- |
Interface dynamics in a degenerate Cahn-Hilliard model for viscoelastic phase separation.
Katharina Hopf, John King, Andreas Münch, and Barbara Wagner.
Preprint.
|
- |
On the equilibrium solutions of
electro-energy-reaction-diffusion systems.
Katharina Hopf, Michael Kniely, and Alexander Mielke.
Preprint.
|
- |
Convergence of a finite volume scheme and dissipative measure-valued-strong stability for a hyperbolic-parabolic cross-diffusion system.
Katharina Hopf and Ansgar Jüngel.
Preprint (under review since 04/23).
|
- |
Singularities in L1-supercritical Fokker-Planck equations: A qualitative analysis.
Katharina Hopf.
Ann. Inst. H. Poincaré C Anal. Non Linéaire (2024). |
- |
Hyperbolic-parabolic normal form and local classical solutions for cross-diffusion systems with incomplete diffusion.
Pierre-Etienne Druet, Katharina Hopf, and Ansgar Jüngel.
Comm. Partial Differential Equations (2023).
|
- |
Weak-strong uniqueness
and energy-variational solutions for a class of viscoelastoplastic fluid models.
Thomas Eiter, Katharina Hopf, and Robert Lasarzik.
Adv. Nonlinear Anal. (2023). |
- |
On multi-species diffusion with size exclusion.
Katharina Hopf and Martin Burger.
Nonlinear Anal. (2022). |
- |
Weak-strong uniqueness for energy-reaction-diffusion systems.
Katharina Hopf.
Math. Models Methods Appl. Sci. (2022). |
- |
Leray-Hopf solutions to a viscoelastoplastic fluid model with nonsmooth stress-strain relation.
Thomas Eiter, Katharina Hopf, and Alexander Mielke.
Nonlinear Anal. Real World Appl. (2022). |
- |
Global existence analysis of energy-reaction-diffusion systems.
Julian Fischer, Katharina Hopf, Michael Kniely, and Alexander Mielke.
SIAM J. Math. Anal. (2022). |
- |
Numerical study of Bose-Einstein condensation in the Kaniadakis-Quarati model for bosons.
José A. Carrillo, Katharina Hopf, and Marie-Therese Wolfram.
Kinet. Relat. Models (2020). |
- |
On the singularity formation and relaxation to equilibrium in 1D Fokker-Planck model with superlinear drift.
José A. Carrillo, Katharina Hopf, and José L. Rodrigo.
Adv. Math. (2020). |
- |
Aggregation equations with fractional diffusion: preventing concentration by mixing.
Katharina Hopf and José L. Rodrigo.
Commun. Math. Sci. (2018). |