Publications

Monographs

  • S. Jachalski, D. Peschka, S. Bommer, R. Seemann, B. Wagner, Chapter 18: Structure Formation in Thin Liquid--Liquid Films, in: Transport Processes at Fluidic Interfaces, D. Bothe, A. Reusken, eds., Advances in Mathematical Fluid Mechanics, Birkhäuser, Springer International Publishing AG, Cham, 2017, pp. 531--574, (Chapter Published), DOI 10.1007/978-3-319-56602-3 .
    Abstract
    We revisit the problem of a liquid polymer that dewets from another liquid polymer substrate with the focus on the direct comparison of results from mathematical modeling, rigorous analysis, numerical simulation and experimental investigations of rupture, dewetting dynamics and equilibrium patterns of a thin liquid-liquid system. The experimental system uses as a model system a thin polystyrene (PS) / polymethylmethacrylate (PMMA) bilayer of a few hundred nm. The polymer systems allow for in situ observation of the dewetting process by atomic force microscopy (AFM) and for a precise ex situ imaging of the liquid--liquid interface. In the present study, the molecular chain length of the used polymers is chosen such that the polymers can be considered as Newtonian liquids. However, by increasing the chain length, the rheological properties of the polymers can be also tuned to a viscoelastic flow behavior. The experimental results are compared with the predictions based on the thin film models. The system parameters like contact angle and surface tensions are determined from the experiments and used for a quantitative comparison. We obtain excellent agreement for transient drop shapes on their way towards equilibrium, as well as dewetting rim profiles and dewetting dynamics.

  • H.-Chr. Kaiser, D. Knees, A. Mielke, J. Rehberg, E. Rocca, M. Thomas, E. Valdinoci, eds., PDE 2015: Theory and Applications of Partial Differential Equations, 10 of Discrete and Continuous Dynamical Systems -- Series S, American Institute of Mathematical Science, Springfield, 2017, iv+933 pages, (Collection Published).
    Abstract
    HAGs von Christoph bestätigen lassen

Articles in Refereed Journals

  • D. Peschka, N. Rotundo, M. Thomas, Doping optimization for optoelectronic devices, Optical and Quantum Electronics, (2018), DOI 10.1007/s11082-018-1393-4 .
    Abstract
    We present a mathematical and numerical framework for the optimal design of doping profiles for optoelectronic devices using methods from mathematical optimization. With the goal to maximize light emission and reduce the threshold of an edge-emitting laser, we consider a drift-diffusion model for charge transport and include modal gain and total current into a cost functional, which we optimize in cross sections of the emitter. We present 1D and 2D results for exemplary setups that point out possible routes for device improvement.

  • S. Bommer, R. Seemann, S. Jachalski, D. Peschka, B. Wagner, Impact of energy dissipation on interface shapes and on rates for dewetting from liquid substrates, Scientific Reports, 8 (2018), pp. 13295/1--13295/11, DOI 10.1038/s41598-018-31418-1 .
    Abstract
    The dependence of the dissipation on the local details of the flow field of a liquid polymer film dewetting from a liquid polymer substrate is shown, solving the free boundary problem for a two-layer liquid system. As a key result we show that the dewetting rates of such a liquid bi-layer system can not be described by a single power law but shows transient behaviour of the rates, changing from increasing to decreasing behaviour. The theoretical predictions on the evolution of morphology and rates of the free surfaces and free interfaces are compared to measurements of the evolution of the polystyrene(PS)-air, the polymethyl methacrylate (PMMA)-air and the PS-PMMA interfaces using in situ atomic force microscopy (AFM), and they show excellent agreement.

