MODELING OF NONLINEAR EFFECTS AT THE TIP ZONES FOR A CRACK ONSET

Maria Specovius

AAM, University of Kassel, Germany

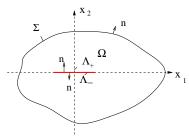
Joint work with Sergej Nazarov, St. Petersburg supported by the DFG Transregio 30

Singular Days, Berlin 2010

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

MODELING OF NONLINEAR EFFECTS AT THE TIP ZONES FOR A CRACK ONSET

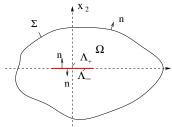
The starting point: A crack onset



Griffith' energy criterion (1921)

The crack starts to propagate only if energy is released. Engineering praxis: Lots of various criteria, the simplest: concept of critical SIF (Irwin 1957)

The starting point: A crack onset



Nazarov (with various coauthors) starting 1988 Bourdin, Francfort, Marigo 2008 Khludnev, Kovtunenko 2000, K., Sokolowski 2000 Knees, Mielke 2008

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Griffith' energy criterion (1921)

The crack starts to propagate only if energy is released. Engineering praxis: Lots of various criteria, the simplest: concept of critical SIF (Irwin 1957) The starting point: a crack onset

The mathematical frame: a formally self adjoint elliptic boundary value problem

$$\mathcal{L}u = f \text{ in } \Omega, \qquad \mathcal{N}u = g \text{ on } \Sigma, \ \mathcal{N}u = 0 \text{ on } \Lambda_{\pm}$$

Compatibility condition (\mathbf{R} = space of rigid motions)

$$(f,r)_{\Omega}+(g,r)_{\Sigma}=0, \forall r\in \mathbf{R}=\{D(\nabla)r=0\}$$

 $\mathcal{L} = -D(\nabla)^{\top}AD(\nabla)$ second order strongly elliptic operator $\mathcal{N} = n \cdot AD(\nabla)$ Neumann operator, $\mathcal{N}u$ normal stresses u: displacement field,

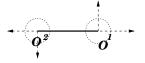
Prop. \exists solution $u_e \in H^1(\Omega)$, minimizer of the energy functional

$$\mathcal{U}(u; f, g, \Omega) := rac{1}{2} (D(\nabla)u, AD(\nabla)u)_{\Omega} - (f, u)_{\Omega} - (g, u)_{\Sigma}$$

= $E_e(u) - A(u).$

Normalization condition $(u_e, r)_{\Omega} = 0$ gives uniqueness.

 $\begin{array}{l} u_e \text{ minimizer of } \mathcal{U}(u;f,g,\Omega) \Rightarrow u_e \in H^1(\Omega) \text{, but } u_e \notin H^2(\Omega) \\ u_e \in H^2_{loc}(\overline{\Omega} \setminus \{\mathcal{O}^1,\mathcal{O}^2\}) \end{array}$



 u_e minimizer of $\mathcal{U}(u; f, g, \Omega) \Rightarrow u_e \in H^1(\Omega)$, but $u_e \notin H^2(\Omega)$ $u_e \in H^2_{loc}(\overline{\Omega} \setminus \{\mathcal{O}^1, \mathcal{O}^2\})$

representation of u_e near the tips \mathcal{O}^{ν} : $u_e(x) = u_e(\mathcal{O}^{\nu}) + \mathcal{K}_1^{\nu} X^1(x^{\nu}) + \mathcal{K}_2^{\nu} X^2(x^{\nu}) + \tilde{u}_e$ \mathcal{K}_i^{ν} : stress intensity factors (SIFs)

X^j: solutions to the model problem: $\mathcal{L}X = 0 \text{ in } \mathbb{R}^2 \setminus \Lambda_0, \ \mathcal{N}X = 0 \text{ on } \Lambda_0$ power law solutions: $X = r^{\lambda} \Phi(\phi), \ Y = r^{-\lambda} \Psi(\phi), \ \lambda = \frac{k}{2}, \ k \in \mathbb{N}$ 2 for each k, (+ 4 solutions corresponding to $\lambda = 0$)

$$X^{1,2} = r^{1/2} \Phi^{1,2}(\phi)$$

Estimates for the remainder

near the tips:

$$u(x) = u(\mathcal{O}^{\nu}) + K_1^{\nu} X^1(x^{\nu}) + K_2^{\nu} X^2(x^{\nu}) + \tilde{u}$$

$$\begin{split} \|\widetilde{u}; H^{2}(\Omega)\| &+ \sum_{\nu=1}^{2} \left\{ |u(\mathcal{O}^{\nu})| + \sum_{j=1}^{2} |K_{j}^{\nu}| \right\} \\ &\leq c \left(\|f; L^{2}(\Omega)\| + \|g; H^{1/2}(\Sigma)\| + \|u; L^{2}(\Omega)\| \right). \end{split}$$

Remark

It is not enough to play with asymptotics in Kondratiev spaces V_{β}^{I} and embeddings here!

