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Obstacle in bounded domain

Figure: Flow domain Ω = B \ S.
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Stationary boundary value problem

Proofs in the stationary case for drag minimization are
given in the papers already published, with one exception:
IECN preprint (2009) is revised for SICON.

Global generalized solutions: Compactness and the
existence of optimal shapes for drag minimization
(stationary case, SICON 2006).

Local approximate solutions: Uniqueness and the shape
differentiability (stationary case, SIMA 2008).

Non stationary problems: Presentation of non published
results. Monograph in preparation.
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Equations of compressible gases

mass balance

∂t̺+ div(̺u) = 0 in Ω, (1a)

balance of momentum

∂t(̺u) + div(̺u ⊗ u) + ∇p = ̺f + h + div S in Ω, (1b)

,

and energy conservation law

∂tE + div((E + p)u) = div(Su) + div(κ∇ϑ) + (̺f + h)u + ̺Q.
(1c)
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Given vector fields f and h denote the densities of external
mass and volume forces, the heat conduction coefficient κ is a
positive constant, a given function Q is the intensity of the
external energy flux, the viscous stress tensor S has the form

S(u) = ν1(∇u + ∇u⊤ − 2
3

div u I) + ν2 div u I, (2)

in which the viscous coefficients νi , i = 1,2 satisfy the inequality
4
3
ν1 + ν2 > 0, the energy density E is given by

E =
1
2
̺|u|2 + ̺e,

where e is the density of internal energy.
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The physical properties of a gas are reflected through
constitutive equations relating the state variables to the
pressure p and the internal energy density e. The common
point of view is that p and e can be represented as functions of
̺ and ϑ. Under the assumption that the fluid is at the
thermodynamical equilibrium, the functions p(̺, ϑ) and e(̺, ϑ)
are not arbitrary but should satisfy the Gibbs equation

1
ϑ

de(̺, ϑ) − p(̺, ϑ)

ϑ̺2 d̺ = ds(̺, ϑ),

which means that the left hand side is the exact differential of
some function s named entropy.
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Hydrodynamical Forces and Work

Stress tensor in viscous compressible flow

T = S(u) − p I, (3)

the force acting from the side of flow at the boundary point
x ∈ ∂Ωt

Rf = −T n = (−S(u) + p I) n. (4)

Total work of the hydrodynamical forces over the time period
[0,T ] is

WΩ =

T
∫

0

∫

∂Ωt

(−S(u) + p I) n · Vs ds dt , (5)

Vs(x , t) is the velocity of boundary points at ∂Ωt .
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Isentropic Flows

The flow is barotropic if the pressure depends only on the
density. The most important example of such flows are
isentropic flows. In order to deduce the governing equations for
isentropic flows we note that for perfect fluid with νi = κ = 0, the
entropy takes a constant value at each material point. Hence in
this case the governing equations have a family of explicit
solutions with the entropy s = const. In this case we have

p(̺) = (γ − 1) exp(sc)̺
γ ,

where a positive constant sc is a characteristic value of the
entropy (without loss of generality we can take
(γ − 1) exp(sc) = 1). Exponent γ depends on the physical
properties of the gas, γ = 5/3 for mono-atomic, γ = 7/5 for
diatomic and γ = 4/3 for polyatomic gases. Assuming that this
relation holds for νi 6= 0, i = 1,2, we arrive at the system of
compressible Navier-Stokes equations for isentropic flows of
viscous compressible fluid in the dimensionless form
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Governing Equations

Nr∂t̺u + ̺u · ∇u +
1

Ma2∇p =
1
Re

div S +
1

Fr2
m

̺f +
1

Fr2
v

h, (6a)

Nr∂t̺+ div(̺u) = 0 , in Ω, (6b)

where we denote : the Reynolds number, the Pecle number,
the Mach number, the Strouhal number, and the viscosity ratio,

Re =
̺cuclc
ν1

, Pr =
pclcucκc

κ
, Ma2 =

̺cu2
c

pc
, Nr =

lc
Tcuc

,

λ =
1
3

+
ν2

ν1
,

here uc , ̺c , pc, ϑc, are the characteristic values of velocity,
density, pressure and temperature, and lc and Tc the
characteristic values of length scale and time intervals.

