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What is Electrowetting?

Wetting

−→ Electrowetting

air

droplet

solid

−→

Modify the affinity between solid and liquid

→ Due to Bruno Berge : 1993
Many applications :

Variable focal liquid lenses

Microfluidics

Claire Scheid (LJAD) A mathematical point of view in Electrowetting 30 April 2010 4 / 22



What is Electrowetting?

Wetting −→

Electrowetting

air

droplet

solid

−→

Modify the affinity between solid and liquid

→ Due to Bruno Berge : 1993
Many applications :

Variable focal liquid lenses

Microfluidics

Claire Scheid (LJAD) A mathematical point of view in Electrowetting 30 April 2010 4 / 22



What is Electrowetting?

Wetting −→ Electrowetting

air

droplet

solid

−→

air

insulator

droplet

V

counter electrode

Modify the affinity between solid and liquid

→ Due to Bruno Berge : 1993
Many applications :

Variable focal liquid lenses

Microfluidics

Claire Scheid (LJAD) A mathematical point of view in Electrowetting 30 April 2010 4 / 22



What is Electrowetting?

Wetting −→ Electrowetting

air

droplet

solid

−→

air

insulator

droplet

V

counter electrode

Modify the affinity between solid and liquid

→ Due to Bruno Berge : 1993
Many applications :

Variable focal liquid lenses

Microfluidics

Claire Scheid (LJAD) A mathematical point of view in Electrowetting 30 April 2010 4 / 22



What is Electrowetting?

Wetting −→ Electrowetting

air

droplet

solid

−→

air

insulator

droplet

V

counter electrode

Modify the affinity between solid and liquid

→ Due to Bruno Berge : 1993
Many applications :

Variable focal liquid lenses

Microfluidics

Claire Scheid (LJAD) A mathematical point of view in Electrowetting 30 April 2010 4 / 22



Outline

1 Introduction

2 Modelling Electrowetting

3 Numerical results in the axisymmetric case

4 Numerical study of the 3D case
Stakes
Numerical approximation

5 Conclusion and further works

Claire Scheid (LJAD) A mathematical point of view in Electrowetting 30 April 2010 5 / 22



Introduction

Observations and approximations

air

insulator

drop

V applied
voltage

θc(V )

triple line

θc(V ) contact angle at a given potential V

At V = 0 Volt, θc = θY Young’s angle: σLG cos(θY ) = σGS − σLS

Plane capacitor approximation: cos(θc(V )) = cos(θY ) + CV 2, C > 0

But a saturation phenomenon is observed.

No clear explanations
Physical predictions θc = θY for all V !

What can we add as mathematicians?
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Modelling Electrowetting

Notations

ΩL

ΓLSΓGS

ΩS

ΩG

ΓLG

Γ0

triple line

V

Ω = ΩG ∪ ΩS ∪ ΓGS , (white domain)
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Modelling Electrowetting

The energy of the drop

E(ΩL,V ) =

α

∫
ΩL

zdΩ︸ ︷︷ ︸
Potential energy

+µ

∫
ΓLS

dσ +

∫
ΓLG

dσ︸ ︷︷ ︸
Capillary energy

− δ

2

∫
Ω

ε|∇φΩ|2dΩ︸ ︷︷ ︸
Electrostatic energy

α, µ, δ : Physical parameters
ε : permittivity (ε = εG in ΩG , ε = εS in ΩS)

J(Ω) := E(ΩL,V ) = Jgrav (Ω) + JLS(Ω) + JLG (Ω) + Jelec(Ω)
cost function of the problem.
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Modelling Electrowetting

The potential: transmission problem



div(εi∇φΩ) = 0 in Ωi i = G ,S
φΩ = V on ΓLG ∪ ΓLS

φΩ = 0 on Γ0

φΩ
G = φΩ

S on ΓGS

εG∇φΩ
G .
−→
NG = −εS∇φΩ

S .
−→
NS on ΓGS

εi∇φΩ
i .
−→
Ni = 0 i = G ,S on artificial boundaries

φΩ depends on Ω.

Ω has a reentrant corner due to the triple line ⇒ Loss of regularity
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Modelling Electrowetting

Optimal shape

To V ≥ 0 and a given volume vol ,

(P)

{
Find Ω∗L such that:
E(Ω∗L,V ) = min

{ΩL;Vol(ΩL)=vol}
E(ΩL,V )

Optimization under constraint treated by a Lagrangian
L(Ω, λ) = J(Ω)− λC (Ω), where C (Ω) = Vol(ΩL)− vol , λ ∈ R.

Shape optimization gives a necessary condition for optimality:

∀U ∈ U ⊂ C1(Ω∗,R3),DJ(Ω∗).U = λ∗DC (Ω∗).U

if Ω∗ saddle point and where DJ(Ω∗) is the shape derivative of J in Ω∗.

Using the expression of the singularity at the triple line one obtains

The contact angle θc is independent of the applied potential V ≥ 0 i.e.

θc(V ) = θY , ∀V ≥ 0
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Numerical results in the axisymmetric case
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Numerical results in the axisymmetric case

Numerical approximation : axisymmetric case

V and physical constants are given.
Computation of the numerical shape, curvature and contact angle of the saddle
point.