The enlarged state space I

Instead of
$$u \in H^2_{loc}(\overline{\Omega} \setminus \{\mathcal{O}^1, \mathcal{O}^2\}) \cap H^1(\Omega)$$

require $u \in \mathfrak{D} =: H^2_{loc}(\overline{\Omega} \setminus \{\mathcal{O}^1, \mathcal{O}^2\}) \cap L^2(\Omega)$

Again asymptotic representation, now with power-law solutions related to $\lambda=-\frac{1}{2},0,\frac{1}{2}$

 $\lambda = \frac{1}{2}$: X^{j} , $\lambda = -\frac{1}{2}$: Y^{j} , $\lambda = 0$: e_{j} , \mathcal{T}^{j} (logarithmic) \Rightarrow near \mathcal{O}^{ν} :

$$u(x) = a^{\nu} + \sum_{j=1}^{2} \left(d_j^{\nu} \mathcal{T}^j(x^{\nu}) + c_j^{\nu} \mathcal{X}^j(x^{\nu}) + \frac{b_j^{\nu} \mathcal{Y}^j}{j}(x^{\nu}) \right) + \widetilde{u}(x),$$

 $\widetilde{u}(x)\in H^2(\Omega)$, $\widetilde{u}(\mathcal{O}^
u)=0+$ estimate of \widetilde{u} and coefficient vectors

The enlarged state space I

Instead of
$$u \in H^2_{loc}(\overline{\Omega} \setminus \{\mathcal{O}^1, \mathcal{O}^2\}) \cap H^1(\Omega)$$

require $u \in \mathfrak{D} =: H^2_{loc}(\overline{\Omega} \setminus \{\mathcal{O}^1, \mathcal{O}^2\}) \cap L^2(\Omega)$

Again asymptotic representation, now with power-law solutions related to $\lambda=-\frac{1}{2},0,\frac{1}{2}$

 $\lambda = \frac{1}{2}$: X^{j} , $\lambda = -\frac{1}{2}$: Y^{j} , $\lambda = 0$: e_{j} , \mathcal{T}^{j} (logarithmic) \Rightarrow near \mathcal{O}^{ν} :

$$u(x) = a^{\nu} + \sum_{j=1}^{2} \left(d_j^{\nu} \mathcal{T}^j(x^{\nu}) + c_j^{\nu} \mathcal{X}^j(x^{\nu}) + \frac{b_j^{\nu} \mathcal{Y}^j}{j}(x^{\nu}) \right) + \widetilde{u}(x),$$

 $\widetilde{u}(x)\in H^2(\Omega)$, $\widetilde{u}(\mathcal{O}^
u)=0+$ estimate of \widetilde{u} and coefficient vectors

- The enlarged state space and generalized Green's formula

Various conditions for the coefficient vectors a, b, c, d are possible. Kick out concentrated forces at the tips: d = 0

$$\mathfrak{E} = \left\{ u \in \mathfrak{D} : u = \sum_{j,\nu}^{2} \chi^{\nu} \left(c_{j}^{\nu} X^{j} + \boldsymbol{b}_{j}^{\nu} Y^{j} \right) + \widetilde{u}, \mathcal{N}u = 0 \text{ on } \Lambda_{\pm} \right\},$$
$$\widetilde{u} \in H^{2}(\Omega), \quad \|u; \mathfrak{E}\|^{2} = |\boldsymbol{b}|^{2} + |\boldsymbol{c}|^{2} + \|\widetilde{u}; H^{2}\|^{2}$$

and the Generalized Green's formula

$$(\mathcal{L}u, v)_{\Omega} + (\mathcal{N}u, v)_{\Sigma} - (u, \mathcal{L}v)_{\Omega} - (u, \mathcal{N}v)_{\Sigma} = \langle c_{u}, \frac{b_{v}}{v} \rangle - \langle \frac{b_{u}}{v}, c_{v} \rangle$$

Which linear and nonlinear conditions on **b** and **c** lead to well posed problems with a sensible physical interpretation? $H^{1}(\Omega)$ -solutions: $\mathbf{b}_{u} = 0 \ (\rightarrow \mathfrak{E}_{e})$ ("Generalized Dirichlet condition" at the tips) Hierarchy of conditions:

$$\mathfrak{R} := L^2(\Omega) imes H^{1/2}(\Sigma) imes \mathbb{R}^4.$$

$$\mathcal{L}u = f \text{ in } \Omega, \quad \mathcal{N}u = g \text{ on } \Sigma$$

$$\mathcal{N}u = 0 \text{ on } \Lambda, \quad \mathbf{H}_1 \frac{b}{b} + \mathbf{H}_2 c = h \in \mathbb{R}^4$$
(*)