P.I. Plotnikov, J. Sokolowski Compressible Navier-Stokes



In addition, fc , hc, Qc are the characteristic values of mass and
volume forces, and heat influx. They form dimensionless
combinations

Fr2
m =

u2
c

fc lc
, Fr2

v =
̺cu2

c

hc lc
, Θ =

̺cQc lc
pcuc

.

Dimensionless viscous stress tensor is defined by

S = (∇u + ∇u⊤ + (λ− 1) div uI), div S = ∆u + λ∇ div u (7)

Note that here the characteristic quantities ̺c , ϑc , and pc

should be compatible with the constitutive law. For instance,
with the pressure formula we have, pc = Rm ̺c ϑc . Note that the
specific values of the constants γ, λ, and Pr depend only on
physical properties of a fluid. For example, for the air under
standard conditions, we have γ = 7/5, λ = 1/3, and Pr = 7/10.
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Boundary Conditions

Dirichlet-type condition

u = U on ∂Ω, (8)

Neumann-type condition

(S(u) − p I)n = Sn on ∂Ω, (9)

where n is the outward normal vector to ∂Ω, U and Sn are given
vector fields. The important particular cases are the no-slip
boundary condition with U = 0, and zero normal stress
condition with Sn = 0. The third physically and mathematically
reasonable condition is the no-stick boundary condition

u · n = 0, ((S(u) − p I)n) × n = 0 on ∂Ω,

which corresponds to the case of frictionless boundary.
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Assume that that velocity u satisfies the Dirichlet boundary
condition, and split the boundary of flow region into three
disjoint sets called the inlet Σin, the outgoing set Σout, and the
characteristic set Σ0, the sets are defined by the relations

Σin = {x ∈ ∂Ω : U · n < 0}, Σout = {x ∈ ∂Ω : U · n > 0},
Σ0 = {x ∈ ∂Ω : U · n = 0}.

(10)

The density distribution should be given on the inlet

̺ = ̺∞ on Σin. (11)

The boundary conditions for the density are not needed in the
case of Σin = ∅. In particular, there are no boundary conditions
for the density if the velocity satisfies the no-slip and no-stick
conditions whenever Σin = Σout = ∅.
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Moving Frame

If the flow region varies in time, then it is convenient, for
technical and practical reasons, to reduce the corresponding
boundary problem for fluid dynamics equation to a problem in a
fixed domain by a change of independent variables. We
describe such a change of variables in the case when Ωt

evolves like an absolutely rigid body. Recall that one-parameter
family of the mappings y 7→ x(y , t) represents a rigid motion in
the Euclidian space R

d if and only if

x = U(t)y + a(t), (12)

where the U(t) is an arbitrary one-parameter family of
orthogonal matrices, i.e., U U

⊤ = I and a(t) is an arbitrary
vector function.
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Navier-Stokes Equations in Moving Frame

Let us consider the solid body motion of the fixed domain Ω0,

Ωt = U(Tct)Ω0 + a(Tct).

We reduce the governing equations defined in Ωt to the fixed
domain Ω0, as a result the Coriolis and centrifugal forces will
appear in the equations. To this end, an appropriate change of
unknown functions is performed: (u, ̺) satisfy equations in Ωt iff

v(y , t) = U
⊤(t) u(x(y , t), t) − Nr W(y , t), ρ(y , t) = ̺(x(y , t), t)

satisfy the equations

Nr ∂t(ρv) + div(ρv ⊗ v) − 1
Re

div S(v)+ (13a)

1
Ma2∇p(ρ) + Nr C v = ρ f + h in Ω0,

Nr∂t(ρ) + div(ρv) = 0 in Ω0, (13b)
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where the viscous stress tensor

S(v) = (∇v + ∇v⊤ + (λ− 1) div vI),

the antisymmetric matrix C = (Cij)d×d , the vector fields f, h,

Cij =
∂Wi

∂yj
− ∂Wj

∂yi
,

f =
1

Fr2
m

U
⊤f(x(y , t), t) − Nr2∂W

∂t
+ Nr2 1

2
∇|W|2,

h =
1

Fr2
m

U
⊤h(x(y , t), t),

and

W(y , t) = U
⊤(t) v(y , t) = U

⊤(t)U̇(t)y + U
⊤(t)ȧ(t). (14)
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Expressions for dimensionless power and work now become