  • G. Lazzaroni, R. Rossi, M. Thomas, R. Toader, Rate-independent damage in thermo-viscoelastic materials with inertia, Journal of Dynamics and Differential Equations, (2018), published online on 10.05.2018, DOI 10.1007/s10884-018-9666-y .
    Abstract
    We present a model for rate-independent, unidirectional, partial damage in visco-elastic materials with inertia and thermal effects. The damage process is modeled by means of an internal variable, governed by a rate-independent flow rule. The heat equation and the momentum balance for the displacements are coupled in a highly nonlinear way. Our assumptions on the corresponding energy functional also comprise the case of the Ambrosio-Tortorelli phase-field model (without passage to the brittle limit). We discuss a suitable weak formulation and prove an existence theorem obtained with the aid of a (partially) decoupled time-discrete scheme and variational convergence methods. We also carry out the asymptotic analysis for vanishing viscosity and inertia and obtain a fully rate-independent limit model for displacements and damage, which is independent of temperature.

  • R. Rossi, M. Thomas, From adhesive to brittle delamination in visco-elastodynamics, Mathematical Models & Methods in Applied Sciences, 27 (2017), pp. 1489--1546, DOI 10.1142/S0218202517500257 .
    Abstract
    In this paper we analyze a system for brittle delamination between two visco-elastic bodies, also subject to inertia, which can be interpreted as a model for dynamic fracture. The rate-independent flow rule for the delamination parameter is coupled with the momentum balance for the displacement, including inertia. This model features a nonsmooth constraint ensuring the continuity of the displacements outside the crack set, which is marked by the support of the delamination parameter. A weak solvability concept, generalizing the notion of energetic solution for rate-independent systems to the present mixed rate-dependent/rate-independent frame, is proposed. Via refined variational convergence techniques, existence of solutions is proved by passing to the limit in approximating systems which regularize the nonsmooth constraint by conditions for adhesive contact. The presence of the inertial term requires the design of suitable recovery spaces small enough to provide compactness but large enough to recover the information on the crack set in the limit.

  • M. Thomas, Ch. Zanini, Cohesive zone-type delamination in visco-elasticity, Discrete and Continuous Dynamical Systems -- Series S, 10 (2017), pp. 1487--1517, DOI 10.3934/dcdss.2017077 .
    Abstract
    We study a model for the rate-independent evolution of cohesive zone delamination in a visco-elastic solid, also exposed to dynamics effects. The main feature of this model, inspired by [Ortiz&Pandoli99Int.J.Numer.Meth.Eng.], is that the surface energy related to the crack opening depends on the history of the crack separation between the two sides of the crack path, and allows for different responses upon loading and unloading.

    Due to the presence of multivalued and unbounded operators featuring non-penetration and the `memory'-constraint in the strong formulation of the problem, we prove existence of a weaker notion of solution, known as semistable energetic solution, pioneered in [Roubicek09M2AS] and refined in [Rossi&Thomas15WIAS-Preprint2113].

Contributions to Collected Editions

  • R. Rossi, M. Thomas, From nonlinear to linear elasticity in a coupled rate-dependent/independent system for brittle delamination, in: Proceedings of the INdAM-ISIMM Workshop on Trends on Applications of Mathematics to Mechanics, Rome, Italy, September 2016, E. Rocca, U. Stefanelli, L. Truskinovsky, A. Visintin, eds., 27 of Springer INdAM Series, Springer International Publishing, Cham, 2018, pp. 127--157, DOI 10.1007/978-3-319-75940-1_7 .
    Abstract
    We revisit the weak, energetic-type existence results obtained in [Rossi/Thomas-ESAIM-COCV-21(1):1-59,2015] for a system for rate-independent, brittle delamination between two visco-elastic, physically nonlinear bulk materials and explain how to rigorously extend such results to the case of visco-elastic, linearly elastic bulk materials. Our approximation result is essentially based on deducing the Mosco-convergence of the functionals involved in the energetic formulation of the system. We apply this approximation result in two different situations: Firstly, to pass from a nonlinearly elastic to a linearly elastic, brittle model on the time-continuous level, and secondly, to pass from a time-discrete to a time-continuous model using an adhesive contact approximation of the brittle model, in combination with a vanishing, super-quadratic regularization of the bulk energy. The latter approach is beneficial if the model also accounts for the evolution of temperature.