(*) defines a Fredholm op. of index 0: $\textbf{A}:\mathfrak{E}\to\mathfrak{R}$

Independent of $\textbf{H}=(\textbf{H}_1,\textbf{H}_2){:}$ rigid motions $\subset \ker \textbf{A},$ requires always

$$(f,r)_{\Omega}+(g,r)_{\Sigma}=0.$$

LINEAR CONDITIONS

 $\mathbf{H} = (-T; \mathbb{I}), T$ symmetric (and invertible f.s.), (*) has a solution as a stationary point of the generalized energy functional:

$$\mathbf{U}(u; f, g, h) = \underbrace{\frac{1}{2}(\mathcal{L}u, u)_{\Omega} + \frac{1}{2}(\mathcal{N}u, u)_{\partial\Omega}}_{\text{elastic energy}} - \underbrace{((f, u)_{\Omega} + (g, u)_{\Sigma})}_{\text{work of ext. forces}}$$
$$\underbrace{+\frac{1}{2}\langle Tb_{u} - c_{u}, b_{u} \rangle}_{-\langle h, b_{u} \rangle}$$

el. energy stored at the tips work at the tips

- Conditions at the tips

The role of the polarization matrix

$$\mathfrak{E} = \mathfrak{E}_{e} \oplus \operatorname{span}\{\zeta^{j}, j = 1, \dots, 4\}$$

 ζ^{j} weight functions: solve (*) with f = 0, g = 0, $b = e_{j} \in \mathbb{R}^{4}$.

 $\mathbf{Z} := (\mathbf{c}_{\zeta^{j}})_{j}$ Polarization matrix, symmetric matrix, global integral characteristic of Ω .

Lemma If T - Z is positive, then (*) has a solution u, unique under the normalization $(u, r)_{\Omega} = 0$, and u is the minimizer of the generalized energy functional.

Modeling of nonlinear effects at the tip zones for a crack onset

-Nonlinear conditions at the tips

$$\begin{aligned} \mathcal{L}u &= f \text{ in } \Omega, \quad \mathcal{N}u = g \text{ on } \Sigma, \quad \mathcal{N}u = 0 \text{ on } \Lambda, \\ \mathbf{T}(\underline{b}_u) - \underline{c}_u &= 0, \quad \text{with } \mathbf{T}(0) = 0, \quad \mathbf{T} = \nabla \mathbf{E} \end{aligned}$$

Proposition 2

Z: polarization matrix, $\mathbf{E}_{\Omega}(b) := \mathbf{E}(b) - \frac{1}{2} \langle Zb, b \rangle$ strictly convex and coercive (**) has a unique solution $u \in \mathfrak{E}^{\perp}$, u is the minimizer of the generalized energy functional

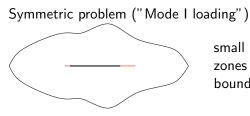
$$\mathbf{U}(u) = \frac{1}{2} (\mathcal{L}u, u)_{\Omega} + \frac{1}{2} (\mathcal{N}u, u)_{\Sigma} - (f, u)_{\Omega} - (g, u)_{\Sigma} + \mathbf{E}(\underline{b}_{u}) - \frac{1}{2} \langle c_{u}, \underline{b}_{u} \rangle.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Modeling of nonlinear effects at the tip zones for a crack onset

NONLINEAR CONDITIONS AT THE TIPS

A STRIKING EXAMPLE: THE DUGDALE CRITERION, (LEONOV, PANASYUK 1959, DUGDALE 1960)



small one dimensional plastic zones at the tips: Find u with bounded stresses and d_{ν} with

$$\mathcal{L}u = 0 \quad \text{in } \Omega(d), \quad \mathcal{N}u = g \quad \text{on } \partial\Omega(d),$$

with $g = 0 \quad \text{on } \Lambda_{\pm}, \qquad g = \mp \sigma_c \mathbf{e}_2 \text{ on } \Upsilon_{\nu,\pm}$

Bounded stresses \Rightarrow determines the lengthes d_{ν} .

