Doktorandenseminar des WIAS


Numerische Mathematik und Wissenschaftliches Rechnen

Forschungsgruppe

2017   (2016, 2015, 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002)

Seminar Numerische Mathematik / Numerical mathematics seminars
aktuelles Programm / current program

FG3 intern

Donnerstag, 01. 02. 2018, 14:00 Uhr (ESH)

Dr. E. Sinibaldi   (Italian Institute of Technology)
Selected modeling approaches for biomedical applications and biorobotics tools

The effective deployment of theranostic agents (including drugs), smart?materials?based systems and interfaces to target regions (prospectively) in the human body where to perform the sought actions also requires theoretical models and physical tools. Modeling the delivery and the (remote) actuation/stimulation of the aforementioned agents/systems/interfaces, in particular, permits to compensate for experimental conditions hard to characterize and to better interpret the experimental results, thus paving the way for quantitative therapy design and control. This is complemented by model-based design of related experimental devices, flexible tools able to safely navigate anatomical pathways, and miniaturized effectors. In this talk I will firstly present the solution to an inverse problem, namely to determine the velocity profile in a vessel cross-section starting from the flow-rate, which is relevant to pulsatile biological flows (blood and cerebro-spinal fluid flows), with application, e.g., to magnetic particle targeting. Then I will address numerical models for intrathecal drug-delivery (drug infusion in the cerebro-spinal fluid, also accounting for transport to the spinal cord) and simplified analytical models for intra-tissue drug-delivery (particle transport into porous/poroelastic media, with application to intratumoral thermotherapy). Finally, I will overview model-based approaches for: piezoelectric nanoparticle-mediated cell stimulation; real-scale physical models of the blood-brain barrier; flexible biorobotics probes; miniature (bioinspired) actuators and effectors.

und 15:00 Uhr

L. Blank   (WIAS Berlin)
n.n.

n.n.

Donnerstag, 18. 01. 2018, 14:00 Uhr (ESH)

Prof. W. Dreyer   (WIAS Berlin)
Modeling of non-Newtonian fluids without material frame indifference

In the fifties the modeling of non-Newtonian fluids initiated the search for invariant time derivatives with respect to certain space time transformations. Then Euclidean Transformations were selected to establish the Principle of Material Frame Indifference and moreover, the introduction of Nth grade fluids. However, the two concepts lead to serious inconsistencies in both thermodynamic modeling and experimental observations. In 1986 the subject has been resolved in a remarkable paper by I. Müller and K. Wilmanski. In this lecture we show how an appropriate model of non-Newtonian fluids may be incorporated in Continuum Thermodynamics as it was laid down by D. Bothe and W. Dreyer.

Donnerstag, 11. 01. 2018, 14:00 Uhr (ESH)

Prof. G. Lube   (Georg-August-Universität Göttingen)
Why exactly divergence-free H(div)-conforming FEM for transient incompressible flows?

Recent results show that one can reconstruct classical inf-sup stable H1-conforming FEM for incompressible flow problems to be pressure-robust. Exactly divergence-free FEM are pressure-robust per construction. In particular, exactly divergence-free H(div)-conforming FEM combine excellent stability and conservation properties with minimal stabilization. We show that the numerical analysis of such methods allows to separate the (static) linear Stokes regime and the nonlinear dynamic regime. Semi-robust error estimates w.r.t. the Reynolds number will be given. In a hybridized form, H(div)-conforming FEM are suitable for large scale computation. Applications of the approach to two- and three-dimensional problems of vortex dynamics will be presented for high Reynolds numbers.

und 15:00 Uhr

Dr. A. Rasheed   (Lahore University of Management Sciences, Pakistan)
Influence of magnetic field on dendrites during solidification of binary mixtures

A phase field model has been proposed which incorporates convection and magnetic field in an isothermal environment. A numerical scheme is proposed and numerical analysis of model in two-dimensional geometry is performed. The numerical stability and error analysis of this approximation scheme which is based on mixed finite-element method are performed. An application of a nickel-copper binary alloy is considered. Influence of various magnetic fields on the dendrites during the solidification process has been discussed.