A mathematical point of view in Electrowetting

Claire Scheid

In collaboration with

Patrick Witomski (LJK, Grenoble, France) and Patrick Ciarlet Jr. (ENSTA, Paris, France).

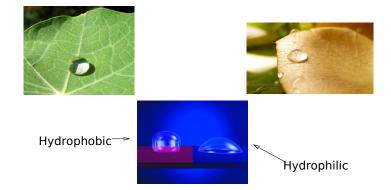
6th singular days

30 April 2010

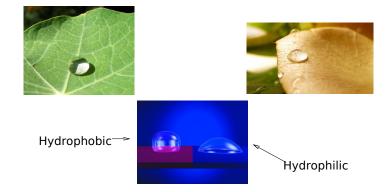
(日) (同) (日) (日)

Electrowetting

Wetting?



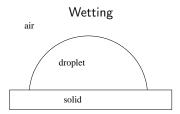
Wetting?

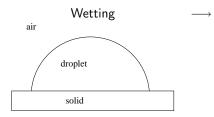


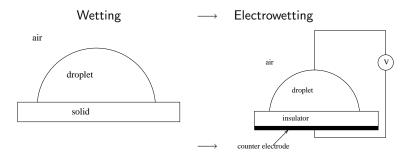
How to control wetting?

()	laire	Sch	neid i	AD)	

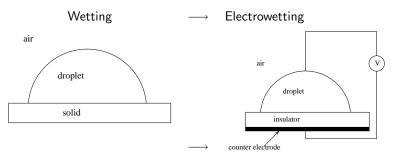
A mathematical point of view in Electrowetting



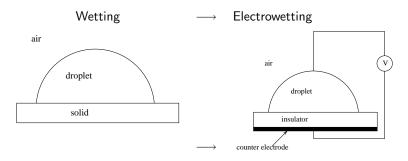




イロン イ団ン イヨン イヨン



Modify the affinity between solid and liquid



 \rightarrow Due to Bruno Berge : 1993

Many applications :

• Variable focal liquid lenses

Claire Scheid (LJAD)

A mathematical point of view in Electrowetting

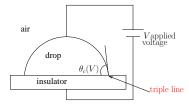
30 April 2010 4 / 22

Outline

Introduction

- 2 Modelling Electrowetting
- 3 Numerical results in the axisymmetric case
 - 4 Numerical study of the 3D case
 - Stakes
 - Numerical approximation
- Conclusion and further works

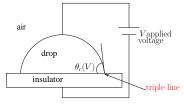
Observations and approximations



 $\theta_c(V)$ contact angle at a given potential V

Claire Scheid (LJAD)

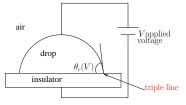
Observations and approximations



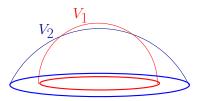
 $\theta_c(V)$ contact angle at a given potential V

• At
$$V = 0$$
 Volt, $\theta_c = \theta_Y$ Young's angle: $\sigma_{LG} \cos(\theta_Y) = \sigma_{GS} - \sigma_{LS}$

Observations and approximations

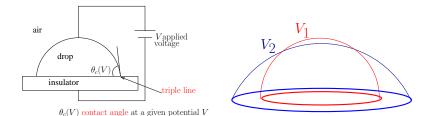


 $\theta_c(V)$ contact angle at a given potential V



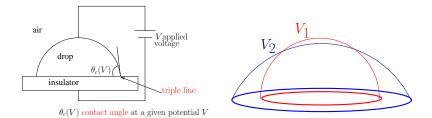
• At
$$V = 0$$
 Volt, $\theta_c = \theta_Y$ Young's angle: $\sigma_{LG} \cos(\theta_Y) = \sigma_{GS} - \sigma_{LS}$

Observations and approximations



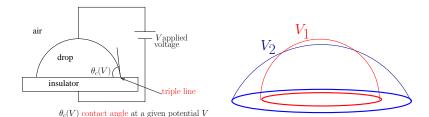
- At V = 0 Volt, $\theta_c = \theta_Y$ Young's angle: $\sigma_{LG} \cos(\theta_Y) = \sigma_{GS} \sigma_{LS}$
- Plane capacitor approximation: $\cos(\theta_c(V)) = \cos(\theta_Y) + CV^2$, C > 0

Observations and approximations



- At V = 0 Volt, $\theta_c = \theta_Y$ Young's angle: $\sigma_{LG} \cos(\theta_Y) = \sigma_{GS} \sigma_{LS}$
- Plane capacitor approximation: $\cos(\theta_c(V)) = \cos(\theta_Y) + CV^2$, C > 0
- But a saturation phenomenon is observed.

