WIAS Preprint No. 2790, (2020)

Optimal stopping with signatures



Authors

  • Bayer, Christian
    ORCID: 0000-0002-9116-0039
  • Hager, Paul
  • Riedel, Sebastian
  • Schoenmakers, John G. M.
    ORCID: 0000-0002-4389-8266

2010 Mathematics Subject Classification

  • 60L10 60G40

Keywords

  • Signatures, rough paths, optimal stopping

DOI

10.20347/WIAS.PREPRINT.2790

Abstract

We propose a new method for solving optimal stopping problems (such as American option pricing in finance) under minimal assumptions on the underlying stochastic process. We consider classic and randomized stopping times represented by linear functionals of the associated rough path signature, and prove that maximizing over the class of signature stopping times, in fact, solves the original optimal stopping problem. Using the algebraic properties of the signature, we can then recast the problem as a (deterministic) optimization problem depending only on the (truncated) expected signature. The only assumption on the process is that it is a continuous (geometric) random rough path. Hence, the theory encompasses processes such as fractional Brownian motion which fail to be either semi-martingales or Markov processes.

Download Documents