[Next]:  Visualization of numerical simulations and production  
 [Up]:  Projects  
 [Previous]:  PARDISO, improvements for symmetric indefinite linear  
 [Contents]   [Index] 


Subsections



pdelib  - Algorithms and software components for the numerical solution of partial differential equations

Collaborator: J. Fuhrmann, K. Gärtner, H. Langmach, M. Uhle, T. Streckenbach

Cooperation with: A. Linke, J. Bloch (Freie Universität Berlin (DFG Research Center MATHEON)), D. Hömberg (FG 4)

Supported by: DFG Research Center MATHEON, project C1, project C2

Description:

The purpose of this project is the further development of pdelib, a toolbox of software components for the numerical solution of partial differential equations. The re-design of the API and the code internals have reached the goal of first application projects.

Main features

Focus during 2004

Fig. 1: Bifurcation analysis of a Brusselator model: one-dimensional domain (left) vs. two-dimensional domain (right)
\makeatletter
\@ZweiProjektbilderNocap[h]{0.47\textwidth}{fb04_fg3_pdelib_1}{fb04_fg3_pdelib_2}
\makeatother

References:

  1. J.R. SHEWCHUK, Triangle: Engineering a 2D quality mesh generator and Delaunay triangulator, in: Applied Computational Geometry: Towards Geometric Engineering, M.C. Lin, D. Manocha, eds. Springer, Berlin, 1996, pp. 203-222.

  2. B. SPITZAK ET AL., FLTK - the Fast Light Toolkit.
    URL:http://www.fltk.org.

  3. R. IERUSALIMSCHY, Programming in Lua, Lua.org, 2003, ISBN 85-903798-1-7.
    URL: http://www.lua.org.

  4. G. KARYPIS, V. KUMAR, METIS - Family of Multilevel Partitioning Algorithms.
    URL: http://www-users.cs.umn.edu/ karypis/metis/



 [Next]:  Visualization of numerical simulations and production  
 [Up]:  Projects  
 [Previous]:  PARDISO, improvements for symmetric indefinite linear  
 [Contents]   [Index] 

LaTeX typesetting by H. Pletat
2005-07-29