  • S. Bartels, M. Milicevic, M. Thomas, Numerical approach to a model for quasistatic damage with spatial $BV$-regularization, in: Proceedings of the INdAM-ISIMM Workshop on Trends on Applications of Mathematics to Mechanics, Rome, Italy, September 2016, E. Rocca, U. Stefanelli, L. Truskinovsky, eds., 27 of Springer INdAM Series, Springer International Publishing, Cham, 2018, pp. 179--203, DOI 10.1007/978-3-319-75940-1_9 .
    Abstract
    We address a model for rate-independent, partial, isotropic damage in quasistatic small strain linear elasticity, featuring a damage variable with spatial BV-regularization. Discrete solutions are obtained using an alternate time-discrete scheme and the Variable-ADMM algorithm to solve the constrained nonsmooth optimization problem that determines the damage variable at each time step. We prove convergence of the method and show that discrete solutions approximate a semistable energetic solution of the rate-independent system. Moreover, we present our numerical results for two benchmark problems.

  • M. Thomas, A comparison of delamination models: Modeling, properties, and applications, in: Mathematical Analysis of Continuum Mechanics and Industrial Applications II, Proceedings of the International Conference CoMFoS16, P. VAN Meurs, M. Kimura, H. Notsu, eds., 30 of Mathematics for Industry, Springer Nature, Singapore, 2018, pp. 27--38, DOI 10.1007/978-981-10-6283-4_3 .
    Abstract
    This contribution presents recent results in the modeling and the analysis of delamination problems. It addresses adhesive contact, brittle, and cohesive zone models both in a quasistatic and a viscous, dynamic setting for the bulk part. Also different evolution laws for the delaminating surface are discussed.

  • A. Mielke, D. Peschka, N. Rotundo, M. Thomas, On some extension of energy-drift-diffusion models: Gradient structure for optoelectronic models of semiconductors, in: Progress in Industrial Mathematics at ECMI 2016, P. Quintela, P. Barral, D. Gómez, F.J. Pena, J. Rodrígues, P. Salgado, M.E. Vázquez-Méndez, eds., 26 of Mathematics in Industry, Springer International Publishing AG, Cham, 2017, pp. 291--298.

Preprints, Reports, Technical Reports

  • D. Peschka, N. Rotundo, M. Thomas, Doping optimization for optoelectronic devices, Preprint no. 2501, WIAS, Berlin, 2018, DOI 10.20347/WIAS.PREPRINT.2501 .
    Abstract, PDF (3715 kByte)
    We present a mathematical and numerical framework for the optimal design of doping profiles for optoelectronic devices using methods from mathematical optimization. With the goal to maximize light emission and reduce the thresholds of an edge-emitting laser, we consider a drift-diffusion model for charge transport and include modal gain and total current into a cost functional, which we optimize in cross sections of the emitter. We present 1D and 2D results for exemplary setups that point out possible routes for device improvement.

  • L. Adam, M. Hintermüller, D. Peschka, Th.M. Surowiec, Optimization of a multiphysics problem in semiconductor laser design, Preprint no. 2500, WIAS, Berlin, 2018, DOI 10.20347/WIAS.PREPRINT.2500 .
    Abstract, PDF (1472 kByte)
    A multimaterial topology optimization framework is suggested for the simultaneous optimization of mechanical and optical properties to be used in the development of optoelectronic devices. Based on the physical aspects of the underlying device, a nonlinear multiphysics model for the elastic and optical properties is proposed. Rigorous proofs are provided for the sensitivity of the fundamental mode of the device with respect to the changes in the underlying topology. After proving existence and optimality results, numerical experiments leading to an optimal material distribution for maximizing the strain in a Ge-on-Si microbridge are given. The highly favorable electronic properties of this design are demonstrated by steady-state simulations of the corresponding van Roosbroeck (drift-diffusion) system.

