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The cracked elastic domains
The propagation of straight cracks by the influence of elastic waves
will be considered as a moving boundary value problem:
Reference config. Ω0 = Ω�σ0 −→ Current config. Ωt = Ω�σt ,
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The cracked elastic domains
The propagation of straight cracks by the influence of elastic waves
will be considered as a moving boundary value problem:
Reference config. Ω0 = Ω�σ0 −→ Current config. Ωt = Ω�σt ,
where the motion of Ω0 to Ωt is given by a family of mappings

y = Ft(x) = x + h(t) θ(x), x ∈ Ω0, y ∈ Ωt .

with unknown crack tip motion h(t), θ = η(r)(1, 0)⊤.
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The system of equations in the current configuration

(λ+ µ)∇(∇ · ~u) + µ∇2~u + ρ~f = ρ~utt in Q :=
T
⋃

t=0
Ωt ,

σ~n = 0 on
T
⋃

t=0
σt ,

σ~n = ρ~q on ΣN := ΓN × (0,T ),

~u(t, y) = 0 on ΣD := ΓD × (0,T ),

~u(0, y) = ~u0, ∂t~u(0, y) = ~u1 in Ω0.
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(λ+ µ)∇(∇ · ~u) + µ∇2~u + ρ~f = ρ~utt in Q :=
T
⋃

t=0
Ωt ,

σ~n = 0 on
T
⋃

t=0
σt ,

σ~n = ρ~q on ΣN := ΓN × (0,T ),

~u(t, y) = 0 on ΣD := ΓD × (0,T ),

~u(0, y) = ~u0, ∂t~u(0, y) = ~u1 in Ω0.

(c2
1 − c2

2 )∇(∇ · ~u) + c2
2∇

2~u − ~̈u = ~f Navier Lamé equations

c2
1 = (λ+2µ)

ρ
= longitudinal or dilatational wave propagation speed,

c2
2 = µ

ρ
= shear or rotational wave propagation speed.
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Energy balance law
Assume that for every time t the rate of total energy Π̂ is given by
the rates of the dissipative energy D, the elastic energy E , the
kinetic energy K and the external energy Â for the wave
displacement u, satisfying the above system:

0 = Π̂(t) = Ḋ(t) + Ė (t) − Â (t) + K̇ (t)
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Energy balance law
Assume that for every time t the rate of total energy Π̂ is given by
the rates of the dissipative energy D, the elastic energy E , the
kinetic energy K and the external energy Â for the wave
displacement u, satisfying the above system:

0 = Π̂(t) = Ḋ(t) + Ė (t) − Â (t) + K̇ (t)

Ė (t) =
1

2

d

dt

∫

Ωt

σ(~u) : ǫ(~u) dy

Â(t) =
∫

Ωt

ρ~f · ~ut dy +
∫

ΓN

ρ~q · ~ut ds,

K̇ (t) = d
dt

∫

Ωt

1
2 ρ |~ut |

2 dy =⇒ Ḋ(t).

D = energy, spent for irreversible processes (plastic
deformations, voids, chemical reactions, noise,...)
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Griffith criterion

Dynamic energy release rate in the plane strain case:

G (h, h′) =

{

Ḋ(t)
h′(t) , if h′(t) 6= 0
1−ν
2µ

(k2
1 + k2

2 ), if h′(t) → 0.
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Griffith criterion

Dynamic energy release rate in the plane strain case:

G (h, h′) =

{

Ḋ(t)
h′(t) , if h′(t) 6= 0
1−ν
2µ

(k2
1 + k2

2 ), if h′(t) → 0.

Griffith criterion: Let the fracture toughness Γ(h, h′) be known by
experiments.

If G (h, h′) < Γ(h, h′) =⇒ no crack propagation.

If G (h, h′) = Γ(h, h′) =⇒ crack propagation,
additional equation for calculation of the unknown crack
position h(t) for a running crack.
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Challenges of the model

Characterize the behaviour of the wave fields near the running
crack tip (i.e. determine the dynamic crack singularities).
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Challenges of the model

Characterize the behaviour of the wave fields near the running
crack tip (i.e. determine the dynamic crack singularities).

Calculate the dynamic energy release rate in terms of dynamic
stress intensity factors.
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Challenges of the model

Characterize the behaviour of the wave fields near the running
crack tip (i.e. determine the dynamic crack singularities).

Calculate the dynamic energy release rate in terms of dynamic
stress intensity factors.

Solve the ordinary differential equation for h(t) given by the
Griffith criterion for the running crack.

Compute numerically the wave fields and the resulting motion
of the crack tip h(t) by an iterative scheme.

