Lecture Course Winter Term 2022/23
Selected Topics in Applied Analysis:
Gradients systems and their gradient flows
Alexander Mielke (WIAS and HU Berlin)
Lecture times
Thursday 11:00–12:30 h, Rudower Chaussee 25, Room 1.315
Thursday 13:30–15:00 h, Rudower Chaussee 25, Room 3.011
Office hours: Thursday 10:00-11:00 h in Room 2.104 (RUD 25)
and after special arrangement (via phone/e-mail) at WIAS
Prerequisites:
necessary: Analysis I-III, Linear functional analysis, linear partial differential equations
recommended: Direct method in the calculus of variations
Topics:
- Introduction to gradient systems and motivation
- Gradient systems based on Hilbert spaces
- Generalized gradient systems in Banach spaces (via EDP)
- Gradient systems in metric spaces (via EVI)
- Evolutionary Γ-convergence
Extended lecture notes of the course: Link to PDF on arXiv as of June 2023 (100 pages)
Literature• Modeling with and of gradient systems: [Ott96, Mie11, Pel14]
• Surveys on gradient systems: [San17, Pel14, ChF10]
• Analysis of gradient systems: [Bré73, CoV90, Ott01, AGS05, MRS13, Mie16, MuS20]
[AGS05] L. Ambrosio, N. Gigli, and G. Savaré. Gradient flows in metric spaces and in the space of probability measures. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel, 2005.
[Bré73] H. Brézis. Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. North-Holland Publishing Co., Amsterdam, 1973.
[ChF10] R. Chill and E. Fašangová. Gradient systems. matfyzpress, Charles University Prague, 2010.
[CoV90] P. Colli and A. Visintin. On a class of doubly nonlinear evolution equations. Comm. Partial Differ. Eqns., 15(5), 737–756, 1990.
[Mie11] A. Mielke. A gradient structure for reaction-diffusion systems and for energy-drift-diffusion systems. Nonlinearity, 24, 1329-1346, 2011.
[Mie16] A. Mielke. On evolutionary Γ-convergence for gradient systems (Ch. 3). In A. Muntean, J. Rademacher, and A. Zagaris, editors, Macroscopic and Large Scale Phenomena: Coarse Graining, Mean Field Limits and Ergodicity, Lecture Notes in Applied Math. Mechanics Vol. 3, pages 187-249. Springer, 2016. Proc. of Summer School in Twente University, June 2012.
[MRS13] A. Mielke, R. Rossi, and G. Savaré. Nonsmooth analysis of doubly nonlinear evolution equations. Calc. Var. Part. Diff. Eqns., 46(1-2), 253-310, 2013.
[MuS20] M. Muratori and G. Savaré. Gradient flows and evolution variational inequalities in metric spaces. I: structural properties. J. Funct. Analysis, 278(4), 108347/1-67, 2020.
[Ott96] F. Otto. Double degenerate diffusion equations as steepest descent. Preprint no. 480, SFB 256, University of Bonn, 1996.
[Ott01] F. Otto. The geometry of dissipative evolution equations: the porous medium equation. Comm. Partial Diff. Eqns., 26, 101-174, 2001.
[Pel14] M. A. Peletier. Variational modelling: Energies, gradient flows, and large deviations. arXiv:1402.1990, 2014.
[San17] F. Santambrogio. {Euclidean, metric, Wasserstein} gradient flows: an overview. Bull. Math. Sci., 7(1), 87-154, 2017.