  • P. Farrell, D. Peschka, Challenges for drift-diffusion simulations of semiconductors: A comparative study of different discretization philosophies, Preprint no. 2486, WIAS, Berlin, 2018, DOI 10.20347/WIAS.PREPRINT.2486 .
    Abstract, PDF (2457 kByte)
    We analyze and benchmark the error and the convergence order of finite difference, finite-element as well as Voronoi finite-volume discretization schemes for the drift-diffusion equations describing charge transport in bulk semiconductor devices. Three common challenges, that can corrupt the precision of numerical solutions, will be discussed: boundary layers at Ohmic contacts, discontinuties in the doping profile, and corner singularities in L-shaped domains. The influence on the order of convergence is assessed for each computational challenge and the different discretization schemes. Additionally, we provide an analysis of the inner boundary layer asymptotics near Ohmic contacts to support our observations.

  • D. Peschka, Variational approach to contact line dynamics for thin films, Preprint no. 2477, WIAS, Berlin, 2018, DOI 10.20347/WIAS.PREPRINT.2477 .
    Abstract, PDF (713 kByte)
    This paper investigates a variational approach to viscous flows with contact line dynamics based on energy-dissipation modeling. The corresponding model is reduced to a thin-film equation and its variational structure is also constructed and discussed. Feasibility of this modeling approach is shown by constructing a numerical scheme in 1D and by computing numerical solutions for the problem of gravity driven droplets. Some implications of the contact line model are highlighted in this setting.

  • M. Thomas, C. Bilgen, K. Weinberg, Analysis and simulations for a phase-field fracture model at finite strains based on modified invariants, Preprint no. 2456, WIAS, Berlin, 2017, DOI 10.20347/WIAS.PREPRINT.2456 .
    Abstract, PDF (1542 kByte)
    Phase-field models have already been proven to predict complex fracture patterns in two and three dimensions for brittle fracture at small strains. In this paper we discuss a model for phase-field fracture at finite deformations in more detail. Among the identification of crack location and projection of crack growth the numerical stability is one of the main challenges in solid mechanics. We here present a phase-field model at finite strains, which takes into account the anisotropy of damage by applying an anisotropic split and the modified invariants of the right Cauchy-Green strain tensor. We introduce a suitable weak notion of solution that also allows for a spatial and temporal discretization of the model. In this framework we study the existence of solutions %Second the mathematical background of the approach is examined and and we show that the time-discrete solutions converge in a weak sense to a solution of the time-continuous formulation of the model. Numerical examples in two and three space dimensions are carried out in the range of validity of the analytical results.

Talks, Poster

  • D. Peschka, Droplet and satellite droplet shedding in dewetting polymer films, 89th Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM 2018), Section S11 ``Interfacial Flows'', March 19 - 23, 2018, Technische Universität München, March 21, 2018.

  • D. Peschka, Steering pattern formation during dewetting with interface and contact lines properties, The 20th European Conference on Mathematics for Industry, ECMI Special Interest Group ``Material Design and Performance in sustainable Energies", minisymposium ``Multiple Scales in Electromagnetic Devices --- from Quantum Mechanical Effects to Circuit Simulation", June 18 - 22, 2018, Budapest, Hungary, June 21, 2018.

  • D. Peschka, Topics for the SPP 2171: Variational modeling for fluid flows on substrates with dissipation, Dynamic Wetting of Flexible Adaptive and Switchable Surfaces, May 17 - 18, 2018, University of Münster, Center for Nonlinear Science, May 17, 2018.

  • M. Thomas, Analysis and simulation for a phase-field fracture model at finite strains based on modified invariants, 89th Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM 2018), Section DFG Priority Programmes PP1748 ``Reliable Simulation Techniques in Solid Mechanics. Development of Non-standard Discretization Methods, Mechanical and Mathematical Analysis'', March 19 - 23, 2018, Technische Universität München, March 20, 2018.

  • M. Thomas, Analysis and simulation for a phase-field fracture model at finite strains based on modified invariants, Workshop ``Special Materials and Complex Systems'' (SMACS 2018), June 18 - 22, 2018, University of Milan/University of Pavia, Gargnano, Italy, June 18, 2018.

