WIAS Preprint No. 2225, (2016)

Analysis of an operator-differential model for magnetostrictive energy harvesting



Authors

  • Davino, Daniele
  • Krejčí, Pavel
  • Pimenov, Alexander
  • Rachinskii, Dmitrii
  • Visone, Ciro

2010 Mathematics Subject Classification

  • 34C55 47J40 74F15, 37N15

Keywords

  • magnetostrictive materials, hysteresis, energy harvesting, optimization problems

Abstract

We present a model of, and analysis of an optimization problem for, a magnetostrictive harvesting device which converts mechanical energy of the repetitive process such as vibrations of the smart material to electrical energy that is then supplied to an electric load. The model combines a lumped differential equation for a simple electronic circuit with an operator model for the complex constitutive law of the magnetostrictive material. The operator based on the formalism of the phenomenological Preisach model describes nonlinear saturation effects and hysteresis losses typical of magnetostrictive materials in a thermodynamically consistent fashion. We prove well-posedness of the full operator-differential system and establish global asymptotic stability of the periodic regime under periodic mechanical forcing that represents mechanical vibrations due to varying environmental conditions. Then we show the existence of an optimal solution for the problem of maximization of the output power with respect to a set of controllable parameters (for the periodically forced system). Analytical results are illustrated with numerical examples of an optimal solution.

Appeared in

  • Comm. Nonl. Sc. Num. Sim., 39 (2016) pp. 504--519.

Download Documents