What We Can Learn from Trees and Forests

Carolin Strobl

Institut für Statistik, LMU München

Today's topics

- variable selection bias traditional algorithms for trees and forests artificially prefer variables of certain types
- variable importance different types of importance measures and concepts

outlook: learning about algorithms

variable selection in standard classification trees is biased:

numeric variables, variables with many missing values and variables with many categories are preferred

(due to multiple testing and biased entropy estimation \rightarrow Gini index, Strobl et al., 2007)

variable selection in standard classification trees is biased:

numeric variables, variables with many missing values and variables with many categories are preferred

(due to multiple testing and biased entropy estimation \rightarrow Gini index, Strobl et al., 2007)

Why is that a problem?

the number of categories can be - but is not necessarily - an indicator of the relevance of a predictor variable

▶ example 1:

discretize the continuous variable age - would you prefer 2 categories or 10 categories?

the number of categories can be - but is not necessarily - an indicator of the relevance of a predictor variable

example 1:

discretize the continuous variable age - would you prefer 2 categories or 10 categories?

 if age is informative, more information in retained in 10 categories

- ▶ example 2:
 - consider age in 10 categories vs. gender in 2 categories which one is more relevant?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- example 2:
 - consider age in 10 categories vs. gender in 2 categories which one is more relevant?
 - we don't know yet but it is not necessarily the one with more categories!

- example 2:
 - consider age in 10 categories vs. gender in 2 categories which one is more relevant?
 - we don't know yet but it is not necessarily the one with more categories!

for trees and forests: need variable selection criteria that are not biased towards certain types of variables

biased variable selection criteria for trees

- Gini index as in CART (→ rpart) (Breiman et al., 1984)
- information gain as in C4.5 (Quinlan, 1986)

unbiased variable selection criteria for trees

- ANOVA F-test and χ²-tests as in QUEST (Loh and Shih, 1997)
- maximally selected statistics (Miller and Siegmund, 1982; Lausen et al., 1994; Shih, 2004; Strobl et al., 2007)

- unbiased entropy estimators (Strobl, 2005)
- conditional inference tests (→ ctree) (Hothorn et al., 2006)

Question

(un)biased variable selection and variable importance in classification trees

(日)、

Question

(un)biased variable selection and variable importance in classification trees

イロト 不得 トイヨト イヨト

э

 Gini importance (randomForest) mean Gini gain produced by X_i over all trees

 permutation importance (randomForest, cforest) mean decrease in classification accuracy after permuting X_i over all trees

- Gini importance (randomForest) mean Gini gain produced by X_j over all trees
 - biased in favor numeric variables and variables with many categories
- permutation importance (randomForest, cforest) mean decrease in classification accuracy after permuting X_i over all trees

- Gini importance (randomForest) mean Gini gain produced by X_j over all trees
 - biased in favor numeric variables and variables with many categories
- permutation importance (randomForest, cforest) mean decrease in classification accuracy after permuting X_j over all trees
 - + unbiased only if
 - 1. unbiased variable selection criteria and
 - 2. subsampling without replacement

are used, as is default in cforest (Strobl et al., 2007)

- Gini importance (randomForest) mean Gini gain produced by X_j over all trees
 - biased in favor numeric variables and variables with many categories
- permutation importance (randomForest, cforest) mean decrease in classification accuracy after permuting X_j over all trees
 - + unbiased only if
 - 1. unbiased variable selection criteria and
 - 2. subsampling without replacement

are used, as is default in cforest (Strobl et al., 2007)

same for variable selection frequencies

Variable selection frequencies

randomForest (biased trees, replace = TRUE)

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

Variable selection frequencies

cforest (unbiased trees, replace = TRUE)

▲ロト ▲圖 ト ▲ 臣 ト ▲ 臣 ト ● 臣 = • • ○ � ○

Variable selection frequencies

cforest (unbiased trees, replace = FALSE)

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

variable selection in trees and forests is "marginal"

permutation importance is "marginal"

variable selection in trees and forests is "marginal"

permutation importance is "marginal"

Why is that a problem?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Variable importance concepts

example:

in samples of school-children

shoe size is highly correlated with reading skills

・ロト・日本・モート モー うへぐ

unless you control for age...