For the out-of-plane case (Mode III) see: S.Nicaise/S.
2007(JMAA), L./S./Sewell 2008(IntJFrac)
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Helmholtz’s decomposition
Following ideas of Lamé (1852), Papkovich (1932) and Neuber
(1986) we decompose the general Navier-Lamé equation system
into separate equations which relate to longitudinal waves and
transversal waves.
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Helmholtz’s decomposition
Following ideas of Lamé (1852), Papkovich (1932) and Neuber
(1986) we decompose the general Navier-Lamé equation system
into separate equations which relate to longitudinal waves and
transversal waves.

Theorem

Let ~u be a solution of the Navier-Lamé equation. Then there exists
scalar and vector potentials φ(dilatational part) and ~ψ (rotational
part) in the 3D-case such that:

~u = ∇φ+ ∇× ~ψ, ∇ · ~ψ = 0.
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Helmholtz’s decomposition
Following ideas of Lamé (1852), Papkovich (1932) and Neuber
(1986) we decompose the general Navier-Lamé equation system
into separate equations which relate to longitudinal waves and
transversal waves.

Theorem

Let ~u be a solution of the Navier-Lamé equation. Then there exists
scalar and vector potentials φ(dilatational part) and ~ψ (rotational
part) in the 3D-case such that:

~u = ∇φ+ ∇× ~ψ, ∇ · ~ψ = 0.

Also there exist a scalar function f and a vector function ~B, such
that the density vector of the volume forces
~f (y , t) = ~f = (f1, f2, f3)

T can be decomposed as:

~f = ∇f + ∇× ~B, ∇ · ~B = 0,
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Helmholtz’s decomposition

Corollary If ~f = ~0, then we get in the 2D case two uncoupled

scalar wave equations in Q :=
T
⋃

t=0
Ωt :

φ̈− c2
1∆φ = 0

ψ̈ − c2
2∆ψ = 0
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Helmholtz’s decomposition

Corollary If ~f = ~0, then we get in the 2D case two uncoupled

scalar wave equations in Q :=
T
⋃

t=0
Ωt :

φ̈− c2
1∆φ = 0

ψ̈ − c2
2∆ψ = 0

The plane strain wave-field is given by

u1 = ∂1Φ + ∂2Ψ,

u2 = ∂2Φ − ∂1Ψ.
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Transformations

Current configuration, y -coordinates, there we have the wave
equations for the potentials Φ and Ψ,
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Current configuration, y -coordinates, there we have the wave
equations for the potentials Φ and Ψ,

↓ y = Ft(x) = x + h(t) θ(x).

Reference configuration, x-coordinates, there we consider the
transformed wave equations with variable coefficients, the
corresponding space principal parts are anisotropic Laplacians

Adriana Lalegname, Anna-Margarete Sändig Wave-crack interaction in finite elastic bodies 10/24



The model Dynamic crack singularities Dynamic energy release rate The complete coupled problem Numerical results to a moving

Transformations

Current configuration, y -coordinates, there we have the wave
equations for the potentials Φ and Ψ,

↓ y = Ft(x) = x + h(t) θ(x).

Reference configuration, x-coordinates, there we consider the
transformed wave equations with variable coefficients, the
corresponding space principal parts are anisotropic Laplacians

↓ z
(i)
1 = x1, z

(i)
2 = d (i)(x , t) x2, i = 1, 2.
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Transformations

Current configuration, y -coordinates, there we have the wave
equations for the potentials Φ and Ψ,

↓ y = Ft(x) = x + h(t) θ(x).

Reference configuration, x-coordinates, there we consider the
transformed wave equations with variable coefficients, the
corresponding space principal parts are anisotropic Laplacians

↓ z
(i)
1 = x1, z

(i)
2 = d (i)(x , t) x2, i = 1, 2.

Two z (i)-configurations, z (i)-coordinates, the space principal parts
with frozen coefficients are Laplacians.
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Crack fields

In the z (i)-configurations we consider the following crack fields
with time depending coefficients

w
(i)
sing(z

(i), t) = A
(i)
0 (t)r

3
2

z (i) cos

(

3

2
ϕz (i)

)

+ B
(i)
0 (t)r

3
2

z (i) sin

(

3

2
ϕz (i)

)
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w
(i)
sing(z

(i), t) = A
(i)
0 (t)r

3
2

z (i) cos

(

3

2
ϕz (i)

)

+ B
(i)
0 (t)r

3
2

z (i) sin

(

3

2
ϕz (i)

