Research Group "Stochastic Algorithms and Nonparametric Statistics"

Research Seminar "Mathematical Statistics" Summer Semester 2017

  • Place: Weierstrass-Institute for Applied Analysis and Stochastics, Erhard-Schmidt-Hörsaal, Mohrenstraße 39, 10117 Berlin
  • Time: >Wednesdays, 10.00 a.m. - 12.30 p.m.
19.04.17

26.04.17 Jonathan Weed (Massachusetts Institute of Technology, USA)
Optimal rates of estimation for the multi-reference alignment problem
How should one estimate a signal, given only access to noisy versions of the signal corrupted by unknown circular shifts? This simple problem has surprisingly broad applications, in fields from structural biology to aircraft radar imaging. We describe how this model can be viewed as a multivariate Gaussian mixture model whose centers belong to an orbit of a group of orthogonal transformations. This enables us to derive matching lower and upper bounds for the optimal rate of statistical estimation for the underlying signal. These bounds show a striking dependence on the signal-to-noise ratio of the problem. Joint work with Afonso Bandeira and Philippe Rigollet.
03.05.17 Prof. Cristina Butucea (Université Paris-Est Marne-la-Vallée, Frankreich)
Local asymptotic equivalence for quantum models
Quantum statistics is concerned with inference for physical systems described by quantum mechanics. After an introduction to the main notions of quantum statistics: quantum states, measure- ments, channels, we describe nonparametric quantum models. We prove the local asymptotic equivalence (LAE) of i.i.d. quantum pure states and a quantum Gaussian state, in the sense of Le Cam theory. As an application, we show the optimal rates for the estimation of pure states, for the estimation of some quadratic functionals and for the testing of pure states. Surprisingly, a sharp parametric testing rate is obtained in a nonparametric quantum setup. Joint work with M. Guta and M. Nussbaum.
10.05.17 Prof. Marco Cuturi (ENSAE/CREST, Malakoff, France)
A review of regularized optimal transport and applications to Wasserstein barycenters
17.05.17 no seminar

24.05.17 Claudia Kirch (Universität Magdeburg)
Frequency domain likelihood approximations for time series bootstrapping and bayesian nonparametrics
A large class of time series methods are based on a Fourier analysis, which can be considered as a whitening of the data, giving rise for example to the famous Whittle likelihood. In particular, frequency domain bootstrap methods have been successfully applied in a large range of situations. In this talk, we will rst review existing frequency domain bootstrap methodology for stationary time series before generalizing them for locally stationary time series. To this end, we rst introduce a moving Fourier transformation that captures the time-varying spectral density in a similar manner as the classical Fourier transform does for stationary time series. We obtain consistent estimators for the local spectral densities and show that the corresponding bootstrap time series correctly mimics the covariance behavior of the original time series. The approach is illustrated by means of some simulations and an application to a wind data set. All time series bootstrap methods are implicitely using a likelihood approximation, which could be used explicitely in a Bayesian nonparametric framework for time series. So far, only the Whittle likelihood has been used in this context to get a nonparametric Bayesian estimation of the spectral density of stationary time series. In a second part of this talk we generalize this approach based on the implicit likelihood from the autoregressive aided periodogram bootstrap introduced by Kreiss and Paparoditis (2003). This likelihood combines a parametric approximation with a nonparametric correction making it particularly attractive for Bayesian applications. Some theoretic results about this likelihood approximation including posterior consistency in the Gaussian case are given. The performance is illustrated in simulations and an application to LIGO gravitational wave data.
31.05.17
The talk takes place in R.406
07.06.17

14.06.17 Prof. Jean-Michel Loubes (Université Toulouse III, France)
Kantorovich distance based kernel for Gaussian Processes : estimation and forecast
Monge-Kantorovich distances, otherwise known as Wasserstein distances, have received a growing attention in statistics and machine learning as a powerful discrepancy measure for probability distributions. Here, we focus on forecasting a Gaussian process indexed by probability distributions. For this, we provide a family of positive definite kernels built using transportation based distances. We provide a probabilistic understanding of these kernels and characterize the corresponding stochastic processes. We prove that the Gaussian processes indexed by distributions corresponding to these kernels can be efficiently forecast, opening new perspectives in Gaussian process modeling.
21.06.17

28.06.17

05.07.17

12.07.17



last reviewed: march 3, 2017, by Christine Schneider