WIAS Report No. 20, (2001)

Longitudinal dynamics of semiconductor lasers



Authors

  • Sieber, Jan

2010 Mathematics Subject Classification

  • 78A60 35B25 37D10 34C60

Keywords

  • semiconductor lasers, infinite-dimensional dynamical systems, invariant manifolds, bifurcation analysis

Abstract

We investigate the longitudinal dynamics of semiconductor lasers using a model which couples a hyperbolic linear system of partial differential equations nonlinearly with ordinary differential equations. We prove the global existence and uniqueness of solutions using the theory of strongly continuous semigroups. Subsequently, we analyse the long-time behavior of the solutions in two steps. First, we find attracting invariant manifolds of low dimension benefitting from the fact that the system is singularly perturbed, i. e., the optical and the electronic variables operate on differente time-scales. The flow on these manifolds can be approximated by the so-called mode approximations. The dimension of these mode approximations depends on the number of critical eigenvalues of the linear hyperbolic operator. Next, we perform a detailed numerical and analytic bifurcation analysis for the two most common constellations. Starting from known results for the single-mode approximation, we investigate the two-mode approximation in the special case of a rapidly rotating phase difference between the two optical components. In this case, the first-order averaged model unveils the mechanisms for various phenomena observed in simulations of the complete system. Moreover, it predicts the existence of a more complex spatio-temporal behavior. In the scope of the averaged model, this is a bursting regime.

Download Documents