Publications

Monographs

  • H.-Chr. Kaiser, D. Knees, A. Mielke, J. Rehberg, E. Rocca, M. Thomas, E. Valdinoci, eds., PDE 2015: Theory and Applications of Partial Differential Equations, 10 of Discrete and Continuous Dynamical Systems -- Series S, American Institute of Mathematical Science, Springfield, 2017, IV+933 pages, (Collection Published).
    Abstract
    HAGs von Christoph bestätigen lassen

Preprints, Reports, Technical Reports

  • R. Rossi, M. Thomas, From nonlinear to linear elasticity in a coupled rate-dependent/independent system for brittle delamination, Preprint no. 2409, WIAS, Berlin, 2017, DOI 10.20347/WIAS.PREPRINT.2409 .
    Abstract, PDF (291 kByte)
    We revisit the weak, energetic-type existence results obtained in [Rossi/Thomas-ESAIM-COCV-21(1):1-59,2015] for a system for rate-independent, brittle delamination between two visco-elastic, physically nonlinear bulk materials and explain how to rigorously extend such results to the case of visco-elastic, linearly elastic bulk materials. Our approximation result is essentially based on deducing the Mosco-convergence of the functionals involved in the energetic formulation of the system. We apply this approximation result in two different situations: Firstly, to pass from a nonlinearly elastic to a linearly elastic, brittle model on the time-continuous level, and secondly, to pass from a time-discrete to a time-continuous model using an adhesive contact approximation of the brittle model, in combination with a vanishing, super-quadratic regularization of the bulk energy. The latter approach is beneficial if the model also accounts for the evolution of temperature.

  • M. Thomas, A comparison of delamination models: Modeling, properties, and applications, Preprint no. 2393, WIAS, Berlin, 2017, DOI 10.20347/WIAS.PREPRINT.2393 .
    Abstract, PDF (140 kByte)
    This contribution presents recent results in the modeling and the analysis of delamination problems. It addresses adhesive contact, brittle, and cohesive zone models both in a quasistatic and a viscous, dynamic setting for the bulk part. Also different evolution laws for the delaminating surface are discussed.

  • S. Bartels, M. Milicevic, M. Thomas, Numerical approach to a model for quasistatic damage with spatial $BV$-regularization, Preprint no. 2388, WIAS, Berlin, 2017, DOI 10.20347/WIAS.PREPRINT.2388 .
    Abstract, PDF (532 kByte)
    We address a model for rate-independent, partial, isotropic damage in quasistatic small strain linear elasticity, featuring a damage variable with spatial BV-regularization. Discrete solutions are obtained using an alternate time-discrete scheme and the Variable-ADMM algorithm to solve the constrained nonsmooth optimization problem that determines the damage variable at each time step. We prove convergence of the method and show that discrete solutions approximate a semistable energetic solution of the rate-independent system. Moreover, we present our numerical results for two benchmark problems.

Talks, Poster

  • D. Peschka, Variational structure of fluid motion with contact lines in thin-film models, Kolloquium Angewandte Mathematik, Universität der Bundeswehr, München, May 31, 2017.

  • M. Thomas, Why scientist in Academia?, I, SCIENTIST: The Conference on Gender, Career Paths and Networking, May 12 - 14, 2017, Freie Universität Berlin, Berlin, May 14, 2017.

  • M. Thomas, tba, ECCOMAS Thematic Conference ``Modern Finite Element Technologies 2017'', August 21 - 25, 2017, Schwerpunktprogramm SPP 1748, Bad Honnef.