How normal can the *t*-statistic possibly be?

Thorsten Dickhaus¹ and Helmut Finner²

¹Department of Mathematics Humboldt-University Berlin

²Institute of Biometrics & Epidemiology German Diabetes Center at the Heinrich-Heine-University Leibniz Center for Diabetes Research, Düsseldorf

Workshop on Validation in Statistics and Machine Learning, WIAS Berlin, 07.10.2010

(日)

Introduction

Chung's method

Rates of convergence

Expansion in terms of Student's t

Conclusions

Prologue

Normalized sums are ubiquitous in statistics (binomial models, location parameter tests, *U*-statistics, etc.)

Central Limit Theorem (plus Slutsky's theorem):

 $(\zeta_n : n \in \mathbb{N})$ iid sequence, $Var[\zeta_1] < \infty$, $\overline{\zeta} = \sum_{i=1}^n \zeta_i/n$, then

$$\mathcal{L}\left(\sqrt{n}\frac{\overline{\zeta} - \mathbb{E}[\zeta_1]}{s}\right) \xrightarrow[(n \to \infty)]{} \mathcal{N}(0, 1), \ s = \left(\frac{1}{n-1}\sum_{i=1}^n (\zeta_i - \overline{\zeta})^2\right)^{1/2}$$

We call $\sqrt{n}(\overline{\zeta} - \mathbb{E}[\zeta_1])/s$ *t*-statistic of $(\zeta_j)_{j=1,...,n}$.

Berry-Esséen:

 $\mathbb{E}[|\zeta_1|^3]$ finite, then rate of convergence is at least $O(1/\sqrt{n})$.

A D > A B > A B > A B >

Questions in practice

- 1. Can convergence behavior be characterized more sharply?
- 2. What roles do higher moments play?
- 3. Are there means of speeding convergence up?
- 4. "How valid" is statistical inference based on the CLT?

Answers (at the end of this talk):

- 1. YES!
- 2. A crucial role.
- 3. YES!
- 4. It depends.

Edgeworth expansion for standardized sums

Let $(\zeta_n : n \in \mathbb{N})$ iid sequence, $\mathbb{E}[\zeta_1] = 0$ and $Var[\zeta_1] = 1$.

$$S_n = \sqrt{n} \frac{\overline{\zeta}}{s}$$
 with $\overline{\zeta} = \sum_{i=1}^n \zeta_i / n$ and $s = \left(\frac{1}{n} \sum_{i=1}^n (\zeta_i - \overline{\zeta})^2\right)^{1/2}$.

Modern notation of an (Edgeworth) expansion for the cdf of S_n :

$$F_n(x) = \Phi(x) + \varphi(x) \sum_{i=1}^r n^{-i/2} q_i(x) + o(n^{-r/2}),$$
(1)

with Φ cdf and φ pdf of $\mathcal{N}(0, 1)$. Each q_i is a polynomial of order 3i - 1 with coefficients depending on $\alpha_j = \mathbb{E}\zeta_1^j, j = 3, \dots, i + 2$.

Validity (cf. [5]): $\mathbb{E}|\zeta_1|^{r+2} < \infty$ and Cramér's condition holds.

(日)

The polynomials q_1 and q_2

The first two polynomials q_1 , q_2 are computed for example in [5], [6] and can be found in various textbooks. They are given by

$$q_1(y) = \left(\frac{1}{6} + \frac{1}{3}y^2\right)\alpha_3,$$

$$q_2(y) = \left(\frac{1}{12}y^3 - \frac{1}{4}y\right)\alpha_4 + \left(\frac{1}{6}y - \frac{1}{18}y^5 - \frac{1}{9}y^3\right)\alpha_3^2 - \frac{1}{2}y^3.$$

This representation shows that the rate of convergence is $O(n^{-1/2})$ in case of $\alpha_3 \neq 0$ and $O(n^{-1})$ in case of $\alpha_3 = 0$.

Obviously, the best possible rate of convergence is $O(n^{-1})$ and this may be the reason that usually only the first two polynomials are reported.

Impact of normalization

Lehmann and Romano (2005), Section 11.4.2:

Edgeworth expansion for the classical *t*-statistic with normalization $(n-1)^{-1}$ in the definition of *s*.

Approximation polynomials in this case differ from the q_i 's in (1).

Hence, the norming sequence in the denominator of a self-normalized sum is of importance for its asymptotic behavior.

