WIAS Preprint No. 2391, (2017)

On a Cahn--Hilliard system with convection and dynamic boundary conditions



Authors

  • Colli, Pierluigi
    ORCID: 0000-0002-7921-5041
  • Gilardi, Gianni
    ORCID: 0000-0002-0651-4307
  • Sprekels, Jürgen
    ORCID: 0009-0000-0618-8604

2010 Mathematics Subject Classification

  • 35K61 35K25 76R05 80A22

Keywords

  • Cahn-Hilliard system, convection, dynamic boundary condition, in-tial-boundary value problem, well-posedness, regularity of solutions

DOI

10.20347/WIAS.PREPRINT.2391

Abstract

This paper deals with an initial and boundary value problem for a system coupling equation and boundary condition both of Cahn--Hilliard type; an additional convective term with a forced velocity field, which could act as a control on the system, is also present in the equation. Either regular or singular potentials are admitted in the bulk and on the boundary. Both the viscous and pure Cahn--Hilliard cases are investigated, and a number of results is proven about existence of solutions, uniqueness, regularity, continuous dependence, uniform boundedness of solutions, strict separation property. A complete approximation of the problem, based on the regularization of maximal monotone graphs and the use of a Faedo--Galerkin scheme, is introduced and rigorously discussed.

Appeared in

Download Documents