Previous Up Next

References

[1]
F. Aurenhammer. Voronoi diagrams – a study of fundamental geometric data structure. ACM Comput. Surveys, 23:345–405, 1991.
[2]
J.-D. Boissonnat, O. Devillers, and S. Hornus. Incremental construction of the Delaunay triangulation and the Delaunay graph in medium dimension. In Proc. 25th Annual Symposium on Computational Geometry, 2009.
[3]
A. Bowyer. Computing Dirichlet tessellations. Comp. Journal, 24(2):162–166, 1987.
[4]
B. Chazelle. Convex partition of polyhedra: a lower bound and worst-case optimal algorithm. SIAM Journal on Computing, 13(3):488–507, 1984.
[5]
J. A. de Loera, J. Rambau, and F. Santos. Triangulations, Structures for Algorithms and Applications, volume 25 of Algorithms and Computation in Mathematics. Springer Verlag Berlin Heidelburg, 1 edition, 2010.
[6]
B. N. Delaunay. Sur la sphère vide. Izvestia Akademii Nauk SSSR, Otdelenie Matematicheskikh i Estestvennykh Nauk, 7:793–800, 1934.
[7]
H. Edelsbrunner. Geometry and topology for mesh generation. Cambridge University Press, England, 2001.
[8]
H. Edelsbrunner and M.P. Mücke. Simulation of simplicity: A technique to cope with degenerate cases in geometric algorithm. ACM Transactions on Graphics, 9(1):66–104, 1990.
[9]
H. Edelsbrunner and N. R. Shah. Incremental topological flipping works for regular triangulations. Algorithmica, 15:223–241, 1996.
[10]
D. T. Lee and A. K. Lin. Generalized Delaunay triangulations for planar graphs. Discrete and Computational Geometry, 1:201–217, 1986.
[11]
G. L. Miller, D. Talmor, S.-H. Teng, N. J. Walkington, and H. Wang. Control volume meshes using sphere packing: Generation, refinement and coarsening. In Proc. 5th Intl. Meshing Roundtable, 1996.
[12]
V. T. Rajan. Optimality of the Delaunay triangulation in ℝd. Discrete and Computational Geometry, 12:189–202, 1994.
[13]
J. Ruppert. A Delaunay refinement algorithm for quality 2-dimensional mesh generation. Journal of Algorithms, 18(3):548–585, 1995.
[14]
E. Schönhardt. Über die zerlegung von dreieckspolyedern in tetraeder. Mathematische Annalen, 98:309–312, 1928.
[15]
J. R. Shewchuk. Adaptive precision floating-point arithmetic and fast robust geometric predicates. Discrete and Computational Geometry, 18:305–363, 1997.
[16]
J. R. Shewchuk. A condition guaranteeing the existence of higher-dimensional constrained Delaunay triangulations. In Proc. 14th Ann. Symp. on Comput. Geom., pages 76–85, 1998.
[17]
J. R. Shewchuk. Tetrahedral mesh generation by Delaunay refinement. In Proc. 14th Ann. Symp. on Comput. Geom., pages 86–95, 1998.
[18]
J. R. Shewchuk. Constrained Delaunay tetrahedralizations and provably good boundary recovery. In Proc. 11th International Meshing Roundtable, pages 193–204. Sandia National Laboratories, 2002.
[19]
J. R. Shewchuk. What is a good linear element? interpolation, conditioning, and quality measures. In Proc. 11th International Meshing Roundtable, pages 115–126, Ithaca, New York, September 2002. Sandia National Laboratories.
[20]
J. R. Shewchuk. Updating and constructing constrained Delaunay and constrained regular triangulations by flips. In Proc. 19th Ann. Symp. on Comput. Geom., pages 86–95, 2003.
[21]
J. R. Shewchuk. General-dimensional constrained Delaunay and constrained regular triangulations, i: combinatorial properties. Discrete and Computational Geometry, 39:580–637, 2008.
[22]
H. Si. Adaptive tetrahedral mesh generation by constrained delaunay refinement. International Journal for Numerical Methods in Engineering, 75(7):856–880, 2008.
[23]
H. Si. Three dimensional boundary conforming Delaunay mesh generation. PhD thesis, Institut für Mathematik, Technische Universität Berlin, Strasse des 17. Juni 136, D-10623, Berlin, Germany, August 2008. Available online: http://opus.kobv.de/tuberlin/volltexte/2008/1966/.
[24]
H. Si. TetGen, towards a quality tetrahedral mesh generator. WIAS Preprint No. 1762, 2013. submitted to ACM TOMS.
[25]
H. Si and K Gaertner. 3d boundary recovery by constrained Delaunay tetrahedralization. International Journal for Numerical Methods in Engineering, 85:1341–1364, 2011.
[26]
H. Si and K. Gärtner. Meshing piecewise linear complexes by constrained Delaunay tetrahedralizations. In Proc. 14th International Meshing Rountable, pages 147–163, 2005.
[27]
G. Voronoi. Nouvelles applications des parametrès continus à la théorie de formas quadratiques. Reine Angew. Math., 133:97–178, 1907.
[28]
D. F. Watson. Computing the n-dimensional Delaunay tessellations with application to Voronoi polytopes. Comput. Journal, 24(2):167–172, 1987.
[29]
G. M. Ziegler. Lectures on Polytopes, volume 152 of Graduate Texts in Mathematics. Springer-Verlag, New York, second edition edition, 1997.

Previous Up Next