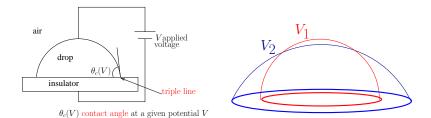
Observations and approximations



- At V = 0 Volt, $\theta_c = \theta_Y$ Young's angle: $\sigma_{LG} \cos(\theta_Y) = \sigma_{GS} \sigma_{LS}$
- Plane capacitor approximation: $\cos(\theta_c(V)) = \cos(\theta_Y) + CV^2$, C > 0
- But a saturation phenomenon is observed.
 - No clear explanations
 - Physical predictions $\theta_c = \theta_Y$ for all V!

イロン イ団ン イヨン イヨン

Observations and approximations



- At V = 0 Volt, $\theta_c = \theta_Y$ Young's angle: $\sigma_{LG} \cos(\theta_Y) = \sigma_{GS} \sigma_{LS}$
- Plane capacitor approximation: $\cos(\theta_c(V)) = \cos(\theta_Y) + CV^2$, C > 0
- But a saturation phenomenon is observed.
 - No clear explanations
 - Physical predictions $\theta_c = \theta_Y$ for all V!

What can we add as mathematicians?

Outline

Introduction

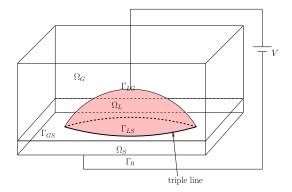
2 Modelling Electrowetting

Numerical results in the axisymmetric case

Numerical study of the 3D case

- Stakes
- Numerical approximation

Notations



 $\Omega = \Omega_{G} \cup \Omega_{S} \cup \Gamma_{GS}, \text{ (white domain)}$

Claire Scheid (LJAD)

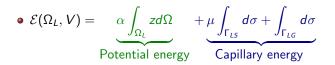
イロン イロン イヨン イヨン

• $\mathcal{E}(\Omega_L, V) =$

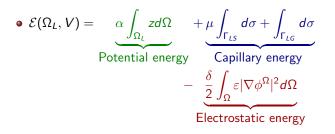
イロン イ団ン イヨン イヨン

• $\mathcal{E}(\Omega_L, V) = \alpha \int_{\Omega_L} z d\Omega$ Potential energy

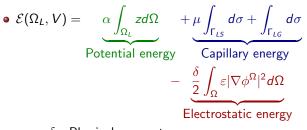
イロン イ団ン イヨン イヨン



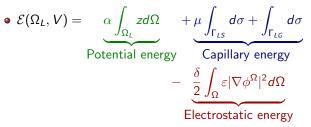
<ロト <回ト < 三ト < 三ト = 三



イロン イ団ン イヨン イヨン



• α , μ , δ : Physical parameters ε : permittivity ($\varepsilon = \varepsilon_G$ in Ω_G , $\varepsilon = \varepsilon_S$ in Ω_S)



- α , μ , δ : Physical parameters ε : permittivity ($\varepsilon = \varepsilon_G$ in Ω_G , $\varepsilon = \varepsilon_S$ in Ω_S)
- J(Ω) := E(Ω_L, V) = J_{grav}(Ω) + J_{LS}(Ω) + J_{LG}(Ω) + J_{elec}(Ω) cost function of the problem.