)

back transformations to the x- and y -configurations of these
crack fields imply φsing and ψsing
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Crack fields

In the z (i)-configurations we consider the following crack fields
with time depending coefficients

w
(i)
sing(z

(i), t) = A
(i)
0 (t)r

3
2

z (i) cos

(

3

2
ϕz (i)

)

+ B
(i)
0 (t)r

3
2

z (i) sin

(

3

2
ϕz (i)

)

back transformations to the x- and y -configurations of these
crack fields imply φsing and ψsing

consider the components

u1,sing = ∂1φsing + ∂2ψsing,

u2,sing = ∂2φsing − ∂1ψsing.
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Crack fields

In the z (i)-configurations we consider the following crack fields
with time depending coefficients

w
(i)
sing(z

(i), t) = A
(i)
0 (t)r

3
2

z (i) cos

(

3

2
ϕz (i)

)

+ B
(i)
0 (t)r

3
2

z (i) sin

(

3

2
ϕz (i)

)

back transformations to the x- and y -configurations of these
crack fields imply φsing and ψsing

consider the components

u1,sing = ∂1φsing + ∂2ψsing,

u2,sing = ∂2φsing − ∂1ψsing.

regard the Neumann conditions on the crack face
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Crack fields

Finally we get under some assumptions

~u(~y , t) = ~ureg (~y , t)+k1(t, h, h
′)~u1,sing(~y , t)+k2(t, h, h

′)~u2,sing(~y , t),
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Crack fields

Finally we get under some assumptions

~u(~y , t) = ~ureg (~y , t)+k1(t, h, h
′)~u1,sing(~y , t)+k2(t, h, h

′)~u2,sing(~y , t),

~u1,sing =
(1 + α2(t)

2)

µDRa

(

s1
1 (R , ϑ, h, h′)

s2
1 (R , ϑ, h, h′)

)

~u2,sing = −
α2(t)

µDRa

(

s1
2 (R , ϑ, h, h′)

s2
2 (R , ϑ, h, h′)

)
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Crack fields

Finally we get under some assumptions

~u(~y , t) = ~ureg (~y , t)+k1(t, h, h
′)~u1,sing(~y , t)+k2(t, h, h

′)~u2,sing(~y , t),

~u1,sing =
(1 + α2(t)

2)

µDRa

(

s1
1 (R , ϑ, h, h′)

s2
1 (R , ϑ, h, h′)

)

~u2,sing = −
α2(t)

µDRa

(

s1
2 (R , ϑ, h, h′)

s2
2 (R , ϑ, h, h′)

)

(R , ϑ) are the current polar coordinates in the moving crack tip,

αi =

√

1 − h′(t)2

c2
i

.

The condition DRa := 4α1(t)α2(t) − (1 + α2(t)
2)2 6= 0 excludes

the Rayleigh velocity h′(t) = vRa and h′(t) = 0.
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Dynamical crack fields

First dynamic singular function with the two components:

s
1
1 (R, ϑ,h, h

′) =

v

u

u

t

q

(R cos ϑ − h)2 + α2
1(t)R

2 sin2 ϑ + (R cos ϑ − h)

(R cos ϑ − h)2 + α2
1(t)R

2 sin2 ϑ

−

2α1(t)α2(t)

(1 + α2(t)2)

v

u

u

t

q

(R cos ϑ − h)2 + α2
2(t)R

2 sin2 ϑ + (R cos ϑ − h)

(R cos ϑ − h)2 + α2
2(t)R

2 sin2 ϑ
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2 sin2 ϑ + (R cos ϑ − h)
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s
2
1 (R, ϑ, h, h

′) = −α1(t)

v

u

u

t

q

(R cos ϑ − h)2 + α2
1(t)R

2 sin2 ϑ − (R cos ϑ − h)

(R cos ϑ − h)2 + α2
1(t)R

2 sin2 ϑ

+
2α1(t)

(1 + α2(t)2)

v

u

u

t

q

(R cos ϑ − h)2 + α2
2(t)R

2 sin2 ϑ − (R cos ϑ − h)

(R cos ϑ − h)2 + α2
2(t)R

2 sin2 ϑ
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Energy balance law

For the running crack we have assumed an energy balance law:

Ḋ(t) = −Ė (t) + Â (t) − K̇ (t)
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Energy balance law

For the running crack we have assumed an energy balance law:

Ḋ(t) = −Ė (t) + Â (t) − K̇ (t)

Knowing the behaviour of the displacement fields near the running
crack we can express the rate of the dissipative energy through the
dynamic stress intensity factors.
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Energy balance law

For the running crack we have assumed an energy balance law:

Ḋ(t) = −Ė (t) + Â (t) − K̇ (t)

Knowing the behaviour of the displacement fields near the running
crack we can express the rate of the dissipative energy through the
dynamic stress intensity factors.