JΩ = −Nr
∫

∂Ω0

(∇v + (∇v)⊤ + (λ− 1) div vI − σp(ρ) I) n · W ds,

WΩ =

T
∫

0

JΩdt .
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We consider the following setting:

Ω := Ω0 = B \ S,

where B is hold all domains and S represents a moving body
which shape is to be optimized. The work WΩ becomes our
shape functional, written for u and ̺,

J(S) = −
T

∫

0

∫

∂S

(∇u +(∇u)⊤ +(λ−1) div uI−σp(̺) I) n · U dsdt

and we pose Nr = Re = 1, λ = 1
3 + ν2

ν1
, σ = Re

Ma2 .
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For the pressure, we assume the general constitutive law
p = p(̺) with the function p ∈ C2[0,∞) which satisfies the
following conditions

p(0) = 0, p′(̺) ≥ 0, p′′(̺) ≥ 0,

and for all ̺ > 1,

c−1̺γ ≤ p(̺) ≤ c̺γ , c−1̺γ−1 ≤ p′(̺) ≤ c̺γ−1,

c−1̺γ−2 ≤ p′′(̺) ≤ c̺γ−2

(15)
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Notation

Ω ∈ R
d , d = 2,3, is a bounded with boundary of class C3. For

given T > 0 denote by QT the cylinder with lateral surface ST

defined by

QT = Ω × (0,T ), ST = ∂Ω × (0,T ). (16)

Furthermore, assume that given vector fields U, f, h and a
function ̺∞ satisfy

̺∞,U ∈ C∞(QT ), U ∈ C∞(QT ), f,h ∈ C(QT ). (17)
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Governing Equations

Thus, we arrive at the following problem
Find velocity and density distributions satisfying the following
equations and boundary conditions

∂t(̺u) + div(̺u ⊗ u) + σ∇p(̺) + C u = (18a)

div S(u) + ̺ f + h in Ω ,

∂t̺+ div(̺u) = 0 in Ω, (18b)

u = U on ∂Ω, ̺ = ̺∞ on Σin ,

u
∣

∣

∣

t=0
= U, ̺

∣

∣

∣

t=0
= ̺∞ in Ω,

(18c)

where S(u) is the viscous stress tensor C is a smooth skew
symmetric matrix, f,h are given continuous functions. The
specific expressions for C, f,h, are not important for the
mathematical theory.
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Existence Theory: Main Theorem for γ > d

There is a weak renormalized solution to Problem (18)

u − U ∈ L2(0,T ; W 1,2
0 (Ω)), ̺ ∈ L∞(0,T ; Lγ(Ω)),

which satisfies
∫

QT

̺u · ∂tζ dxdt +

∫

QT

̺u ⊗ u : ∇ζ dxdt +

∫

Ω×{0}

̺∞U · ζ dx+

∫

QT

(

p(̺)I − S(u)
)

: ∇ζ dxdt +

∫

QT

(

̺f + h + Cu) · ζ dxdt = 0.

and
∫

QT

ϕ(̺)(∂tψ + ∇ψ · u) dxdt −
∫

QT

(

ϕ′(̺)̺− ϕ(̺)
)

div uψ dxdt

+

∫

Ω

ϕ(̺∞)(·,0)ψ(·,0) dx −
∫

ST

ϕ̺∞U · ndsdt = 0
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The first integral identity is satisfied for all ζ ∈ C1(QT ),
QT = Ω × (0,T ),

ζ(x ,T ) = 0 in Ω, ζ = 0, on ST = ∂Ω × (0,T ).

The second identity holds true for any functions ϕ and ψ
satisfying the conditions

ψ ∈ C1(QT ), ψ(·,T ) = 0,

ψ(x , t) = 0 on ST \ Σin.

sup
s∈R+

|ϕ′′(s)| ≤ c,
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Solution Scheme

The basic element of these scheme is the standard parabolic
regularization of the governing equations proposed by P.L.
Lions and E.Feireisel

∂t(̺u) + div
(

(̺u − ε∇̺) ⊗ u
)

+ ∇p + C u =

= div S(u) + ̺ f + h,

∂t̺+ div(̺u) = ε∆̺.

