aws
Adaptive weights smoothing
AWS is a contributed package within the R-Project for Statistical Computing containing a reference implementation of the adaptive weights smoothing algorithms for local constant likelihood and local polynomial regression models. Binaries for several operating systems are available from the Comprehensive R Archive Network (http://cran.r-project.org).
Authors: Joerg Polzehl
Reference, including documentation:
J. Polzehl, V.Spokoiny (2006). Propagation-separation approach for local likelihood estimation, Probab. Theory Related Fields, 135 pp. 335--362.
J. Polzehl, K. Papafitsoros, K. Tabelow (2020). Patch-wise adaptive weights smoothing in R, Journal of Statistical Software, 95, pp. 1--27.
J. Polzehl and K. Tabelow (2023). Magnetic Resonance Brain Imaging: Modeling and Data Analysis with R 2nd Revised Edition, Series: Use R!, Springer International Publishing, Cham, 2023, 258 pages.
Download: freely available from CRAN server under GPL.
Last modified: Tue Mar 18 16:00:00 CET 2024
Contact
Phone, E-mail
Tel.: 030 20372-564
E-mail: aws@wias-berlin.de
WIAS Software
- ALEA - Framework for high-dimensional functional Uncertainty Quantification
- aws - Adaptive weights smoothing
- BALaser for the simulation of dynamics in broad-area semiconductor lasers
- ddfermi - drift diffusion simulation tool
- DiPoG - Direct and Inverse Problems for Optical Gratings
- WIAS R-packages for imaging / neuroscience
- LDSL-tool for the simulation of longitudinal dynamics in semiconductor lasers
- ParMooN - Mathematics and object-oriented Numerics
- pdelib - a FVM and FEM toolbox for PDEs
- TetGen - a Delaunay Tetrahedral Mesh Generator