イロン イ団と イヨン イヨン

The potential: transmission problem

$$\begin{cases} \operatorname{div}(\varepsilon_i \nabla \phi^{\Omega}) = 0 & \text{ in } \Omega_i \quad i = G, S \\ \phi^{\Omega} = V & \text{ on } \Gamma_{LG} \cup \Gamma_{LS} \\ \phi^{\Omega} = 0 & \text{ on } \Gamma_0 \\ \phi^{\Omega}_G = \phi^{\Omega}_S & \text{ on } \Gamma_{GS} \\ \varepsilon_G \nabla \phi^{\Omega}_G . \overrightarrow{N_G} = -\varepsilon_S \nabla \phi^{\Omega}_S . \overrightarrow{N_S} & \text{ on } \Gamma_{GS} \\ \varepsilon_i \nabla \phi^{\Omega}_i . \overrightarrow{N_i} = 0 & i = G, S \text{ on artificial boundaries} \end{cases}$$

• ϕ^{Ω} depends on Ω .

• Ω has a reentrant corner due to the triple line \Rightarrow Loss of regularity

Optimal shape

To $V \ge 0$ and a given volume *vol*,

$$(P) \begin{cases} \text{Find } \Omega_L^* \text{ such that:} \\ \mathcal{E}(\Omega_L^*, V) = \min_{\{\Omega_L; \text{Vol}(\Omega_L) = vol\}} \mathcal{E}(\Omega_L, V) \end{cases}$$

- Optimization under constraint treated by a Lagrangian $\mathcal{L}(\Omega, \lambda) = J(\Omega) \lambda C(\Omega)$, where $C(\Omega) = Vol(\Omega_L) vol$, $\lambda \in \mathbb{R}$.
- Shape optimization gives a necessary condition for optimality:

$$\forall U \in \mathcal{U} \subset \mathcal{C}^{1}(\Omega^{*}, \mathbb{R}^{3}), DJ(\Omega^{*}).U = \lambda^{*} DC(\Omega^{*}).U$$

if Ω^* saddle point and where $DJ(\Omega^*)$ is the shape derivative of J in Ω^* .

• Using the expression of the singularity at the triple line one obtains

The contact angle θ_c is independent of the applied potential $V \ge 0$ i.e.

$$\theta_c(V) = \theta_Y, \, \forall V \ge 0$$

Outline

- Introduction
- 2 Modelling Electrowetting

3 Numerical results in the axisymmetric case

- Numerical study of the 3D case
 - Stakes
 - Numerical approximation

Numerical approximation : axisymmetric case

V and physical constants are given.

Computation of the numerical shape, curvature and contact angle of the saddle point.

Difficulties arise at the triple point

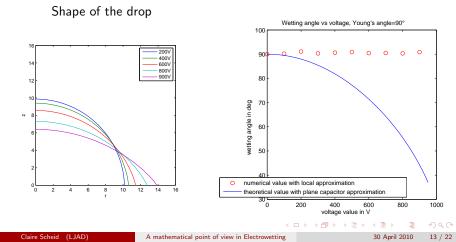
- Need to adopt a microscopic view of the model at the triple point:
 → "Macro-Micro" coupling model.
- Need to compute accurately the potential close to the triple point:
 - \rightarrow Use of the Singular Complement Method (Ciarlet Jr. and al).

Numerical approximation : axisymmetric case

V and physical constants are given.

Computation of the numerical shape, curvature and contact angle of the saddle point.

Contact angle



Outline

- Introduction
- 2 Modelling Electrowetting
- Numerical results in the axisymmetric case
- Numerical study of the 3D case
 Stakes
 - Numerical approximation

3D case: stakes

- Need of a good approximation of the electrostatic field and of its trace on the boundary of the drop
- Singular Complement Method less efficient in 3D than in 2D.

Method:

- Computation of the field, instead of the potential.
- Weighted weak formulation on the divergence of the field in order to solve the problem induced by the singularity (M. Costabel, M. Dauge, Numer. Math. 2002; P. Ciarlet Jr. et al., M2AN).

Point of view adopted:

Numerical Analysis instead of computations.