⇒ Question: Exist other norming sequences for specific values of the moments α_i , $i \ge 3$, such that the rate of convergence can be improved?

A D > A B > A B > A B >

An early approach: Kai-Lai Chung (1946), cf. [2]

Back in 1946, Kai-Lai Chung derived an expansion for F_n .

Unfortunately, the explicit expansion given in equation (35) in [2] is incorrect as noted earlier by Wallace in [9] and to our knowledge there seems to be no published correction.

We corrected the main inaccuracy in [2] and extended the formulas where necessary.

⇒ Chung's method elementary, straightforward and efficient!

In principle, the q_i 's are computable up to arbitrary order with an algebraic computer package.

Correction of Chung's error In the derivations in [2], the function g defined by

$$g(\lambda) = z(1+\lambda^2 z^2)^{-1/2} \left[1 + \sum_{j=1}^{\infty} \frac{\Gamma(3/2)}{\Gamma(3/2-j)\Gamma(j+1)} (\alpha_4 - 1)^{j/2} (\lambda x)^j \right]$$

and its derivatives $g^{(i)}$ play a crucial role.

The formulas given in [2], p. 458, struggle by abbreviating $z' = z(1 + \lambda^2 z^2)^{-1/2}$ and ignoring that z' depends on λ .

Correct derivatives in $\lambda = 0$ are given by

$$g^{(1)}(0) = \frac{1}{2}z(\alpha_4 - 1)^{1/2}x, \quad g^{(2)}(0) = -z^3 - \frac{1}{4}z(\alpha_4 - 1)x^2,$$

$$g^{(3)}(0) = -\frac{3}{2}z^3(\alpha_4 - 1)^{1/2}x + \frac{3}{8}z(\alpha_4 - 1)^{3/2}x^3,$$

$$g^{(4)}(0) = 9z^5 + \frac{3}{2}z^3(\alpha_4 - 1)x^2 - \frac{15}{16}z(\alpha_4 - 1)^2x^4.$$

Chung's approximation technique

Formally, $F_n(z)$ is approximated in [2] by

$$\int_{-\infty}^{\infty} \int_{-\infty}^{g(\lambda)} w(x,y) \, dy \, dx + \int_{-\infty}^{\infty} \int_{-\infty}^{g(\lambda)} \gamma(x,y) \, dy \, dx,$$

with
$$w(x,y) = \frac{1}{2\pi(1-\rho^2)^{1/2}} \exp\left(-\frac{x^2-2\rho xy+y^2}{2(1-\rho^2)}\right)$$
, $\rho = \alpha_3(\alpha_4 - 1)^{-1/2}$.

For the definition of $\gamma(x, y)$, we need some more notation:

$$w_{pq}(x,y) = \frac{\partial^{p+q}}{\partial x^p \partial y^q} w(x,y), \quad I_{pq}^r(z) = \int_{-\infty}^{\infty} x^r w_{pq}(x,z) \, dx,$$
$$f_{pq}(\lambda) = \int_{-\infty}^{\infty} \int_{-\infty}^{g(\lambda)} w_{pq}(x,y) \, dy \, dx, \quad h(\zeta) = t_1 \frac{\zeta^2 - 1}{(\alpha_4 - 1)^{1/2}} + t_2 \zeta,$$

where ζ has the same distribution as ζ_1 .

Derivation of $\gamma(x, y)$

Let $U_j(t_1, t_2)$ denote the *j*th cumulant of $h(\zeta)$ and define

$$m_k(t_1, t_2) = \sum_{\ell=0}^{k-3} \frac{-i^{\ell+1} U_{\ell+3}(t_1, t_2)}{(\ell+3)!} \lambda^{\ell+1},$$

$$\Psi_k(it_1, it_2) = \sum_{j=1}^{k-3} \frac{m_j(t_1, t_2)^j}{j!}.$$

Expanding the U_i 's in terms of t_1 , t_2 and replacing $(it_1)^p (it_2)^q$ by $(-1)^{p+q} w_{pq}(x, y)$ in $\Psi_k(it_1, it_2)$ yields the representation

$$\Psi_k(it_1, it_2) \equiv \sum_{j=1}^{k-3} \gamma_j(x, y) = \gamma(x, y),$$

where $\gamma_j(x, y) = O(\lambda^j)$ and $w_{pq}(x, y)$ appears repeatedly in $\gamma_j(x, y)$ for various p, q with $p + q \leq 3r$.