  • M. Thomas, Analysis and simulation for a phase-field fracture model at finite strains based on modified invariants, Analysis Seminar, University of Brescia, Department of Mathematics, Italy, May 10, 2018.

  • M. Thomas, Analysis for the discrete approximation of damage and fracture, Applied Analysis Day, June 28 - 29, 2018, Technische Universität Dresden, Chair of Partial Differntial Equations, Germany, June 29, 2018.

  • M. Thomas, Analytical and numerical approach to a class of damage models, The 12th AIMS Conference on Dynamical Systems, Differential Equations and Applications, Special Session 75 ``Mathematics and Materials: Models and Applications'', July 5 - 9, 2018, National Taiwan University, Taipeh, Taiwan, Province Of China, July 6, 2018.

  • M. Thomas, Dynamics of rock dehydration on multiple scales, Begutachtung SFB 1114: Scaling Cascades in Complex Systems, Freie Universität Berlin, February 27 - 28, 2018.

  • M. Thomas, Gradient structures for flows of concentrated suspensions, The 12th AIMS Conference on Dynamical Systems, Differential Equations and Applications, Special Session 18 ``Emergence and Dynamics of Patterns in Nonlinear Partial Differential Equations and Related Fields'', July 5 - 9, 2018, National Taiwan University, Taipeh, Taiwan, Province Of China, July 7, 2018.

  • M. Thomas, Optimization of the radiative emission for mechanically strained optoelectronic semiconductor devices, 9th International Conference ``Inverse Problems: Modeling and Simulation'' (IPMS 2018), Minisymposium M16 ``Inverse and Control Problems in Mechanics'', May 21 - 25, 2018, The Eurasian Association on Inverse Problems, Malta, Malta, May 24, 2018.

  • M. Thomas, Phase-field fracture at finite strains based on modified invariants, Special Materials and Complex Systems (SMACS 2018), June 17 - 22, 2018, University of Milan, Department of Mathematics, Gargnano, Italy, June 18, 2018.

  • M. Thomas, Rate-independent evolution of sets & applications to damage and delamination, PDEs Friends, June 21 - 22, 2018, Politecnico di Torino, Dipartimento di Scienze Matematiche ``Giuseppe Luigi Lagrange'', Italy, June 22, 2018.

  • D. Peschka, Doping optimization for optoelectronic devices, Numerical Simulation of Optoelectronic Devices (NUSOD 2017), Post-Deadline session, July 27 - 28, 2017, Technical University, Lyngby Campus, Kopenhagen, Denmark, July 28, 2017.

  • D. Peschka, Mathematical and numerical approaches to moving contact lines, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy, December 6, 2017.

  • D. Peschka, Variational structure of fluid motion with contact lines in thin-film models, Kolloquium Angewandte Mathematik, Universität der Bundeswehr, München, May 31, 2017.

  • D. Peschka, Variational structure of viscous flows with contact line motion, Seminar Numerical Mathematics, WIAS RG 3, July 18, 2017.

  • M. Thomas, Delamination processes in solids: GENERIC structure & analytical results, CIM-WIAS Workshop ``Topics in Applied Analysis and Optimisation'', December 6 - 8, 2017, Centro de Matemática, Lisboa, Portugal, December 8, 2017.

  • M. Thomas, Dynamics of rock dehydration on multiple scales, SCCS Days, November 8 - 10, 2017, SFB 1114 ``Scaling Cascades in Complex Systems'', Schmöckwitz, November 9, 2017.

  • M. Thomas, Mathematical modeling and analysis of evolution processes in solids and the influence of bulk-interface-interaction, Humboldt-Universität zu Berlin, Institut für Mathematik, October 20, 2017.

  • M. Thomas, Why scientist in Academia?, I, SCIENTIST: The Conference on Gender, Career Paths and Networking, May 12 - 14, 2017, Freie Universität Berlin, May 14, 2017.