierung dünner Filme und Nanostrukturen auf Substraten
Dünne Filme spielen eine wichtige Rolle in der Natur und vielen technologischen Anwendungen. Insbesondere im Mikro- und Nanometerbereich werden zum Beispiel Entnetzungsprozesse oder epitaktisches Wachstum zum Design von Oberflächen mit spezifischen Materialeigenschaften eingesetzt. Neben der Bedeutung, die die mathematische Modellierung, Analysis und numerische Simulation für die Beschleunigung der Entwicklung neuere Technologien hat, ist es auch wissenschsftlich auch äußerst interessant Materialeigenschaften auf diesen kleinen Skalen zu verstehen.

Elektronische Materialien
Novel electronic materials require advanced charge transport modeling and simulation techniques in which moving ions on the crystal lattice cannot be neglected. Examples of such materials are perovskites and 2D layered transition metal dichalcogenides (TMDCs) like molybdenum disulfide. They play a fundamental role for applications like solar cells as well as memristive devices.

Hauptanwendungsgebiete

Ansprechpartner

Beteiligte Gruppen
- Partielle Differentialgleichungen
- Numerische Mathematik und Wissenschaftliches Rechnen
- Nichtlineare Optimierung und Inverse Probleme
- Stochastische Algorithmen und Nichtparametrische Statistik
- Thermodynamische Modellierung und Analyse von Phasenübergängen
- Nichtglatte Variationsprobleme und Operatorgleichungen
- Numerische Methoden für innovative Halbleiter-Bauteile