These equations can be considered as a mathematical model
of compressible flows with a mass diffusion and are of
independent interest.
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Numerical example in two spatial dimensions

Recall that in our framework the hydro-dynamical force acting
on the body S is defined by the formula,

J(S) = −
∫

∂S
(∇u + (∇u)T + (λ− 1)divuI − R

δ
pI)n dS.

In a frame attached to the moving body the drag is the
component of J parallel to U∞,

JD(S) = U∞ · J(S), (19)

and the lift is the component of J in the direction orthogonal to
U∞.
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State equations

For the fixed data, the drag can be regarded as a functional
depending on the shape of the obstacle S.
The system of compressible Navier-Stokes equations
transforms to

∆u −∇q = R̺∇u · u

div (u) = σ0p(̺) − 1
λ

q (20)

uT∇̺+ σ0p(̺)̺− 1
λ

q̺ = 0

where σ0 = R/(λδ), σ = σ0p0γ.
Here, the effective viscous pressure is used

q =
R
δ

p(̺) − λdiv (̺u) (21)
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Approximate solutions

In addition, if we introduce a smooth function η defined in Ω and
satisfying boundary conditions η = 1 on ∂S, η = 0 on Σ, then
the expression for drag takes on the form

JD(S) = −U∞ ·
∫

Ω

(

∇u + ∇uT − div (u)I

− qI − R̺u ⊗ u
)

∇η dx .
(22)

Assuming λ≫ 1 and R ≪ 1 (weakly compressible flow) we
may approximate solution to (20) by means of the small
perturbation with respect to the solution of the Stokes problem

∆u0 −∇q0 = 0

div(u0) = 0 (23)

u0 = U on Σ, u0 = 0 on ∂S, M(q0) = 0

where M(·) denotes mean value on Ω.
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Approximate solutions

We assume these perturbations in the form

u = u0 + v, ̺ = ̺0 + φ (24)

q = q0 + λσ0p0 + π + m (25)

where v, φ, π are unknown functions and m the unknown
constant. Taking into account (23) the system of equations for
v, φ, π is

∆v −∇π = R̺∇u · u

div(v) = σ0p(̺) − 1
λ

q (26)

uT∇φ+ σφ =
1
λ
̺(q0 + π)

− σ0̺(p − p0) + σ0p0p′(̺0)(̺− ̺0)

with boundary conditions

v = 0 on ∂Ω, φ = 0 on Σin, M(π) = 0
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Approximate solutions

and the condition M(div(v)) = 0, which translates to

m =
σ0

|Ω|

∫

Ω

[

p(̺) − p(̺0)
]

dx . (27)

It is convenient to introduce an additional equation

− div(uζ) + σζ = σ in Ω (28)

ζ = 0 on Σout

and express m

m = κ

∫

Ω

(̺−1
0 Ψ1[ϑ]ζ − gΨ[ϑ]) dx , (29)

κ =
(

∫

Ω

g(1 − ζ − ̺−1
0 ζϕ) dx

)−1
. (30)
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Material derivatives

In order to introduce the perturbation of the obstacle we
introduce the transformation of the domain Ω by means of the
mapping

T (x) = x + εT(x) (31)

where T(x) = 0 on Σ and T|∂S describes the movement of the
boundary of S. We assumed T = [t1, t2]T in the particular form,
where ti satisfy equations

∆ti = 0 in Ω, ti = 0 on Σ (32)

ti = hi on ∂S, i = 1,2.

