next up previous contents index
Next: Stabilit�tswechsel in Mehrskalensystemen Up: Projektbeschreibungen Previous: Intermittierende Dynamik

Numerische Verfahren f�r singul�r gest�rte Eigenwertaufgaben bei Sturm-Liouville-Problemen

Bearbeiter: M. Hanke  

Kooperation: N. B. Konyukhova (Russische Akademie der Wissenschaften, Moskau),
[4] T. Zhanlov (Mongolische Nationaluniversit�t, Ulan Bator)

Beschreibung der Forschungsarbeit:

Ziel des Projektes ist die Entwicklung und Analyse numerischer Methoden zur L�sung von singul�r gest�rten Eigenwertaufgaben f�r Sturm-Liouville-Probleme mit unstetigen Potentialen, wie sie bei eindimensionalen Halbleitermodellen als Schr�dingergleichung auftreten. Schwerpunktm��ig wurden drei Fragen untersucht:

F1.
Durch welche Methoden k�nnen die aus der singul�ren St�rung resultierenden Probleme abgefangen werden?
F2.
Wie k�nnen st�ckweise stetige Potentiale geeignet in Algorithmen integriert werden?
F3.
Wie kann unter Verwendung asymptotischer Techniken der numerische Aufwand reduziert werden?
Mit Frau Konyukhova wurde die Methode der Phasenfunktionen untersucht. Diese Methode liefert hochgenaue Resultate, ist aber auf den mehrdimensionalen Fall nicht erweiterbar. Im Rahmen des Gesamtprojektes ,,Schr�dinger-Poisson-Systeme`` dient diese Methode als ,,Ma�stab`` f�r die im weiteren zu entwickelnden Methoden.

Zu den genannten Fragestellungen wurden folgende Resultate erhalten:


Zu F1)

Es wurden geeignete Skalierungstechniken theoretisch und experimentell untersucht. W�hrend in der Literatur durchgehend zumindest stetige Skalierungen begr�ndet sind, haben wir - auch im Hinblick auf den zweiten Problemkreis - unstetige Skalierungen begr�ndet und erfolgreich verwendet. Gegen�ber fr�heren Ans�tzen konnte dadurch die Schie�gleichung soweit ,,gegl�ttet`` werden, da� �berlinear konvergente Verfahren zu ihrer L�sung eingesetzt werden k�nnen.


Zu F2)

Es wurden geeignete Transformationen entwickelt, die an den Unstetigkeitsstellen von Potential bzw. Skalierung eine glatte ,,Fortsetzung`` des Verfahrens erm�glichen.


Zu F3)

Durch den Charakter der singul�ren St�rung kann das eigentlich endliche Intervall als rechtsseitig unbeschr�nkt betrachtet werden. Unter Verwendung asymptotischer Techniken kann die Randbedingung aus ,,unendlich`` auf einen endlichen Wert n�herungsweise �bertragen werden. Untersucht wurde, wie klein das resultierende Intervall gemacht werden kann, um vorgegebene Genauigkeiten einzuhalten. Analytische Fehlerabsch�tzungen f�r die Eigenwerte, Eigenfunktionen und Funktionale der Eigenfunktionen sind nicht bekannt.


next up previous contents index
Next: Stabilit�tswechsel in Mehrskalensystemen Up: Projektbeschreibungen Previous: Intermittierende Dynamik
LaTeX typesetting by I. Bremer
1/18/1999