The group contributes to the following application oriented research topics of WIAS:

Modeling and simulation of semiconductor structures

Modern semiconductor and optoelectronic devices such as semiconductor lasers or organic field-effect transistors are based on semiconductor structures, which e.g. can be given by doping profiles, heterostructures or nanostructures. For the qualitative and quantitative understanding of the properties of these devices, mathematical modeling and simulation of the most relevant and, respectively, of the limiting carrier transport processes is necessary. In the context of the Green Photonics Initiative new topics move into the focus of research, e.g. reduced energy consumption of devices, new applications in the field of renewable energies, communication and lighting. [>> more]

Modeling, Simulation and Optimization for Biomedical Applications

Today, in medical science digital simulation instruments for processes in the human body are utilized in diagnistics and therapy planning. At WIAS, models for biological tissues, fluids, and their interaction as well as techniques in optimization and optimal control for decision support in biomedicin are devloped. [>> more]

Numerical methods for the simulation of population balance systems

These applications are modeled by population balance systems. Accurate and efficient numerical methods will be developed, in collaboration with partners from academics and industry, which will be in the long term the basis of optimal control methods for the considered processes. [>> more]

Static and dynamic simulation in process engineering

Dynamic process simulation has become an indispensable tool for design, analysis, and operation of complex plants in industry. Here initial value problems for large systems of differential-algebraic equations (DAEs) have to be solved. The simulation concept developed at WIAS exploits the modular structure of the process models to use divide-and-conquer techniques for solving the DAE system with block-structured methods. The concept is implemented in the Simulator BOP and has been successfully used in different industrial applications. [>> more]

Thermodynamic models for electrochemical systems

The behavior of electrochemical systems is widely investigated with continuum physics models. Applications range from single crystal electrochemistry to lithium batteries and fuel cells, from biological nano-pores to electrolysis and corrosion science, and further. [>> more]


Further application topics where the institute has expertise in:

Modeling and simulation of photoresists

One option to for semiconductor device manufacturing is optical lithography. In this process a pattern defined in a photomask is transferred into a photosensitive film (photoresist) by light. [>> more]