Taylor expansion for $f_{pq}(\lambda)$

We can write

$$F_n(z) = \sum_{j=0}^r \frac{f_{00}^{(j)}(0)}{j!} + \sum_{j=1}^r \int_{-\infty}^\infty \int_{-\infty}^{g(\lambda)} \gamma_j(x, y) \, dy \, dx + o(\lambda^r).$$

Now, $f_{pq}(\lambda)$ is approximated by the Taylor series in $\lambda = 0$ wherever it appears in $\int_{-\infty}^{\infty} \int_{-\infty}^{g(\lambda)} \gamma_j(x, y) \, dy \, dx$. More precisely, $f_{pq}(\lambda)$ is replaced by

$$\sum_{j=0}^r \frac{f_{pq}^{(j)}(0)}{j!} \lambda^j + o(\lambda^r).$$

This means, all we need to carry out Chung's method are tractable formulas for $f_{pq}^{(j)}(0)$!

Lemma:

For $q \ge 0$, non-vanishing I_{pq} 's are given by the following recursion.

$$I_{0q}^{0}(z) = \varphi^{(q)}(z),$$

$$I_{0q}^{1}(z) = -\rho\varphi^{(q+1)}(z),$$

$$I_{0q}^{r+1}(z) = -\rho I_{0,q+1}^{r}(z) + r I_{0q}^{r-1}(z), r \ge 1,$$

$$I_{pq}^{r}(z) = -r I_{p-1,q}^{r-1}(z), \ 1 \le p \le r.$$
(2)

Remark:

Modified Hermite polynomials: $h_n(x) = -(I/\sqrt{2})^n H_n(Ix/\sqrt{2})$. Interestingly, $I_{0q}^r = h_r(\rho D)(\varphi^{(q)})$, where *D* denotes the differential operator. Note that (2) corresponds to $h_{r+1}(x) = -xh_r(x) + rh_{r-1}(x)$. (*X*, *Z*) bivariate normal, means 0, variances 1 and covariance ρ :

$$I_{0q}^{r}(z) = \frac{\partial^{q}}{\partial z^{q}} \mathbb{E}[X^{r} | Z = z].$$

・ロ・・ 日本・ 日本・ 日本

Lemma: (Computation of $f_{pq}^{(j)}(0)$) Setting $I_{pq}^r \equiv I_{pq}^r(z)$ for r = 0, ..., 3, we have for $p, q \ge 0$

$$\begin{split} f_{00}(0) &= \Phi(z), \\ f_{pq}(0) &= \begin{cases} -I_{p,q-1}^{0}, & q \geq 1, \\ 0, & q = 0, \end{cases} \\ f_{pq}^{(1)}(0) &= \frac{1}{2}z(\alpha_{4}-1)^{1/2}I_{pq}^{1}, \\ f_{pq}^{(2)}(0) &= \frac{1}{4}(\alpha_{4}-1)\left(-zI_{pq}^{2}+z^{2}I_{pq+1}^{2}\right)-z^{3}I_{pq}^{0}, \\ f_{pq}^{(3)}(0) &= -\frac{3}{2}(\alpha_{4}-1)^{1/2}\left(z^{3}I_{pq}^{1}+z^{4}I_{p,q+1}^{1}\right) \\ &+\frac{1}{8}(\alpha_{4}-1)^{3/2}\left(3zI_{pq}^{3}-3z^{2}I_{p,q+1}^{3}+z^{3}I_{p,q+2}^{3}\right). \end{split}$$

・ロト ・ 理 ト ・ 理 ト ・ 理 ト

Computational remarks

Now all ingredients for the computation of the polynomials q_i are collected.

Computation by hand remains cumbersome. Therefore we prepared a Maple worksheet which allows the computation of the q_i 's up to arbitrary order.

Due to the structure of the $f_{pq}^{(j)}$'s, the lemma can be extended by utilizing standard symbolic integration methods.

Clearly, resources limit the number of computable q_i 's.

Remark:

We also computed the q_i 's with Hall's 'smooth function' method described in [6] up to order 6 with complete coincidence. Hall's method involves the computation of moments of more complicated statistics and seems more time consuming.

Rates of convergence

Recall that $q_1(y) \equiv 0$ for $\alpha_3 = 0$.