Theorem:

Ḋ(t) =
h′(t)

2µ

[

(

1 − α2(t)
2
) (

α1(t)k
2
1 (t, h, h′) + α2(t)k

2
2 (t, h, h′)

)

4α1(t)α2(t) − (1 + α2(t)2)
2

]

.
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Idea of the proof

Consider a family of annular domains cutting out the running
crack tip.

Ωt ∂Ωext
t

C+

C−

C δ
t

h(t)
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In the annular domain, marked by the index δ, there holds:

Âδ(t) − Ė δ(t) − K̇ δ(t) = −
1

2

∫

∂Ωδ
t

[

(

ρ |~ut |
2 + σ(~u) : ǫ(~u)

)∂y

∂t

]

· ~ny dsy

−

∫

Cδ
t

(

(λ+ µ)(∇ · ~u)~n + µ(∇~u)~n
)

· ∂t~u dsy .

Limit procedure δ → 0 yields the statement.
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Equation of motion for the running crack tip

If the crack growth resistance Γ(h, h′) is known by experiments,
then we get the ordinary differential equation for h(t):

Γ(h, h
′) =

Ḋ(t)

h′(t)
=

1

2µ

"

`

1 − α2(t)
2

´ `

α1(t)k
2
1 (t, h, h′) + α2(t)k

2
2 (t, h, h′)

´

4α1(t)α2(t) − (1 + α2(t)2)2

#

,
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Equation of motion for the running crack tip

If the crack growth resistance Γ(h, h′) is known by experiments,
then we get the ordinary differential equation for h(t):

Γ(h, h
′) =

Ḋ(t)

h′(t)
=

1

2µ

"

`

1 − α2(t)
2

´ `

α1(t)k
2
1 (t, h, h′) + α2(t)k

2
2 (t, h, h′)

´

4α1(t)α2(t) − (1 + α2(t)2)2

#

,

where the dynamical stress intensity factors can be extracted

lim
R(t)−h(t)→0

µDRa

√

2π(R(t) − h(t))

1 + α2(t)2 − 2α1(t)α2(t)
∂1u1(y , t)|y2=0 = k1(t, h, h

′),
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Equation of motion for the running crack tip

If the crack growth resistance Γ(h, h′) is known by experiments,
then we get the ordinary differential equation for h(t):

Γ(h, h
′) =

Ḋ(t)

h′(t)
=

1

2µ

"

`

1 − α2(t)
2

´ `

α1(t)k
2
1 (t, h, h′) + α2(t)k

2
2 (t, h, h′)

´

4α1(t)α2(t) − (1 + α2(t)2)2

#

,

where the dynamical stress intensity factors can be extracted

lim
R(t)−h(t)→0

µDRa

√

2π(R(t) − h(t))

1 + α2(t)2 − 2α1(t)α2(t)
∂1u1(y , t)|y2=0 = k1(t, h, h

′),

lim
R(t)−h(t)→0

µDRa

√

2π(R(t) − h(t))

2α1(t)α2(t) − (1 + α2(t)2)
∂1u2(y , t)|y2=0 = k2(t, h, h

′).
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Freund 1990 and other authors have proposed to consider a mode I
crack, what leads to the following problem:
Find h(t) such that

Γ(h, h′) =

(

1 −
h′(t)

vRa

)

(1 − ν2)

E
k2
1 static =

h′(t)2

2µ c2
2

α1(t) k2
1 (t, h, h′)

DRa

= G (h, h′)
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Freund 1990 and other authors have proposed to consider a mode I
crack, what leads to the following problem:
Find h(t) such that

Γ(h, h′) =

(

1 −
h′(t)

vRa

)

(1 − ν2)

E
k2
1 static =

h′(t)2

2µ c2
2

α1(t) k2
1 (t, h, h′)

DRa

= G (h, h′)

This equation will be used in our numerical experiments.

Adriana Lalegname, Anna-Margarete Sändig Wave-crack interaction in finite elastic bodies 18/24



The model Dynamic crack singularities Dynamic energy release rate The complete coupled problem Numerical results to a moving

The complete formulation for the dynamic coupled problem for
in-plane fracture case reads:

(λ + µ)∇(∇ · ~u) + µ∇2~u = ρ~utt in Q :=
T
S

t=0
Ωt ,

σ~n = 0 on
T
S

t=0
σt ,

σ~n = ρ~q on ΣN := ΓN × (0, T ),

~u(t, y) = 0 on ΣD := ΓD × (0, T ),

~u(0, y) = ~u0, ∂t~u(0, y) = ~u1 in Ω0.