Outline

- Introduction
- 2 Modelling Electrowetting
- 3 Numerical results in the axisymmetric case
- Numerical study of the 3D case
 Stakes
 - Numerical approximation
- 5 Conclusion and further works

Field formulation and space considered

The field E^{Ω} is solution of:

$$\begin{cases} \operatorname{curl} E_i^{\Omega} = 0 & \text{in } \Omega_i \quad i = G, S \\ \operatorname{div}(\varepsilon_i E_i^{\Omega}) = 0 & \text{in } \Omega_i \quad i = G, S \\ E_i^{\Omega} \times n = 0 & \text{on } \Gamma_{LG} \cup \Gamma_{LS} \cup \Gamma_0 \\ \varepsilon_G E_G^{\Omega} \cdot n = \varepsilon_S E_S^{\Omega} \cdot n &, \quad E_G^{\Omega} \times n = E_S^{\Omega} \times n \text{ on } \Gamma_{GS} \\ \varepsilon E^{\Omega} \cdot n = 0 & \text{on the artificial boundaries} \end{cases}$$

• Space considered: For $\alpha \in]0,1[$,

$$\mathcal{X}_{\alpha}:=\left\{\mathcal{F}\in H(\mathsf{curl},\Omega)|_{\textit{W}_{\alpha}}\mathsf{div}\varepsilon\mathcal{F}\in L^{2}(\Omega),\quad \mathcal{F}\times\textit{n}_{/\Gamma_{0}\cup\Gamma_{L}}=0,\quad \varepsilon\mathcal{F}.\textit{n}_{/\Gamma_{ext}}=0\right\}$$

where $w_{\alpha}(.) \approx dist(., triple ligne)^{\alpha}$.

• The boundary of Ω has two connected components. For $\alpha \in]0,1[$,

$$\|\mathcal{F}\|_{\mathcal{X}_{\alpha}} := (\|\mathsf{curl}\mathcal{F}\|_{L^{2}}^{2} + \|w_{\alpha}\mathsf{div}(\varepsilon\mathcal{F})\|_{L^{2}}^{2} + |\int_{\Gamma_{0}} \varepsilon\mathcal{F}\cdot n|^{2})^{\frac{1}{2}}$$

is an equivalent norm to the graph norm.

• *E*^Ω is completely caracterized if one adds the equation:

$$\int_{\Gamma_0} \varepsilon E^{\Omega} \cdot \textit{nd}\Gamma = -\mathbb{C}V$$

where $\mathbb{C}=\int_\Omega \varepsilon \nabla \chi_0^\Omega \cdot \nabla \chi_0^\Omega d\Omega$ is the capacitance matrix, with

 $\left\{ \begin{array}{ll} \operatorname{div}(\varepsilon \nabla \chi_0^\Omega) = 0 & \text{ in } \Omega_i \quad i = G, S \\ \chi_0^\Omega = 0 & \text{ on } \Gamma_{LG} \cup \Gamma_{LS} \\ \chi_0^\Omega = 1 & \text{ on } \Gamma_0 \\ + \text{Transmission conditions} \end{array} \right.$

Denote

$$\mathcal{PH}^1(\Omega) := \left\{ v \in L^2(\Omega) | v \in \mathcal{H}^1(\Omega_G) \text{ and } v \in \mathcal{H}^1(\Omega_S)
ight\}$$

There exists $\alpha_{min} \in]0, 1[$ such that

 $\mathcal{X}_{\alpha} \cap (\mathcal{PH}^{1}(\Omega))^{3}$ is dense in \mathcal{X}_{α} for all $\alpha \in]\alpha_{\min}, 1[$

 \Rightarrow Approximation by Lagrange Finite Elements envisageable.

イロト 不得下 イヨト イヨト 二日

Weak formulation and numerical approximation

Continuous weak formulation

$$\mathsf{a}(\mathsf{E}^\Omega,\mathcal{F})=\mathit{l}(\mathcal{F}), \hspace{1em} orall \mathcal{F}\in\mathcal{X}_lpha$$

$$a(\mathcal{E},\mathcal{F}) := \int_{\Omega} \operatorname{curl} \mathcal{E} \cdot \operatorname{curl} \mathcal{F} d\Omega + \sum_{i=G,S} \varepsilon_i^{-2} \int_{\Omega_i} w_{\alpha} \operatorname{div}(\varepsilon \mathcal{E}) w_{\alpha} \operatorname{div}(\varepsilon \mathcal{F}) d\Omega + \varepsilon_S^{-2} \int_{\Gamma_0} \varepsilon \mathcal{E} \cdot n \int_{\Gamma_0} \varepsilon \mathcal{F} \cdot n \quad (1)$$

and $I(\mathcal{F}) = -\mathbb{C}V \int_{\Gamma_0} \varepsilon \mathcal{F} \cdot n.$