Interpretation: Vanishing skewness of $\zeta_1 \Rightarrow On$ the $n^{-1/2}$ scale, the approximation of F_n cannot be distinguished from Φ . However, the rate of convergence of F_n towards Φ can at most be $O(n^{-1})$, because q_2 never vanishes.

Our approach to improve this rate of convergence:

$$T_n = rac{\sqrt{n}ar{\zeta}}{\sqrt{a_n \sum_{i=1}^n (\zeta_i - ar{\zeta})^2}}, \ \ \text{where} \ \ a_n = rac{1}{n(1 - \sum_{j=1}^M C_j n^{-j/2})}$$

Formal expansion for the generalized self-normalized sum *T_n*:

$$F_{T_n}(t) = \Phi(t) + \sum_{i=1}^r n^{-i/2} \tilde{q}_i(t) \varphi(t) + o(n^{-r/2})$$
(3)

Coefficients of the \tilde{q}_i 's depend on cumulants of ζ_1 and on C_j 's.

Derivation of the approximation for T_n Notice that $T_n = S_n/b_n$ with $b_n = \sqrt{na_n}$. Therefore,

$$F_{T_n}(t) = \mathbb{P}(T_n \leq t) = \mathbb{P}(S_n \leq b_n t) = F_n(b_n t).$$

From (1), we get under the necessary moment condition that

$$F_{T_n}(t) = \Phi(b_n t) + \sum_{i=1}^r n^{-i/2} q_i(b_n t) \varphi(b_n t) + o(n^{-r/2}).$$

In terms of $\Phi(t)$ and $\varphi(t)$, we can write

$$F_{T_n}(t) = \Phi(t) + \varphi(t) \left[h_n(t) + \sum_{i=1}^r n^{-i/2} q_i(b_n t) g_n(t) \right],$$

where the auxiliary functions h_n and g_n are defined by

$$h_n(t) = \left[\frac{\Phi(b_n t)}{\Phi(t)} - 1\right] \frac{\Phi(t)}{\varphi(t)}, \quad g_n(t) = \varphi(b_n t)/\varphi(t).$$

 \Rightarrow Expansions for b_n , $h_n(t)$, $g_n(t)$ needed!

Lemma:

Setting $\lambda = n^{-1/2}$, asymptotic expansions of b_n , $h_n(t)$ and $g_n(t)$ are given by

$$b_n = 1 + \frac{C_1}{2}\lambda + \frac{C_2 + 3C_1^2/4}{2}\lambda^2 + O(\lambda^3),$$

$$h_n(t) = \frac{C_1t}{2}\lambda + \frac{t}{8}(4C_2 + 3C_1^2 - C_1^2t^2)\lambda^2 + O(\lambda^3),$$

$$g_n(t) = 1 - \frac{C_1t^2}{2}\lambda - \frac{t^2}{2}(C_1^2 + C_2 - \frac{C_1^2t^2}{4})\lambda^2 + O(\lambda^3).$$

Proof:

The expansions for b_n and $g_n(t)$ are simple applications of the Taylor series of the square root and the exponential functions. For the expansion of $h_n(t)$, well-known asymptotic expansions for Mills' ratio are needed additionally.

A D > A P > A B > A B >

Resulting approximation polynomials

Having expanded b_n , $h_n(t)$, and $g_n(t)$ in this manner, we finally obtain the first two \tilde{q}_i 's as

$$\begin{split} \tilde{q}_1(t) &= \frac{\alpha_3 t^2}{3} + \frac{\alpha_3}{6} + \frac{C_1 t}{2}, \\ \tilde{q}_2(t) &= \frac{3tC_1^2}{8} + \frac{\alpha_4 t^3}{12} + \frac{\alpha_3^2 t}{6} - \frac{t^3C_1^2}{8} - \frac{\alpha_3^2 t^3}{9} - \frac{\alpha_3^2 t^5}{18} \\ &+ \frac{\alpha_3 C_1 t^2}{4} + \frac{tC_2}{2} - \frac{t^3}{2} - \frac{\alpha_3 C_1 t^4}{6} - \frac{\alpha_4 t}{4}. \end{split}$$

