References
-
[1]
-
F. Aurenhammer.
Voronoi diagrams – a study of fundamental geometric data
structure.
ACM Comput. Surveys, 23:345–405, 1991.
- [2]
-
J.-D. Boissonnat, O. Devillers, and S. Hornus.
Incremental construction of the Delaunay triangulation and the
Delaunay graph in medium dimension.
In Proc. 25th Annual Symposium on Computational Geometry, 2009.
- [3]
-
A. Bowyer.
Computing Dirichlet tessellations.
Comp. Journal, 24(2):162–166, 1987.
- [4]
-
B. Chazelle.
Convex partition of polyhedra: a lower bound and worst-case optimal
algorithm.
SIAM Journal on Computing, 13(3):488–507, 1984.
- [5]
-
J. A. de Loera, J. Rambau, and F. Santos.
Triangulations, Structures for Algorithms and Applications,
volume 25 of Algorithms and Computation in Mathematics.
Springer Verlag Berlin Heidelburg, 1 edition, 2010.
- [6]
-
B. N. Delaunay.
Sur la sphère vide.
Izvestia Akademii Nauk SSSR, Otdelenie Matematicheskikh i
Estestvennykh Nauk, 7:793–800, 1934.
- [7]
-
H. Edelsbrunner.
Geometry and topology for mesh generation.
Cambridge University Press, England, 2001.
- [8]
-
H. Edelsbrunner and M.P. Mücke.
Simulation of simplicity: A technique to cope with degenerate cases
in geometric algorithm.
ACM Transactions on Graphics, 9(1):66–104, 1990.
- [9]
-
H. Edelsbrunner and N. R. Shah.
Incremental topological flipping works for regular triangulations.
Algorithmica, 15:223–241, 1996.
- [10]
-
D. T. Lee and A. K. Lin.
Generalized Delaunay triangulations for planar graphs.
Discrete and Computational Geometry, 1:201–217, 1986.
- [11]
-
G. L. Miller, D. Talmor, S.-H. Teng, N. J. Walkington, and H. Wang.
Control volume meshes using sphere packing: Generation, refinement
and coarsening.
In Proc. 5th Intl. Meshing Roundtable, 1996.
- [12]
-
V. T. Rajan.
Optimality of the Delaunay triangulation in ℝd.
Discrete and Computational Geometry, 12:189–202, 1994.
- [13]
-
J. Ruppert.
A Delaunay refinement algorithm for quality 2-dimensional mesh
generation.
Journal of Algorithms, 18(3):548–585, 1995.
- [14]
-
E. Schönhardt.
Über die zerlegung von dreieckspolyedern in tetraeder.
Mathematische Annalen, 98:309–312, 1928.
- [15]
-
J. R. Shewchuk.
Adaptive precision floating-point arithmetic and fast robust
geometric predicates.
Discrete and Computational Geometry, 18:305–363, 1997.
- [16]
-
J. R. Shewchuk.
A condition guaranteeing the existence of higher-dimensional
constrained Delaunay triangulations.
In Proc. 14th Ann. Symp. on Comput. Geom., pages 76–85, 1998.
- [17]
-
J. R. Shewchuk.
Tetrahedral mesh generation by Delaunay refinement.
In Proc. 14th Ann. Symp. on Comput. Geom., pages 86–95, 1998.
- [18]
-
J. R. Shewchuk.
Constrained Delaunay tetrahedralizations and provably good boundary
recovery.
In Proc. 11th International Meshing Roundtable, pages 193–204.
Sandia National Laboratories, 2002.
- [19]
-
J. R. Shewchuk.
What is a good linear element? interpolation, conditioning, and
quality measures.
In Proc. 11th International Meshing Roundtable, pages 115–126,
Ithaca, New York, September 2002. Sandia National Laboratories.
- [20]
-
J. R. Shewchuk.
Updating and constructing constrained Delaunay and constrained
regular triangulations by flips.
In Proc. 19th Ann. Symp. on Comput. Geom., pages 86–95, 2003.
- [21]
-
J. R. Shewchuk.
General-dimensional constrained Delaunay and constrained regular
triangulations, i: combinatorial properties.
Discrete and Computational Geometry, 39:580–637, 2008.
- [22]
-
H. Si.
Adaptive tetrahedral mesh generation by constrained delaunay
refinement.
International Journal for Numerical Methods in Engineering,
75(7):856–880, 2008.
- [23]
-
H. Si.
Three dimensional boundary conforming Delaunay mesh
generation.
PhD thesis, Institut für Mathematik, Technische Universität
Berlin, Strasse des 17. Juni 136, D-10623, Berlin, Germany, August 2008.
Available online:
http://opus.kobv.de/tuberlin/volltexte/2008/1966/.
- [24]
-
H. Si.
TetGen, towards a quality tetrahedral mesh generator.
WIAS Preprint No. 1762, 2013.
submitted to ACM TOMS.
- [25]
-
H. Si and K Gaertner.
3d boundary recovery by constrained Delaunay tetrahedralization.
International Journal for Numerical Methods in Engineering,
85:1341–1364, 2011.
- [26]
-
H. Si and K. Gärtner.
Meshing piecewise linear complexes by constrained Delaunay
tetrahedralizations.
In Proc. 14th International Meshing Rountable, pages 147–163,
2005.
- [27]
-
G. Voronoi.
Nouvelles applications des parametrès continus à la
théorie de formas quadratiques.
Reine Angew. Math., 133:97–178, 1907.
- [28]
-
D. F. Watson.
Computing the n-dimensional Delaunay tessellations with
application to Voronoi polytopes.
Comput. Journal, 24(2):167–172, 1987.
- [29]
-
G. M. Ziegler.
Lectures on Polytopes, volume 152 of Graduate Texts in
Mathematics.
Springer-Verlag, New York, second edition edition, 1997.