

Sel. Topics Applied Analysis: Gradient Systems Winter Term 2022/2023 Alexander Mielke 26th of January 2023

Exercise Sheet 3

Exercise 7: Nonuniqueness of curves of maximal slope. Consider the classical metric gradient system $(\mathbb{R}^2, \mathcal{F}, \mathcal{D})$ with

$$\mathcal{F}(u) = u_1 + u_2$$
 and $\mathcal{D}(u, w) = |u - w|_1 = |u_1 - w_1| + |u_2 - w_2|$

- (a) Calculate $\partial \mathcal{F}|_{\mathcal{D}}$.
- (b) Show that the metric speed is given by $|\dot{u}|_{\mathcal{D}}(t) = |\dot{u}(t)|_1$.
- (c) Show that a curve is characterized by the conditions

$$\dot{u}_1(t) + \dot{u}_2(t) = -1$$
 and $|\dot{u}(t)|_1 = 1$ for a.a. $t \in [0, T]$.

(d) Characterized all curves of maximal slope starting at a point $u^0 \in \mathbb{R}^2$ and conclude that uncountably many solutions exist.

Exercise 8: ψ -curves of maximal slope. Consider the generalized metric gradient system $(M, \mathcal{F}, \mathcal{D}, \psi)$ with $M = \mathbb{R}^d$, $\mathcal{F}(u) = \frac{1}{2}|u|_{\text{Eucl}}^2$, and $\mathcal{D}(u, w) = |u-w|^{\theta}$ for a $\theta \in]0, 1[$.

- (a) Characterize all absolutely continuous curves.
- (b) Determine $\partial \mathcal{F}|_{\mathcal{D}}$.
- (c) Discuss the applicability of our existence result and describe set of all curves of maximal slope.

Exercise 9: Semiglobal slopes for semiconvex functionals. Consider a geodesic metric space (M, \mathcal{D}) and a geodesically λ -convex functional $\mathcal{F}: M \to \mathbb{R}_{\infty}$.

- (a) Show that $\partial \mathcal{F}|_{\mathcal{D}} = \partial_{\lambda}^{\mathrm{gl}} \mathcal{F}|_{\mathcal{D}}$.
- (b) Consider $\mathbb{S}^d := \{ u \in \mathbb{R}^{d+1} \mid |u|_{\text{Eucl}} = 1 \}$. Show that the arclength distance \mathcal{D} makes $(\mathbb{S}^d, \mathcal{D})$ into a geodesic space.
- (c) For the example in (b) fix $w \in \mathbb{S}^d$ and check whether $u \mapsto \mathcal{F}_p(u) = \frac{1}{p}\mathcal{D}(w,u)^p$ is geodesically semiconvex for $p \in [1,\infty]$.
- (d) For the example in (b) with d=1 give a function \mathcal{F} that is geodesically 1-convex.

Exercise 10: Metric versus geodesic spaces. In (M, \mathcal{D}) set $\mathcal{F}_w : M \to \mathcal{D}(w, u)$.

- (a) Show $\|\partial \mathcal{F}_w\|_{\mathcal{D}}(u) \le 1$ and provide an example for (M, \mathcal{D}) where $\|\partial \mathcal{F}_w\|_{\mathcal{D}}(u) < 1$ for all $u, w \in M$.
- (b) For the case that (M, D) is a geodesic space, show that $\partial \mathcal{F}_w|_{\mathcal{D}}(u)$ is either 0 or 1.
- (c) Assume further that $\overline{B}_R(w) = \{ u \in M \mid \mathcal{D}(w, u) \leq R \}$ is compact for all R > 0 and $w \in M$. Show that (M, \mathcal{D}) is a geodesic space if and only if $\|\partial \mathcal{F}_w\|_{\mathcal{D}}(u) = 1$ for all $u \neq w$. (Hint: Use an existence theorem to show that $\text{Geod}(w \to u)$ is nonempty.)