Conclusions

Sanity check

Setting M = 2, $C_1 = 0$ and $C_2 = 1$, we get the Studentized sum

$$\tilde{S}_n = \frac{\sqrt{n}\bar{\zeta}}{\sqrt{\frac{1}{n-1}\sum_{i=1}^n (\zeta_i - \bar{\zeta})^2}}$$

with corresponding approximation polynomials

$$\begin{split} \tilde{q}_1(t) &= \frac{\alpha_3 t^2}{3} + \frac{\alpha_3}{6} = \frac{\alpha_3}{6} \left(2t^2 + 1 \right), \\ \tilde{q}_2(t) &= \frac{\alpha_4 t^3}{12} + \frac{\alpha_3^2 t}{6} - \frac{\alpha_3^2 t^3}{9} - \frac{\alpha_3^2 t^5}{18} + \frac{t}{2} - \frac{t^3}{2} - \frac{\alpha_4 t}{4} \\ &= t \left[\frac{\kappa}{12} \left(t^2 - 3 \right) - \frac{\alpha_3^2}{18} \left(t^4 + 2t^3 - 3 \right) - \frac{1}{4} \left(t^2 + 1 \right) \right], \end{split}$$

where $\kappa = \alpha_4 - 3$ denotes the excess kurtosis of ζ_1 . These are just the approximation polynomials given in Section 11.4.2 of the textbook [8] by Lehmann and Romano.

・ロット (雪) (日) (日)

Rates of convergence for generalized self-normalized sums

Theorem:

Let Δ_n(x) = |F_{T_n}(x) - Φ(x)|.
(i) If α₃ ≠ 0 or C₁ ≠ 0, then Δ_n(x) = O(n^{-1/2}).
(ii) If α₃ = C₁ = 0 and (α₄ ≠ 6 or C₂ ≠ 3), then Δ_n(x) = O(n⁻¹).
(iii) If α₃ = C₁ = 0 and α₄ = 6 and C₂ = 3 and (α₅ ≠ 0 or C₃ ≠ 0), then Δ_n(x) = O(n^{-3/2}).
(iv) If α₃ = C₁ = 0 and α₄ = 6 and C₂ = 3 and α₅ = C₃ = 0, then

 $\Delta_n(x) = O(n^{-2}).$

Proof:

For parts (i)-(iii), we subsequently solve $\tilde{q}_i(t) \equiv 0$ for C_i and α_{i+2} for i = 1, 2, 3. For the proof of part (iv), we show that it is impossible to find values for (α_6, C_4) such that \tilde{q}_4 becomes the null polynomial.

Remark:

- 1. The studentized sum \tilde{S}_n with $C_i = 0$ for all $i \neq 2$ and $C_2 = 1$ can only achieve a rate of convergence of $O(n^{-1})$.
- 2. Justification for the special role of $C_2 = 3$: Norming $a_n = (n-3)^{-1}$ leads to variance standardization of T_n , that is, $Var[T_n] = 1$ if the ζ_i are iid normal as $\mathcal{N}(0, 1)$.
- 3. The special role of $\alpha_4 = 6$ in parts (ii) (iv) is not clear to us.

Example:

Let $\varphi(x|\sigma)$ denote the pdf of $\mathcal{N}(0, \sigma^2)$ and the density of ζ_1 given by

 $f_{\zeta_1}(x) = \alpha \varphi(x|\sigma_1) + (1-\alpha)\varphi(x|\sigma_2)$ with $\sigma_1^2 = (2\alpha)^{-1}$, $\sigma_2^2 = (2(1-\alpha))^{-1}$ and $\alpha = (2+\sqrt{2})/4$. Then $\mathbb{E}\zeta_1 = \mathbb{E}\zeta_1^3 = \mathbb{E}\zeta_1^5 = 0$, $\mathbb{E}\zeta_1^2 = 1$, $\mathbb{E}\zeta_1^4 = 6$, and $\mathbb{E}\zeta_1^6 = 90$. Setting $C_1 = C_3 = 0$ and $C_2 = 3$, part (iv) applies in this case.

Expansion in terms of Student's t

Goal here: Derive an Edgeworth-type expansion for T_n of form

$$F_{T_n}(t) = F_{t_{\nu}}(t) + \sum_{i=1}^r n^{-i/2} Q_i(t) \varphi(t) + o(n^{-r/2})$$
(4)

in terms of Student's *t* with $\nu = n - 1$ degrees of freedom.

Note: T_n with norming sequence $a_n = (n-1)^{-1}$ and $\zeta_1 \sim \mathcal{N}(0,1)$ is exactly t_{ν} -distributed.

