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Today’s topics

I variable selection bias
traditional algorithms for trees and forests artificially
prefer variables of certain types

I variable importance
different types of importance measures and concepts

I outlook: learning about algorithms



Variable selection bias

variable selection in standard classification trees is biased:

numeric variables, variables with many missing values and
variables with many categories are preferred

(due to multiple testing and biased entropy estimation
→ Gini index, Strobl et al., 2007)

Why is that a problem?
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Variable selection bias

the number of categories can be - but is not necessarily -
an indicator of the relevance of a predictor variable

I example 1:

I discretize the continuous variable age - would you prefer
2 categories or 10 categories?

I if age is informative, more information in retained in
10 categories
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Variable selection bias

I example 2:

I consider age in 10 categories vs. gender in 2 categories
which one is more relevant?

I we don’t know yet – but it is not necessarily the one with
more categories!

for trees and forests: need variable selection criteria that are not
biased towards certain types of variables
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Variable selection bias
biased variable selection criteria for trees

I Gini index as in CART (; rpart)
(Breiman et al., 1984)

I information gain as in C4.5
(Quinlan, 1986)

unbiased variable selection criteria for trees

I ANOVA F-test and χ2-tests as in QUEST
(Loh and Shih, 1997)

I maximally selected statistics
(Miller and Siegmund, 1982; Lausen et al., 1994; Shih, 2004; Strobl
et al., 2007)

I unbiased entropy estimators
(Strobl, 2005)

I conditional inference tests (→ ctree)
(Hothorn et al., 2006)



Question

(un)biased variable selection

(un)biased variable selection

and variable importance

and variable importance

in classification trees

⇒
in random forests?
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Variable selection and variable importance
bias in random forests

I Gini importance (randomForest)
mean Gini gain produced by Xj over all trees

– biased in favor numeric variables and variables with
many categories

I permutation importance (randomForest, cforest)
mean decrease in classification accuracy after
permuting Xj over all trees

+ unbiased only if

1. unbiased variable selection criteria and
2. subsampling without replacement

are used, as is default in cforest (Strobl et al., 2007)

I same for variable selection frequencies
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Variable selection frequencies
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Variable selection frequencies

cforest (unbiased trees, replace = TRUE)
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Variable selection frequencies

cforest (unbiased trees, replace = FALSE)
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Variable importance concepts

variable selection in trees and forests is “marginal”

permutation importance is “marginal”

Why is that a problem?
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Variable importance concepts

example:

in samples of school-children

I shoe size is highly correlated with reading skills

I unless you control for age...
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Variable importance concepts

I marginal correlations

I partial correlations, standardized betas
conditional effects of Xj given all other variables
in the model

I “averaging over orderings”
I for linear models (relaimpo, Grömping, 2006)

LMG Lindeman, Merenda, and Gold (1980),
≈ “dominance analysis” Azen and Budescu (2003)

R2 decomposition

I random forest permutation importance
≈ “averaging over trees”



Desirable (?) properties

I proper decomposition: scores sum up to model R2

LMG

I non-negativity

LMG, RF varimp (on average)

I exclusion: βj = 0 ⇒ score = 0

partial correlations, standardized betas,
RF varimp?

I inclusion: βj 6= 0 ⇒ score 6= 0

all

Grömping (2007)
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Simulation study

dgp: yi = β1 · xi,1 + · · ·+ β12 · xi,12 + εi , εi
i.i.d.∼ N(0, 1)

X1, . . . ,X12 ∼ N(0,Σ)

Σ =



1 0.9 0.9 0.9 0.9 0.9 0 · · · 0
0.9 1 0.9 0.9 0.9 0.9 0 · · · 0
0.9 0.9 1 0.9 0.9 0.9 0 · · · 0
0.9 0.9 0.9 1 0.9 0.9 0 · · · 0
0.9 0.9 0.9 0.9 1 0.9 0 · · · 0
0.9 0.9 0.9 0.9 0.9 1 0 · · · 0
0 0 0 0 0 0 1 · · · 0
...

...
...

...
...

...
. . .

0 0 0 0 0 0 0 0 1


Xj X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12

βj 10 10 7 7 0 0 10 10 7 7 0 0
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RF permutation importance
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RF permutation importance

obs Y Xj Z
1 y1 xπj (1),j z1

...
...

...
...

i yi xπj (i),j zi

...
...

...
...

n yn xπj (n),j zn

H0 : Xj ⊥ Y ,Z or Xj ⊥ Y ∧ Xj ⊥ Z

P(Y ,Xj ,Z )
H0= P(Y ,Z ) · P(Xj)



Suggestion: conditional permutation importance

obs Y Xj Z
1 y1 xπj|Z=a(1),j z1 = a

3 y3 xπj|Z=a(3),j z3 = a

27 y27 xπj|Z=a(27),j z27 = a

6 y6 xπj|Z=b(6),j z6 = b

14 y14 xπj|Z=b(14),j z14 = b

33 y33 xπj|Z=b(33),j z33 = b
...

...
...

...

H0 : Xj ⊥ Y |Z

P(Y ,Xj |Z )
H0= P(Y |Z ) · P(Xj |Z )

or P(Y |Xj ,Z )
H0= P(Y |Z )



Example: conditional permutation importance

spurious correlation between shoe size and reading skills in
school-children

> mycf <- cforest(score ~ ., data = readingSkills,
+ control = cforest_unbiased(mtry = 2))

> varimp(mycf)
nativeSpeaker age shoeSize

12.62926 74.89542 20.01108

> varimp(mycf, conditional = TRUE)
nativeSpeaker age shoeSize

11.808192 46.995336 2.092454



RF conditional permutation importance
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RF unconditional permutation importance
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Permutation importance
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Peptide-binding data
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Conclusion

I variable selection bias:

I affects traditional algorithms for trees and forests
I use unbiased criteria and subsampling without replacement to

avoid bias (as in cforest)

I variable importance:

I conditional permutation importance is computationally
expensive and by no means perfect, but more closely resembles
partial correlations – if that is what you want

I advantages of random forest variable importance:

I applicable in high-dimensional settings
I detect nonlinear and interaction effects



Outlook: use trees to learn about algorithms
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Bootstrap bias

distribution of the p-values of a χ2-test before and after
bootstrapping (1000 iterations with n = 10 000)
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Bootstrap bias

I bootstrap sampling with replacement artificially induces an
association

I the effect is more pronounced for contingency tables with
many df

⇒ in random forests: variables with many categories are
again preferred



Bootstrap bias

I for bootstrap testing

I compute statistic from original sample
I bootstrap distribution from sample adjusted for the

null hypothesis

I here

I compute statistic from unadjusted bootstrap sample
I deviation from the null hypothesis increases with df
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