Dr. Katharina Hopf

Weierstrass Institute for Applied Analysis and Stochastics
Weierstrass Group Multi-species Balance Laws

Research interests

  • Analysis of nonlinear partial differential equations
  • Quasi-linear degenerate parabolic and hyperbolic-parabolic systems
  • Cross-diffusion, reaction-diffusion; mixtures and multi-phase flow
  • Entropy tools and variational methods
  • Singularities in evolution equations

Publications in mathematics

- Interface dynamics in a degenerate Cahn-Hilliard model for viscoelastic phase separation.
Katharina Hopf, John King, Andreas Münch, and Barbara Wagner.
Preprint.
- On the equilibrium solutions of electro-energy-reaction-diffusion systems.
Katharina Hopf, Michael Kniely, and Alexander Mielke.
Preprint.
- Convergence of a finite volume scheme and dissipative measure-valued-strong stability for a hyperbolic-parabolic cross-diffusion system.
Katharina Hopf and Ansgar Jüngel.
Preprint (under review since 04/23).
- Singularities in L1-supercritical Fokker-Planck equations: A qualitative analysis.
Katharina Hopf.
Ann. Inst. H. Poincaré C Anal. Non Linéaire (2024).
- Hyperbolic-parabolic normal form and local classical solutions for cross-diffusion systems with incomplete diffusion.
Pierre-Etienne Druet, Katharina Hopf, and Ansgar Jüngel.
Comm. Partial Differential Equations (2023).
- Weak-strong uniqueness and energy-variational solutions for a class of viscoelastoplastic fluid models.
Thomas Eiter, Katharina Hopf, and Robert Lasarzik.
Adv. Nonlinear Anal. (2023).
- On multi-species diffusion with size exclusion.
Katharina Hopf and Martin Burger.
Nonlinear Anal. (2022).
- Weak-strong uniqueness for energy-reaction-diffusion systems.
Katharina Hopf.
Math. Models Methods Appl. Sci. (2022).
- Leray-Hopf solutions to a viscoelastoplastic fluid model with nonsmooth stress-strain relation.
Thomas Eiter, Katharina Hopf, and Alexander Mielke.
Nonlinear Anal. Real World Appl. (2022).
- Global existence analysis of energy-reaction-diffusion systems.
Julian Fischer, Katharina Hopf, Michael Kniely, and Alexander Mielke.
SIAM J. Math. Anal. (2022).
- Numerical study of Bose-Einstein condensation in the Kaniadakis-Quarati model for bosons.
José A. Carrillo, Katharina Hopf, and Marie-Therese Wolfram.
Kinet. Relat. Models (2020).
- On the singularity formation and relaxation to equilibrium in 1D Fokker-Planck model with superlinear drift.
José A. Carrillo, Katharina Hopf, and José L. Rodrigo.
Adv. Math. (2020).
- Aggregation equations with fractional diffusion: preventing concentration by mixing.
Katharina Hopf and José L. Rodrigo.
Commun. Math. Sci. (2018).

Output from interdisciplinary collaborations

- Transport of heat and mass for reactive gas mixtures in porous media: modeling and application.
David Brust, Katharina Hopf, Jürgen Fuhrmann, Andrii Cheilytko, Michael Wullenkord, Christian Sattler.
Preprint.