Questions:

- 1. Can an improved rate of convergence be obtained by changing the approximating distribution from $\mathcal{N}(0,1)$ to t_{ν} ?
- 2. Can the norming constants C_j be employed to correct for higher-order moments of ζ_1 ?

Derivation of the Q_i 's in (4)

Denote by $q_i^*, i = 1, ..., r$, the approximation polynomials for $T_n = t_{\nu}$, i.e., for special choices M = 2, $C_1 = 0$ and $C_2 = 1$ and $\alpha_j, j = 3, ..., (r+2)$, equal to the moments of $\mathcal{N}(0, 1)$.

By subtracting the resulting expansion from the general expansion for T_n , we immediately conclude that

$$Q_i(t) = \tilde{q}_i(t) - q_i^*(t), i = 1, \dots, r.$$

Carrying out these calculations, we obtain the first four q_i^* 's as

$$q_1^*(t) = q_3^*(t) \equiv 0,$$

$$q_2^*(t) = -\frac{t}{4} (t^2 + 1),$$

$$q_4^*(t) = -\frac{t}{96} (3t^6 - 7t^4 + 19t^2 + 21)$$

Consequently, the first two Q_i 's are given by

$$Q_{1}(t) = \tilde{q}_{1}(t) = \frac{\alpha_{3}t^{2}}{3} + \frac{C_{1}t}{2} + \frac{\alpha_{3}}{6},$$

$$Q_{2}(t) = -\frac{\alpha_{3}^{2}}{18}t^{5} - \frac{\alpha_{3}C_{1}}{6}t^{4} - \left(\frac{1}{4} + \frac{\alpha_{3}^{2}}{9} - \frac{\alpha_{4}}{12} + \frac{C_{1}^{2}}{8}\right)t^{3} + \frac{\alpha_{3}C_{1}}{4}t^{2} + \left(\frac{3C_{1}^{2}}{8} + \frac{C_{2}}{2} + \frac{\alpha_{3}^{2}}{6} - \frac{\alpha_{4}}{4} + \frac{1}{4}\right)t.$$

Rates of convergence:

- Q_1 only vanishes for $\alpha_3 = C_1 = 0$.
- Q_2 only vanishes if additionally $\alpha_4 = 3$ and $C_2 = 1$, i. e., in case of coincidence with the classical *t*-distribution case.
- This need for coincidence extends to the conditions for vanishing *Q*₃ and *Q*₄ (explicit formulas omitted here).
- Conclusion: *t*-approximation instead of normal approximation does not help to increase convergence rates.

A link to Gayen's (1949) method Substitute φ in (4) by the pdf $f_{t_{\nu}}$ of the t_{ν} -distribution:

$$F_{T_n}(t) = F_{t_\nu}(t) + \sum_{i=1}^r n^{-i/2} \,\tilde{Q}_i(t) \,f_{t_\nu}(t) + o(n^{-r/2}). \tag{5}$$

Closely related expressions for F_{T_n} for fixed *n* have already been investigated in 1949 by A. K. Gayen based on M. S. Bartlett's famous paper [1].

One can derive the first four \tilde{Q}_i 's in (5) by expanding

$$\varphi(t) = f_{t_{\nu}}(t) \left[1 + \frac{1 + 2t^2 - t^4}{4n} + O(n^{-2}) \right].$$

Plugging the latter expansion into (4) leads to

$$\widetilde{Q}_i \equiv Q_i, \ i = 1, 2,$$

 $\widetilde{Q}_i(t) = Q_i(t) + \frac{1 + 2t^2 - t^4}{4} Q_{i-2}(t), \ i = 3, 4.$

Comparison with Gayen's results

Unfortunately, we could only reproduce Gayen's (1949) results up to order n^{-1} .

Taking limits $(n \to \infty)$ in Gayen's paper also yields $\tilde{Q}_i \equiv Q_i, \ i = 1, 2.$

However, the expressions of order $O(n^{-3/2})$ associated with the factors α_3^3 and $\alpha_3\alpha_4$ seem to be in error in [4], p. 359, and also taking limits $(n \to \infty)$ in these expressions does not coincide with our results.

Therefore, we also recomputed the original approximation method by Bartlett (cf. [1]) which underlies Gayen's (1949) calculations and finally reproduced "our" \tilde{Q}_i 's for i = 1, ..., 4.