Here hi(x) represent the shift of the point x on ∂S. In the
sequel we denote the solutions of the same equations
(26),(27),(28) in the transformed domain Ωε = T (Ω) by v(ε),
φ(ε), π(ε), m(ε), ζ(ε). By means of the inverse transformation
T −1 all these functions may be shifted again to the unperturbed
domain Ω, together with defining equations.
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Material derivatives

Therefore we may consider them as functions defined on Ω and
formally compute derivatives

w = lim
ε→0

1
ε
[v − v(ε)]

ω = lim
ε→0

1
ε
[π − π(ε)]

ξ = lim
ε→0

1
ε
[ζ − ζ(ε)] (33)

ψ = lim
ε→0

1
ε
[φ− φ(ε)]

n = lim
ε→0

1
ε
[m − m(ε)]
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Material derivatives

Let us denote by P the set of solutions in the unperturbed
domain, P = [v, φ, π,m, ζ].

∆w −∇ω = F1(P,w, ψ,D)

div(w) = F2(P, ψ,n, ω,D) (34)

uT∇ψ + σψ = F3(P, ψ,n, ω,D)

−div(uξ) + σξ = F4(P, ω,D)

with boundary conditions

w = 0 on ∂Ω, ψ = 0 on Σin, ξ = 0 on Σout

as well M(ω) = 0 and

n =

∫

Ω

F5(ψ,ω, ξ,D) dx .
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Material derivatives

The matrix D characterizing the transformation is given by

D = div(T)I −∇T.

The functions F1,F2,F3,F4,F5 are complicated expressions in
terms its arguments. For illustration we show only F1:

F1(P,w, ψ,D) = R2(φu∇u + ̺w∇u + ̺u∇w
)

+ Ru∇(Du) + RDT (u∇u)

+ div
[

(D + DT )∇u − 1
2

Tr(D)∇u
]

− D∆u − ∆(Du)

P.I. Plotnikov, J. Sokolowski Compressible Navier-Stokes



Shape derivative of drag

The expression for the shape derivative of the drag takes on the
form

d
dε

JD(Sε)|ε=0 = L1 + L2 + L3 + L4 + L5 (35)

where
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Shape derivative of drag

L1 =

∫

Ω

div(T)(∇u + ∇uT − div(u)I)∇η · U∞ dx

L2 = −
∫

Ω

(

∇u + ∇uT − div(u)I − qI

− R̺u ⊗ u
)

DT∇η · U∞ dx

L3 = −
∫

Ω

(

DT∇u + ∇uT D + ∇(Du)

+ ∇(Du)T )

∇η · U∞ dx

L4 =

∫

Ω

w ·
(

∆ηU∞ + R̺(u · ∇η)U∞

+ R̺(u · U∞)∇η
)

dx

L5 =

∫

Ω

[

ω∇η · U∞ + ψ(u · ∇η)(u · U∞)
]

dx
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Material derivatives

It can be shown that under reasonable regularity assumptions
v ∈ [C1(Ω)]3 and π, φ, ζ ∈ C(Ω). However, the convergence of
limits in (31) takes place in very weak spaces, see above. The
preliminary numerical computations were performed in R

2. The
domain B constituted a ball B = B(0,R) and the initial obstacle
was S = B(0, r) with R/r = 10. The domain Ω = B \ S was
triangulated (see Fig.1) For solving the Stokes Problem (23) the
flow velocity u0 was approximated by piecewise P1 (first order
polynomial) functions on triangles, while for q0 piecewise P0

(constant) functions were used. For regularization of the
pressure q0 the penalty term containing interelement jumps
was applied. The same elements were used for approximating
v, π. The functions φ, ζ were approximated by P1 elements.
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Computational domain

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10
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Numerical solution

However, the system (26) is nonlinear. Therefore it was solved
iteratively, using Ishikawa [2] fixed point procedure. The
right–hand sides were taken as functions of P, denoted by
R(P). As a result (26) takes on the form

P = S−1[R(P)]

where S−1 represents solving the system with given R. This
justifies using fixed point method. The Ishikawa algorithm for
finding x such that x = Φ(x) may be written as the following
iteration:

yn = (1 − βn)xn + βnΦ(xn)

xn+1 = (1 − αn)xn + αnΦ(yn)
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Numerical solution

where 0 ≤ αn, βn < 1,

lim
n→∞

αn = lim
n→∞

βn = 0

and
∞
∑

n=0

αn = ∞.