Difficulties arise at the triple point

Need to adopt a microscopic view of the model at the triple point:
→ ”Macro-Micro” coupling model.

Need to compute accurately the potential close to the triple point:
→ Use of the Singular Complement Method (Ciarlet Jr. and al).
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Numerical study of the 3D case Stakes

3D case: stakes

Need of a good approximation of the electrostatic field
and of its trace on the boundary of the drop

Singular Complement Method less efficient in 3D than in 2D.

Method:

Computation of the field, instead of the potential.

Weighted weak formulation on the divergence of the field in order to solve
the problem induced by the singularity (M. Costabel, M. Dauge, Numer.
Math. 2002; P. Ciarlet Jr. et al., M2AN).

Point of view adopted:

Numerical Analysis instead of computations.
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Numerical study of the 3D case Numerical approximation

Field formulation and space considered

The field EΩ is solution of:
curlEΩ

i = 0 in Ωi i = G ,S
div(εiE

Ω
i ) = 0 in Ωi i = G ,S

EΩ
i × n = 0 on ΓLG ∪ ΓLS ∪ Γ0

εGEΩ
G · n = εSEΩ

S · n , EΩ
G × n = EΩ

S × n on ΓGS

εEΩ · n = 0 on the artificial boundaries

Space considered: For α ∈]0, 1[,

Xα :=
{
F ∈ H(curl,Ω)|wαdivεF ∈ L2(Ω), F × n/Γ0∪ΓL

= 0, εF .n/Γext
= 0
}

where wα(.) ≈ dist(., triple ligne)α.

The boundary of Ω has two connected components.
For α ∈]0, 1[,

‖F‖Xα
:= (‖curlF‖2

L2 + ‖wαdiv(εF)‖2
L2 + |

∫
Γ0

εF · n|2)
1
2

is an equivalent norm to the graph norm.
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Numerical study of the 3D case Numerical approximation

EΩ is completely caracterized if one adds the equation:∫
Γ0

εEΩ · ndΓ = −CV

where C =
∫

Ω
ε∇χΩ

0 · ∇χΩ
0 dΩ is the capacitance matrix, with

div(ε∇χΩ
0 ) = 0 in Ωi i = G ,S

χΩ
0 = 0 on ΓLG ∪ ΓLS

χΩ
0 = 1 on Γ0

+Transmission conditions

Denote

PH1(Ω) :=
{
v ∈ L2(Ω)|v ∈ H1(ΩG ) and v ∈ H1(ΩS)

}
There exists αmin ∈]0, 1[ such that

Xα ∩ (PH1(Ω))3 is dense in Xα for all α ∈]αmin, 1[

⇒ Approximation by Lagrange Finite Elements envisageable.
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Numerical study of the 3D case Numerical approximation

Weak formulation and numerical approximation

Continuous weak formulation

a(EΩ,F) = l(F), ∀F ∈ Xα

a(E ,F) :=

∫
Ω

curlE · curlFdΩ +
∑

i=G ,S

ε−2
i

∫
Ωi

wαdiv(εE)wαdiv(εF)dΩ

+ ε−2
S

∫
Γ0

εE · n
∫

Γ0

εF · n (1)

and l(F) = −CV
∫

Γ0
εF · n.

Approximation

Th family of meshes of Ω.
EΩ

h ∈ Xh,k :=
{
Fh ∈ Xα ∩ (PH1(Ω))3|(Fh)Kl

∈ (Pk(Kl))3, ∀Kl ∈ Th
}

solution
of

a(EΩ
h ,Fh) = lh(Fh), ∀Fh ∈ Xh,k

where lh is an approximation of l .
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Numerical study of the 3D case Numerical approximation

In our particular case, we know the value of αmin :

αmin = 1−min νY (s),

and νY (s) is the unique solution in ]0, 1[ of the equation:

εS tan(νY (s)(π − θY (s))) = −εG tan(νY (s)π).

Error estimation obtained:

∀η > 0, ∃Cη, ‖EΩ − EΩ
h ‖Xα ≤ Cηh

α−αmin−η

Normal trace defined in H−
1
2 (∂Ω) and:

∀η > 0, ∃Cη, ‖εEΩ · n − εEΩ
h · n‖H− 1

2 (∂Ω)
≤ Cηh

α−αmin−η
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Conclusion and further works

Conclusions

Modelling of Electrowetting phenomena

Numerical simulation in the axisymmetric case.

Numerical Analysis in 3D.

Taking into account the singularity is essential!!

Further works

Saturation of the contact angle: Something is missing in the model!
Corona discharge phenomenon.

Non static case: Singularity to be taken into account.

Existence of the optimal shape...

Computations in the 3D case.

Claire Scheid (LJAD) A mathematical point of view in Electrowetting 30 April 2010 22 / 22


	Introduction
	Modelling Electrowetting
	Numerical results in the axisymmetric case
	Numerical study of the 3D case
	Stakes
	Numerical approximation

	Conclusion and further works