Variable importance concepts

example:

in samples of school-children

shoe size is highly correlated with reading skills

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

unless you control for age...

Variable importance concepts

marginal correlations

- partial correlations, standardized betas conditional effects of X_j given all other variables in the model
- "averaging over orderings"
 - ▶ for linear models (relaimpo, Grömping, 2006)
 LMG Lindeman, Merenda, and Gold (1980),
 ≈ "dominance analysis" Azen and Budescu (2003)

- R^2 decomposition
- random forest permutation importance
 - \approx "averaging over trees"

• proper decomposition: scores sum up to model R^2

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

non-negativity

• exclusion:
$$\beta_j = 0 \Rightarrow \text{score} = 0$$

• *inclusion*:
$$\beta_j \neq 0 \Rightarrow$$
 score $\neq 0$

 proper decomposition: scores sum up to model R² LMG

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

non-negativity

• exclusion:
$$\beta_j = 0 \Rightarrow \text{score} = 0$$

• *inclusion*:
$$\beta_j \neq 0 \Rightarrow$$
 score $\neq 0$

 proper decomposition: scores sum up to model R² LMG

non-negativity
 LMG, RF varimp (on average)

• exclusion:
$$\beta_j = 0 \Rightarrow \text{score} = 0$$

• *inclusion*:
$$\beta_j \neq 0 \Rightarrow$$
 score $\neq 0$

 proper decomposition: scores sum up to model R² LMG

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- non-negativity
 LMG, RF varimp (on average)
- ► exclusion: β_j = 0 ⇒ score = 0 partial correlations, standardized betas, RF varimp?

• *inclusion*:
$$\beta_j \neq 0 \Rightarrow$$
 score $\neq 0$

 proper decomposition: scores sum up to model R² LMG

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- non-negativity
 LMG, RF varimp (on average)
- ► exclusion: β_j = 0 ⇒ score = 0 partial correlations, standardized betas, RF varimp?

• *inclusion*:
$$\beta_j \neq 0 \Rightarrow$$
 score $\neq 0$ all

Simulation study

dgp:
$$y_i = \beta_1 \cdot x_{i,1} + \cdots + \beta_{12} \cdot x_{i,12} + \varepsilon_i, \ \varepsilon_i \stackrel{i.i.d.}{\sim} N(0,1)$$

 $X_1, \ldots, X_{12} \sim N(0, \Sigma)$

$\Sigma =$	0.9 0.9 0.9 0.9	1 0.9 0.9 0.9	0.9 1 0.9 0.9 0.9	0.9 0.9 1 0.9 0.9	1 0.9	0.9 0.9 0.9 0.9 1	0 0 0 0	···· 0 ···· 0 ···· 0 ···· 0 ···· 0 ···· 0 ···· 0 ···· 0 ···· 0		
$\begin{array}{c c} X_j & \mathbf{X}_1 & \mathbf{X}_2 \\ \hline \beta_j & 10 & 10 \end{array}$: 0 X 3	0 : 0 X ₄ 7	: 0	: 0	: 0	: 0		$\begin{array}{c} \cdots & 0\\ \cdot & \cdot\\ 0 & 1\\ \hline \hline X_{10}\\ \hline 7 \end{array}$,	<i>X</i> ₁₂

Linear model

LiMo

LMG

LMG

▲ロト ▲理 ト ▲目 ト ▲目 ト ▲ 回 ト ④ ヘ () ヘ

RF permutation importance

RF variable importance mtry = 2

▲□▶ ▲□▶ ▲注▶ ▲注▶ ……注: のへ(?).