9

>

>

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

>

>

;

8

>

>

>

<

>

>

>

:

Γ(h, h′) =
1

2µ

"

`

1 − α2(t)2
´ `

α1(t)k2
1 (t, h, h′) + α2(t)k2

2 (t, h, h′)
´

4 α1(t) α2(t) − (1 + α2(t)2)
2

#

,

h(0) = 0, k1(0, h, h′) = k1(0), k2(0, h, h′) = k2(0).

k1(t, h, h′) = lim
R(t)−h(t)→0

µ DRa

p

2 π (R(t) − h(t))

1 + α2(t)2 − 2 α1(t) α2(t)

du1(y , t)

dy1
|y2=0,

k2(t, h, h′) = lim
R(t)−h(t)→0

µ DRa

p

2 π (R(t) − h(t))

2 α1(t) α2(t) − (1 + α2(t)2)

du2(y , t)

dy1
|y2=0.
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Mode I crack propagation

zoom of the mesh-refinement
near the crack tip

square in (y1, y2) coordinates
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Mode I crack propagation

zoom of the mesh-refinement
near the crack tip

square in (y1, y2) coordinates

~u(y , t) = 0, at y1 = −1,

σ · ~n = 1000N/m2 on y2 = −1 and y2 = 1,

σ · ~n = 0on the crack, σ · ~n = 0on y1 = 1,
Note, that the crack is running from right with the starting
position h(0) = 0.9.
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Equation for the crack motion

Γ(h, h′) =

(

1 −
h′(t)

vRa

)

(1 − ν2)

E
k2
1 static = G (h, h′),

k1 static = 0.01Pa · m
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Equation for the crack motion

Γ(h, h′) =

(

1 −
h′(t)

vRa

)

(1 − ν2)

E
k2
1 static = G (h, h′),

k1 static = 0.01Pa · m

Initial conditions fot t = 0 with h(0) = 0.9, h′(0) = 0.5vRa:

~u(y , 0) = k1 static
(1 + α2(0)

2)

µDRa

(

s1
1 (R , ϑ, h, h′)

s2
1 (R , ϑ, h, h′)

)

∂t~u(y , 0) = 0.
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The iterative procedure

1 Set geometrical and input material properties data of the
problem, in particular, set ~f = ~0 and choose the timesteps.
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The iterative procedure

1 Set geometrical and input material properties data of the
problem, in particular, set ~f = ~0 and choose the timesteps.

2 Set initial and boundary conditions.
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The iterative procedure

1 Set geometrical and input material properties data of the
problem, in particular, set ~f = ~0 and choose the timesteps.

2 Set initial and boundary conditions.

3 Solve IBVP for the wave equation in the cracked domain with
given straight crack path h0 = h(0).
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The iterative procedure

1 Set geometrical and input material properties data of the
problem, in particular, set ~f = ~0 and choose the timesteps.

2 Set initial and boundary conditions.

3 Solve IBVP for the wave equation in the cracked domain with
given straight crack path h0 = h(0).

4 Extract k1(t, h, h
′) from the discrete FEM solution.
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The iterative procedure

1 Set geometrical and input material properties data of the
problem, in particular, set ~f = ~0 and choose the timesteps.

2 Set initial and boundary conditions.

3 Solve IBVP for the wave equation in the cracked domain with
given straight crack path h0 = h(0).

4 Extract k1(t, h, h
′) from the discrete FEM solution.

5 Compute h′(t1) and h(t1) using the dynamic fracture criterion.

6 Remesh with respect to the new crack tip position.
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The iterative procedure

1 Set geometrical and input material properties data of the
problem, in particular, set ~f = ~0 and choose the timesteps.

2 Set initial and boundary conditions.

3 Solve IBVP for the wave equation in the cracked domain with
given straight crack path h0 = h(0).

4 Extract k1(t, h, h
′) from the discrete FEM solution.

5 Compute h′(t1) and h(t1) using the dynamic fracture criterion.

6 Remesh with respect to the new crack tip position.

7 Interpolate previous mesh nodal data for finding corresponding
data of present mesh.

The FEM-package PDE2D (Sewell, Univ.Texas) was used.
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Numerical results

The relative stress intensity factor k̃1 = k1
k1 static

versus the time
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There is an oscillatory behaviour as the initial crack length
increases, but it tends to k1 static .
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FEM-solutions for the first component u1
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