[Next]:  Generalized electro-reaction-diffusion systems in heterostructures  
 [Up]:  Project descriptions  
 [Previous]:  Open quantum systems driven by a  
 [Contents]   [Index] 


On a nonlocal phase separation model

Collaborator: H. Gajewski , K. Zacharias  

Description: We consider a binary alloy with components $\;A\;$ and $\;B\;$occupying a spatial domain $\;\Omega\;$. We denote by $\;u\;$ and $\;1-u\;$ the (scaled) local concentrations of $\;A\;$ and $\;B\;$, respectively. Let $\;(0,T)\;$ denote a time interval, $\;\nu\;$ the outer unit normal on the boundary $\;\Gamma =
\partial\Omega\;$, and $\;Q = (0,T) \times \Omega\;$, $\;\Gamma_T = (0,T) \times \Gamma\;$.

To describe phase separation in binary systems, one usually uses the Cahn-Hilliard equation. This equation is derived ([1]) from a free energy functional of the form  
 \begin{displaymath}
F_{CH}(u) = \int_\Omega\Big \{f(u) + 
\kappa\, u\, (1-u) +\frac{\lambda}{2}\,\Big\vert\nabla u \Big\vert^2 \Big \}dx.\end{displaymath} (1)
Here $\;f\;$ is a convex function with the property that $\;f(u) + \kappa u(1-u)\;$(for sufficiently large $\kappa$) forms a so-called double well potential. Minimizing FCH under the constraint of mass conservation, one identifies the Lagrange multiplier v via the associated Euler-Lagrange equation  
 \begin{displaymath}
v = f'(u) + \kappa\, (1-2 u) -\lambda \Delta u \end{displaymath} (2)
as chemical potential. Now one postulates that $\;- \nabla v\;$ is the driving force for the mass flux $\;{\bf j}\;$, i.e.

\begin{eqnarray*}
{\bf j} = - \mu \nabla v\end{eqnarray*}

with a suitable mobility $\;\mu$. Considering the mass balance, one ends up with the Cahn-Hilliard equation  
 \begin{displaymath}
\dfrac{\partial u}{\partial t} - 
\nabla \cdot [\,\mu~ \nabl...
 ... Q,\quad 
\nu \cdot (\mu \nabla v) = 0 \;\text{on}\; \Gamma_T ,\end{displaymath} (3)
where the Neumann boundary condition guarantees mass conservation

\begin{eqnarray*}
\int_\Omega u(t,x) dx = \int_\Omega u(0,x) dx .\end{eqnarray*}

Inspecting Cahn-Hilliard's arguments ([1]) establishing (1) as the free energy of the binary system, it seems to be reasonable and even more adequate ([7]) to choose an alternative nonlocal expression like  
 \begin{displaymath}
F(u) = \int_\Omega\Big \{f(u) +u \int_\Omega
{\cal K}(\vert x-y\vert)(1-u(y))\, dy \Big \}dx ,\end{displaymath} (4)
where the kernel $\;{\cal K}\;$ of the integral term describes nonlocal interaction. By a simple calculation, we find from (4) the corresponding chemical potential $\;v\;$ as the gradient of $\;F\;$ in the form  
 \begin{displaymath}
v = f'(u) + w,\quad w(x) = \int_\Omega{\cal K}(\vert x-y\vert)(1-2\,u(y))\, dy. \end{displaymath} (5)
Replacing (2) by (5), one gets instead of (3) the problem  
 \begin{displaymath}
\dfrac{\partial u}{\partial t} - 
\nabla \cdot (\,\mu \,\nab...
 ...; Q,\quad 
\nu \cdot (\mu \nabla v) = 0 \;\text{on}\; \Gamma_T.\end{displaymath} (6)
In the standard case $f(u) = u\log u + (1-u)\log(1-u)$, we have $f'(u) = \log \left(\frac{u}{1-u}\right)$, and hence by (5)

\begin{eqnarray*}
u= {\cal F}(w-v), ~~{\cal F}(s):=1/(1+e^s).\end{eqnarray*}

The image of the Fermi function ${\cal F}$ is the interval $\;[0,1]\;$, so that the nonlocal model automatically satisfies the physical requirement $\;0 \le u(x) \le 1\;$. This property cannot be guaranteed for solutions of the original Cahn-Hilliard equation, since for fourth-order equations no maximum principle is available. Moreover, by physical reasons it is desirable to admit mobilities $\;\mu\;$ depending on $\;u\;$ and $\;\vert\nabla v\vert$. A natural choice is $\mu = a(\vert\nabla v\vert)/f''(u)$ ([2], [7]) with a function $\;a\;$ such that $\;s \mapsto a(s)s\;$ is monotone. Then problem (6) can be rewritten as  
 \begin{displaymath}
\dfrac{\partial u}{\partial t} - 
\nabla \cdot \bigg [a \lef...
 ...c{\nabla w}{f''(u)} \right)\bigg] = 0 
\;\text{on}\; \Gamma_T. \end{displaymath} (7)
It seems worth mentioning that diffusion equations with a nonlocal drift term of this form also model transport processes in semiconductor ([4]) and chemotaxis ([5]) theory.

In this project we proved existence and uniqueness of a global solution u to (7). Moreover, we studied the asymptotic behavior as time going to infinity and characterized the asymptotic state by a variational principle ([6]). An extension to non-isothermal situations was also given ([3]).

References:

  1.   J.C. CAHN, J.E. HILLIARD, Free energy of a nonuniform system. I. Interfacial free energy, J. Chem. Phys., 28 (1958), pp. 258-267.
  2.   C.M. ELLIOT, H. GARCKE, On the Cahn-Hilliard equation with degenerate mobility, SIAM J. Math. Anal., 27 (1996), pp. 404-423.
  3.   H. GAJEWSKI, On a nonlocal model of non-isothermal phase separation, WIAS Preprint no. 671, 2001, to appear in: Adv. Math. Sci. Appl.
  4.   H. GAJEWSKI, K. GRÖGER, Semiconductor equations for variable mobilities based on Boltzmann statistics or Fermi-Dirac statistics, Math. Nachr., 140 (1989), pp. 7-36.
  5.   H. GAJEWSKI, K. ZACHARIAS, Global behaviour of a reaction-diffusion system modelling chemotaxis, Math. Nachr., 195 (1998), pp. 77-114.
  6.   \dito 
, On a nonlocal phase separation model, WIAS Preprint no. 656, 2001, to appear in: J. Math. Anal. Appl.
  7.   G. GIACOMIN, J.L. LEBOWITZ, Phase segregation dynamics in particle systems with long range interactions I. Macroscopic limits, J. Statist. Phys., 87 (1997), pp. 37-61.



 [Next]:  Generalized electro-reaction-diffusion systems in heterostructures  
 [Up]:  Project descriptions  
 [Previous]:  Open quantum systems driven by a  
 [Contents]   [Index] 

LaTeX typesetting by I. Bremer
9/9/2002