RF permutation importance

C	obs	Y	X_j	Ζ	
	1	<i>y</i> ₁	$X_{\pi_j(1),j}$	<i>z</i> 1	
	÷	÷	÷	÷	
	i	Уi	$X_{\pi_j(i),j}$	Zi	
	÷	÷	÷	÷	
	n	Уn	$X_{\pi_j(n),j}$	Zn	

$$egin{aligned} &\mathcal{H}_0: X_j \perp Y, Z ext{ or } X_j \perp Y \wedge X_j \perp Z \ &\mathcal{P}(Y, X_j, Z) \stackrel{\mathcal{H}_0}{=} \mathcal{P}(Y, Z) \cdot \mathcal{P}(X_j) \end{aligned}$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Suggestion: conditional permutation importance

obs	Y	X_{j}	Ζ
1	<i>y</i> 1	$X_{\pi_{j Z=a}(1),j}$	$z_1 = a$
3	<i>y</i> 3	$X_{\pi_{j Z=a}(3),j}$	$z_3 = a$
27	<i>Y</i> 27	$X_{\pi_{j Z=a}(27),j}$	$z_{27} = a$
6	<i>Y</i> 6	$X_{\pi_{j Z=b}(6),j}$	$z_6 = b$
14	<i>Y</i> 14	$X_{\pi_{j Z=b}(14),j}$	$z_{14} = b$
33	<i>Y</i> 33	$x_{\pi_{j Z=b}(33),j}$	$z_{33} = b$
÷	:	:	:

 $H_0: X_j \perp Y | Z$

 $\begin{array}{rcl} P(Y,X_j|Z) & \stackrel{H_0}{=} & P(Y|Z) \cdot P(X_j|Z) \\ \\ \text{or} & P(Y|X_j,Z) & \stackrel{H_0}{=} & P(Y|Z) \end{array}$

・ロト・日本・モート モー うへぐ

Example: conditional permutation importance

spurious correlation between shoe size and reading skills in school-children

```
> mycf <- cforest(score ~ ., data = readingSkills,
+ control = cforest_unbiased(mtry = 2))
> varimp(mycf)
nativeSpeaker age shoeSize
12.62926 74.89542 20.01108
> varimp(mycf, conditional = TRUE)
nativeSpeaker age shoeSize
11.808192 46.995336 2.092454
```

RF conditional permutation importance

 $) \land \bigcirc$

RF unconditional permutation importance

importance --coefficient in dgp

RF variable importance mtry = 2

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 臣 … のへで

Permutation importance

|→□ → ★ = → ★ = → つくぐ

Peptide-binding data

▲ロト ▲園ト ▲ヨト ▲ヨト ニヨー のへ(で)

Conclusion

- variable selection bias:
 - affects traditional algorithms for trees and forests
 - use unbiased criteria and subsampling without replacement to avoid bias (as in cforest)
- variable importance:
 - conditional permutation importance is computationally expensive and by no means perfect, but more closely resembles partial correlations – if that is what you want

- advantages of random forest variable importance:
 - applicable in high-dimensional settings
 - detect nonlinear and interaction effects

Outlook: use trees to learn about algorithms

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

- Strobl, C., A.-L. Boulesteix, A. Zeileis, and T. Hothorn (2007). Bias in random forest variable importance measures: Illustrations, sources and a solution. *BMC Bioinformatics 8:25*.
- Strobl, C., A.-L. Boulesteix, T. Kneib, T. Augustin, and A. Zeileis (2008). Conditional variable importance for random forests. *BMC Bioinformatics 9:307*.
- Eugster, M., Leisch, F., and Strobl, C. (2010). (Psycho-)Analysis of Benchmark Experiments. A Formal Framework for Investigating the Relationship between Data Sets and Learning Algorithms. *LMU Department of Statistics: Technical Reports, No.78*.

distribution of the p-values of a χ^2 -test before and after bootstrapping (1000 iterations with n = 10 000)

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

- bootstrap sampling with replacement artificially induces an association
- the effect is more pronounced for contingency tables with many df

 $\Rightarrow\,$ in random forests: variables with many categories are again preferred

- for bootstrap testing
 - compute statistic from original sample
 - bootstrap distribution from sample adjusted for the null hypothesis

(ロ)、(型)、(E)、(E)、 E) の(の)

- for bootstrap testing
 - compute statistic from original sample
 - bootstrap distribution from sample adjusted for the null hypothesis
- here
 - compute statistic from unadjusted bootstrap sample
 - deviation from the null hypothesis increases with df