The criterion itself: deformation criterion crack propagates if

$$u_+(\mathcal{O}^{\nu})-u_-(\mathcal{O}^{\nu})>\delta_{crit}$$

 σ_c large: the problem possesses a unique solution, $d_{\nu} = O(\sigma_c^{-2})$

A STRIKING EXAMPLE: THE DUGDALE CRITERION, (NAZAROV & SP-N 2009)

Method of matched asymptotic expansions, model u^D by the first terms of the outer decomposition:

$$u^D\sim u^0+a(K_1^3\zeta^1+K_2^3\zeta^2)=:u^d\in\mathfrak{E}$$

 u^d solves (**) with nonlinear conditions at the tips

$$c^{\nu} = (rac{1}{a}b^{
u})^{1/3} + (Zb)_{
u}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

A STRIKING EXAMPLE: THE DUGDALE CRITERION, (NAZAROV & SP-N 2009)

Method of matched asymptotic expansions, model u^D by the first terms of the outer decomposition:

$$u^D\sim u^0+a(extsf{K}_1^3\zeta^1+ extsf{K}_2^3\zeta^2)=:u^d\in\mathfrak{E}$$

 u^d solves (**) with nonlinear conditions at the tips

$$oldsymbol{c}^
u = (rac{1}{a}oldsymbol{b}^
u)^{1/3} + (Zoldsymbol{b})_
u =
abla \mathbf{E}(oldsymbol{b})$$

 u^d minimizes the generalized energy functional ${f U}$ with

$${\sf E}(b)=rac{3}{4\sqrt[3]{a}}(b_1^{4/3}+b_2^{4/3})+rac{1}{2}\langle Zb,b
angle$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

A STRIKING EXAMPLE: THE DUGDALE CRITERION, (NAZAROV & SP-N 2009)

Crack path is known a priori (only straight propagation). $\mathbf{U} \to \mathbf{U}(h)$ Calculation of the energy release rate

$$\frac{d}{dh}\mathbf{U}|_{h=0}$$

- involves the geometry of the domain
- ► The condition d/dh T|_{h=0} < 0 (T potential energy + surface energy) coincides with the original Dugdale criterion up to O(|h|²).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Modeling of nonlinear effects at the tip zones for a crack onset

NONLINEAR CONDITIONS AT THE TIPS

MODELING OF PLASTIC ZONES

$$\mathscr{S}(t\sigma) = t\mathscr{S}(\sigma)$$
 (vM)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Assume:

$$\sigma = \begin{cases} AD(\nabla)u & \text{ for } \mathscr{S}(\sigma) \leq \mathscr{S}_0, \\ ?? & \text{ for } \mathscr{S}(\sigma) \geq \mathscr{S}_0 \end{cases}$$

Examples for \mathscr{S} : conditions of von Mises or Tresca \mathscr{S}_0 large, solutions to the nonlinear model problem in $\mathbb{R}^2 \setminus \Lambda_\infty$

$$W(K; x) = \sum_{j=1}^{2} (K_j X^j(x) + \mathcal{M}_j(K) Y^j(x)) + O(|x|^{-1}), \text{ as } |x| \to \infty.$$
(NMP)
$$\mathcal{M}(K) = (\mathcal{M}_1(K), \mathcal{M}_2(K))^\top : \mathbb{R}^2 \to \mathbb{R}^2$$

is a certain non-linear mapping.

Modeling of plastic zones

Proposition 3

For given K ∈ ℝ², assume the existence of a unique solution W to the homogeneous nonlinear model problem with

$$egin{aligned} \mathcal{W}(x) &= \mathcal{K}_1 X^1 + \mathcal{K}_2 X^2 + O(1) ext{ as } |x| o \infty \quad \Rightarrow \ \mathcal{M}_j &= |\mathcal{K}|^3 \mathcal{M}_j \left(rac{\mathcal{K}}{|\mathcal{K}|}
ight) \end{aligned}$$

If M⁻¹ = ∇E_Ω, E_Ω convex ⇒ solution to the nonlinear problem can be modeled by a minimizer u to the generalized energy functional, then

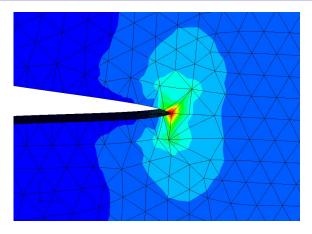
$$\mathbf{U}(u,g)=U(u_0)+U_p(K),K:\; {\sf SIFs}\; {\sf of}\; u_0$$

Modelling of plastic effects: Adding a functional $U_p(K)$ homogeneous of order 4 to the classical potential energy.

MODELING OF NONLINEAR EFFECTS AT THE TIP ZONES FOR A CRACK ONSET

NONLINEAR CONDITIONS AT THE TIPS

└─ MODELING OF PLASTIC ZONES



calculated in the Institute of applied Mechanics, Paderborn

Thank You!