In our case it was taken αn = βn = 1/
√

n + 1.
For the range of flow parameters used in computations the
convergence was quite quick. The same procedure and
approximation was used for solving the system (34), since it
has the same structure. It was convenient, because even if
w, ω, ξ, ψ enter the right-hand side linearly, the expression for n
makes iterations necessary. In the weak formulation the second
derivatives of u disappear and the particular form of D
(ti harmonic in Ω) could be exploited.
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As it is easily seen, the shape derivative of the drag (35) is
computed for the particular transformation field T and resulting
matrix D. The general movement of the curve ∂S was
expressed as linear combination of ”bump” deformations, which
were constructed in the following way.

P.I. Plotnikov, J. Sokolowski Compressible Navier-Stokes



First, the boundary ∂S was approximated by the closed,
smooth (C2) spline passing through all the discretization nodes
on ∂S and parametrized by arclength s

γ = γ(s), s ∈ [0,L], γ(sk ) = pk , k = 1 . . . ,K .

Next at each point pk = γ(sk ) the outer normal vector was
computed

nk =
Nγ ′(sk )

‖γ ′(sk )‖ , N =

[

0 −1
1 0

]

which indicated the direction of movement for this point. Finally,
the ”bump” function was defined

bk(s) = exp
[

−
(dist(s, sk )

d0

)2]
,
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where

dist(s, sk ) = min[|s − sk |,L − |s − sk |]

is the minimal distance from s to sk (remember that γ is closed)
and d0 represents the width of the ”bump”. Using this function
and taking h(pj) = bk(sj )nj , j = 1, . . . ,K one can compute the
corresponding Tk = T(h) and Dk .
Having D := Dk it was possible to solve the non linear system
and obtain the shape derivative. This procedure had to be
repeated K times, for each vertex on ∂S.
After performing small movements of boundary points along nk

it has been observed that in the regions of bigger curvature the
points pk tended to converge to each other, causing even the
overlap of triangles after several iteration steps. To remedy this
behavior the following procedure was used after each step.
Taking new positions of points p′

k as nodes the new spline
γ1(s) was computed, γ1(s

′
k ) = p′

k . Then the parameters s′
k

were slightly shifted, so that the distances between neighboring
points along γ1 were equal on all the new boundary, i.e. the
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new nodes were uniformly distributed. This prevented spoiling
the quality of triangulation.
In numerical computations we considered the problem of drag
minimization and, for illustration purposes only, drag
maximization. We describe briefly the numerical results given
in Figures 2-6. The results are only preliminary, since they are
obtained with few steps of the simple gradient method, with the
shape gradient numerically evaluated. Triangulation and
computational domain is shown in Fig.1. The flow is from the
left, Reynolds number is R = 0.01, viscosity ratio λ = 100, the
flow velocity is U1 = 1,U2 = 0 on outer boundary. The
coefficient in gas law is γ = 5/3. In order to prevent moving the
obstacle toward the boundary of the computational region, it is
assumed that its gravity center is fixed at the origin. The total
volume of the obstacle is kept constant.
The optimized shapes after few iterations are shown. The
computations in case of drag minimization seem to converge to
some shape, in case of drag maximization the situation is
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different, because the optimal shape cannot exist. The results
shown are raw, in the sense that there was no attempt to exploit
the symmetry of the problem. In view of this remark they look
satisfactory.
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Figure: Initial flow u and pressure p.
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Figure: Shape of minimal drag for rough (dashed line) and finer
discretizations. On the left history of optimization.
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Figure: Pressure distribution around shapes of minimal drag.
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Conclusions

The drag functional for compressible Navier Stokes equations
is shape differentiable. Therefore, the numerical methods of
shape optimization can be applied in order to solve such
optimal design problems like minimization of the drag and/or
maximization of the lift.
The same result can be obtained for the complete system with
the equation for the temperature, this is the subject of the
current studies since even the existence of the solutions is an
open problem.
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Conclusions

Shape optimization problem for inhomogeneous non
stationary compressible Navier-Stokes equations is well
posed.

Shape gradient of the work functional to be constructed.

Complete model including the energy balance is still to be
investigated for shape optimization.

P.I. Plotnikov, J. Sokolowski Compressible Navier-Stokes


