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Penalized regression

Ridge regression

β̂ridge = argmax{l(β)− λ
∑

i

β2
i }

Shrinks

Lasso regression

β̂ridge = argmax{l(β)− λ
∑

i

|βi |}

Shrinks and selects
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The penalized package

On CRAN: R package penalized

Ridge

Lasso

Elastic net

Regression models

Linear regression

Logistic regression (GLM)

Cox Proportional Hazards model
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Choosing the value of λ

Between

λ too large: over-shrinkage

λ too small: overfit

How to optimize λ?

Leave-one-out cross-validation

K -fold cross-validation

Akaike’s information criterion

Generalized cross-validation

(.632+) bootstrap cross-validation

. . .
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Leave-one-out

Ingredients

Response y1, . . . , yn

Predictor variables x1, . . . , xn

Fitted models β̂
λ
(−i) not using xi and yi

A loss function L. Assume continuity.

Leave-one-out loss
n∑

i=1

L(yi , xi , β̂
λ
(−i))
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Approximate leave-one-out

Leave-one-out loss

Requires calculation of β̂
λ
(−1), . . . , β̂

λ
(−n)

Time consuming

- when n is large

- when each β̂
λ
(−i) takes much time

- double cross-validation

Solution

approximate β̂
λ
(−i) based on β̂

λ
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Models

Assumption

− ∂2l

∂η∂η′
= D (diagonal)

with η = Xβ the linear predictor

Generalized linear models

Linear regression

Logistic regression

Cox proportional hazards (full likelihood)
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General idea

Taylor approximation of l ′(−i)(β) at β = β̂
λ

l ′(−i)(β) = l ′(−i)(β̂
λ

) + (β − β̂
λ

)l ′′(−i)(β̂
λ

) + O
(

(β − β̂
λ

)2
)
.

solving l ′(−i)(β) = 0 at β = β̂
λ
(−i) gives:

β̂
λ
(−i) = β̂

λ −
(
l ′′(−i)(β̂

λ
)
)−1

l ′(−i)(β̂
λ

) + O
(

(β̂
λ
(−i) − β̂

λ
)2
)

still n inverses to be calculated
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Sherman-Morrison-Woodbury theorem(
B + uvT

)−1
= B−1 − B−1uvT B−1

1 + vT B−1u
,

B nonsingular p × p matrix, u, v p-dimensional column vectors

Apply to (l ′′(−i)(β̂
λ

))−1 (in the ridge model)

(
XT

(−i)D(−i)X(−i) + λIp
)−1

=
(

XT DX + λIp − diixix
T
i

)−1
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Final formula ridge

β̂
λ
(−i) = β̂

λ −
(
XT DX + λIp

)−1
xi∆i

1− vii
,

with

V = D
1
2 X
(

XT DX + λIp
)−1

XT D
1
2

D and ∆ (residuals) based on value β̂
λ

all approximate β̂
λ
(−i)’s with just 1 inverse calculation and

some matrix multiplications!

Reparamaterization

Dimension covariate space can be reduced from p to n
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Models

Linear model

Approximation = exact

Cox proportional hazards

Use full likelihood, not partial likelihood

Baseline hazard not cross-validated

Trick possible: add intercept term
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Final formula lasso

β̂
λ
(−i) = β̂

λ −
(
XT DX

)−1
xi∆i

1− vii
,

with

V = D
1
2 X
(

XT DX
)−1

XT D
1
2

locally, if β̂
λ
k ≈ β̂

λ
(−i)k

we know:

if β̂
λ
k = 0 ⇒ β̂

λ
(−i)k

= 0

Refinements possible
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To what extent is this approximation useful?

Are the approximated values comparable to the real values?

- cvl(real β̂
λ
(−i)) ≈ cvl(approximated β̂

λ
(−i))?

Would we find approximately the same values of λ?

- do we find approximately the same maximum of the cvl when

using the approximated β̂
λ
(−i)’s?

How much worse are the models?

- do we find approximately the same cvl at the maximum found?

Fast approximate leave-one-out cross-validation for large sample sizes Rosa Meijer, Jelle Goeman



lumc-logo

Introduction The approximation method Results Summary

The dataset used

Breast cancer data of the Netherlands Cancer Institute

Paper by Van ’t Veer et al. (Nature, 2002)

Followed up by Van de Vijver et al. (NEJM, 2002)

295 breast cancer patients

effective dimension 79, due to censoring

Microarray (Agilent): 4,919 genes preselected (Rosetta

technology)

Response of interest

survival time (up to 18 years follow-up)
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Ridge Regression
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Ridge Regression: in more detail

0 2000 4000 6000 8000 10000
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appr cvpl

appr cvpl: lambda= 438.2634,

cvpl= -475.8422

real cvpl: lambda= 458.5212,

cvpl= -476.2204
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Lasso Regression
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Lasso Regression: in more detail
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appr cvpl: lambda= 7.60564,

cvpl= -477.3704

real cvpl: lambda= 7.70299,

cvpl= -479.4855
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Wang breast cancer data: ridge
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Wang breast cancer data: ridge
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Wang breast cancer data: lasso
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Wang breast cancer data: lasso zoomed
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Efficiency

Time needed to calculate cvl for specific value of λ, lasso

λ = 7.70

real cvpl : 49.00 seconds

appr cvpl : 6.09 seconds

approximately 8 times as fast

Time needed to calculate cvl for specific value of λ, ridge

λ = 458.5

real cvpl : 389.27 seconds

appr cvpl : 17.40 seconds

more than 20 times as fast!
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Some additional comments

Are these results representative of different datasets?

What aspects of a dataset determine the performance of the

approximation method?

Back to the theory:

O
(

(β̂
λ
(−i) − β̂

λ
)2
)

Error diminishes when:

n gets larger

λ gets larger
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In short...

Approximate LOOCV

gives reasonable approximate of λ in penalization methods

reasonable outcomes of approximated cvl : comparisons

between models possible

works great for ridge; less stable for lasso

Can be used to find ”neighborhood” of optimal λ

Best for large values of n

best possible approximations

most time saved

double LOOCV
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Questions?
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