イロン イ団ン イヨン イヨン

Weak formulation and numerical approximation

Continuous weak formulation

$$\mathsf{a}(\mathsf{E}^\Omega,\mathcal{F})=\mathsf{I}(\mathcal{F}),\quad orall\mathcal{F}\in\mathcal{X}_lpha$$

$$a(\mathcal{E},\mathcal{F}) := \int_{\Omega} \operatorname{curl} \mathcal{E} \cdot \operatorname{curl} \mathcal{F} d\Omega + \sum_{i=G,S} \varepsilon_i^{-2} \int_{\Omega_i} w_{\alpha} \operatorname{div}(\varepsilon \mathcal{E}) w_{\alpha} \operatorname{div}(\varepsilon \mathcal{F}) d\Omega + \varepsilon_S^{-2} \int_{\Gamma_0} \varepsilon \mathcal{E} \cdot n \int_{\Gamma_0} \varepsilon \mathcal{F} \cdot n \quad (1)$$

and $I(\mathcal{F}) = -\mathbb{C}V \int_{\Gamma_0} \varepsilon \mathcal{F} \cdot \mathbf{n}.$

Approximation

 $\begin{aligned} \mathcal{T}_h \text{ family of meshes of } \Omega. \\ E_h^{\Omega} \in \mathcal{X}_{h,k} := \left\{ \mathcal{F}_h \in \mathcal{X}_{\alpha} \cap (\mathcal{PH}^1(\Omega))^3 | (\mathcal{F}_h)_{\mathcal{K}_l} \in (\mathbb{P}_k(\mathcal{K}_l))^3, \quad \forall \mathcal{K}_l \in \mathcal{T}_h \right\} \text{ solution of } \end{aligned}$

$$a(E_h^\Omega,\mathcal{F}_h)=I_h(\mathcal{F}_h),\quad orall\mathcal{F}_h\in\mathcal{X}_{h,k}$$

where I_h is an approximation of I.

Claire Scheid (LJAD)

イロト 不得下 イヨト イヨト

• In our particular case, we know the value of α_{\min} :

$$\alpha_{\min} = 1 - \min \nu_Y(s),$$

and $\nu_Y(s)$ is the unique solution in]0,1[of the equation:

$$\varepsilon_{S} \tan(\nu_{Y}(s)(\pi - \theta_{Y}(s))) = -\varepsilon_{G} \tan(\nu_{Y}(s)\pi).$$

• Error estimation obtained:

$$\forall \eta > 0, \quad \exists C_{\eta}, \quad \| E^{\Omega} - E_{h}^{\Omega} \|_{\mathcal{X}_{\alpha}} \leq C_{\eta} h^{\alpha - \alpha_{\min} - \eta}$$

• Normal trace defined in $H^{-\frac{1}{2}}(\partial \Omega)$ and:

$$\forall \eta > 0, \quad \exists C_{\eta}, \quad \left\| \varepsilon E^{\Omega} \cdot n - \varepsilon E_{h}^{\Omega} \cdot n \right\|_{H^{-\frac{1}{2}}(\partial \Omega)} \leq C_{\eta} h^{\alpha - \alpha_{\min} - \eta}$$

Outline

- Introduction
- 2 Modelling Electrowetting
- 3 Numerical results in the axisymmetric case
- 4 Numerical study of the 3D case
 - Stakes
 - Numerical approximation

Conclusions

- Modelling of Electrowetting phenomena
- Numerical simulation in the axisymmetric case.
- Numerical Analysis in 3D.

Taking into account the singularity is essential!!

Further works

- Saturation of the contact angle: Something is missing in the model! Corona discharge phenomenon.
- Non static case: Singularity to be taken into account.
- Existence of the optimal shape...
- Computations in the 3D case.