・ コ ト ・ 雪 ト ・ ヨ ト ・ ヨ ト

Asymptotic order of magnitude of $|F_{T_n} - F_{t_\nu}|$

Utilizing Chung's method and higher order expansions for $\varphi(t)/f_{t_{\nu}}(t)$, we calculated Q_i 's and \tilde{Q}_i 's up to order 8.

 $\alpha_k^*: k - \text{th moment of } \mathcal{N}(0, 1), \Delta \alpha_k = \alpha_k^* - \alpha_k$

$$C_2^* = 1, C_k^* = 0$$
 for $k \neq 2$ and $\Delta C_k = C_k^* - C_k$

Corollary:

Assume that the (M + 2)-nd moment α_{M+2} of ζ_1 is finite for some integer $1 \le M \le 8$ and Cramér's condition holds. Then

$$|F_{T_n} - F_{t_{\nu}}| = O(n^{-k^*/2}),$$

where $k^* = \min\{k \in \{1, \dots, M\} : \Delta \alpha_{k+2} \neq 0 \lor \Delta C_k \neq 0\}.$

If no such k^* exists, then $|F_{T_n} - F_{t_\nu}| = o(n^{-M/2})$.

・ コ ト ・ 雪 ト ・ ヨ ト ・ ヨ ト

What happens for M > 8 ?

Since each polynomial Q_i or \tilde{Q}_i , respectively, only depends on α_j , $j = 3, \ldots, i+2$ and $C_j, j = 1, \ldots, i$, and equations (4), (5) are valid for $T_n = t_{\nu}$, it is clear that also for M > 8 the conditions

$$\Delta \alpha_{i+2} = 0 \land \Delta C_i = 0 \text{ for all } i = 1, \dots, M$$
(6)

imply $Q_i(t) \equiv 0$ and $\tilde{Q}_i(t) \equiv 0$ for all i = 1, ..., M.

⇒ Conditions (6) are sufficient for vanishing polynomials up to the *M*-th for arbitrary $M \in \mathbb{N}$.

We conjecture that conditions (6) are also necessary conditions for any $M \ge 1$ as stated in the Corollary for $1 \le M \le 8$.

A D > A B > A B > A B >

Conclusions

- Four different types of Edgeworth expansions for S_n , T_n . Once polynomials for one are obtained, they can be utilized to derive the polynomials for the others straightforwardly.
- At http://www.helmut-finner.de, find Maple sheets for Chung's, Hall's, and the Bartlett-Gayen method.
- Practical implications:
 - For skewed distributions, no convergence rate improvement upon O(n^{-1/2}) is possible with our approach.
 - If there is any evidence that α_4 is near 6, a normal approximation with $C_2 = 3$ is the best choice leading to $|F_{T_n}(x) \Phi(x)| = O(n^{-3/2}).$
 - *t*-approximation works best for $a_n = (n-1)^{-1}$ and can achieve arbitrary rate of convergence for universes which are close to standard normal in terms of moments. This makes the *t*-approximation a more natural choice if we assume that the universe is "nearly normal".

・ コ ト ・ 雪 ト ・ ヨ ト ・ ヨ ト

- Bartlett, M. S. (1935). The effect of non-normality on the *t* distribution. Proc. Camb. Philos. Soc. 31, 223-231.
- Chung, K.-L. (1946). The approximate distribution of Student's statistics. Ann. Math. Stat. 17, 447-465.
- Finner, H. and Dickhaus, T. (2010). Edgeworth expansions and rates of convergence for normalized sums: Chung's 1946 method revisited. Stat. Prob. Letters, in press.
- Gayen, A. K. (1949). The distribution of 'Student's' *t* in random samples of any size drawn from non-normal universes. Biometrika 36, 353-369.
- Hall, P. (1987). Edgeworth expansion for Student's *t* statistic under minimal moment conditions. *Ann. Prob.* 15, 920-931.
- Hall, P. (1992). The bootstrap and Edgeworth expansion. Springer Series in Statistics, New York.

Hsu, P. L. (1945). The approximate distributions of the mean and variance of a sample of independent variables. *Ann. Math. Stat.* 16, 1-29.

- Lehmann, E. L. and Romano, J. P. (2005). Testing statistical hypotheses. 3rd ed. Springer Texts in Statistics, Springer, New York.
- Wallace, D. L. (1958). Asymptotic approximations to distributions. Ann. Math. Stat. 29, 635-654.