

Weierstraß-Institut für Angew andte Analysis und Stochastik
Joachim Rehberg
Optimal elliptic regularity near 3-dimensional, heterogeneous Neumann vertices
In collaboration with R. Haller-Dintelmann, W. Höppner, H.-C. Kaiser, G. Ziegler

Leibniz
Gemeinschaft

1 Introduction

Let $\Pi \subseteq \mathbb{R}^{3}$ be a domain, whose closure $\bar{\Pi}$ is simultaneously a polyhedron and a manifold with boundary. For a bounded, measurable coefficient function $\mu: \Pi \rightarrow \mathbb{R}^{3 \times 3}$ we define the operator $-\nabla \cdot \mu \nabla: W^{1,2}(\Pi) \rightarrow\left(W^{1,2}(\Pi)\right)^{\prime}$ as usual by

$$
\begin{equation*}
\langle-\nabla \cdot \mu \nabla v, w\rangle:=\int_{\Omega} \mu \nabla v \cdot \nabla \bar{w} d \mathrm{x}, \quad v, w \in W^{1,2}(\Pi) \tag{1}
\end{equation*}
$$

in order to have (homogeneous) Neumann boundary conditions for the restriction of this operator to $L^{2}(\Pi)$.
THEOREM 1. There is a $p>3$, such that, for any $f \in\left(W^{1, p^{\prime}}(\Pi)\right)^{\prime}$, every solution v of $-\nabla \cdot \mu \nabla v=f$ is in $W^{1, p}$ locally around a vertex a of Π, provided the following assumptions hold true:

- μ is elliptic and takes symmetric matrices as values.
$\bullet \Pi=|K|$ for some finite, Euclidean complex K and μ is constant on the inner of every 3-cell belonging to K, i.e. μ is piecewise constant on a cellular subpartition of the polyhedron Π.
- Any edge from the boundary of Π that has one endpoint in a is a geometric edge or a bimaterial outer edge, such that both opening angles do not exceed π.

Abbildung 1:

- Every inner edge with endpoint a is well-behaved, i.e. the singularity exponent associated to this edge, is larger than $1 / 3$.

Strategy of proof

1) Deform a neighbourhood of a by a PL homeomorphism ϕ, such that $\phi(\mathrm{a})=0 \in \mathbb{R}^{3}$ and the corresponding boundary part becomes part of the $x-z$-plane
2) Diminish the neighbourhood such that the image under ϕ equals a suitable half cube and, additionally, the only occurring edges have either one of their endpoints in $0 \in \mathbb{R}^{3}$ or are situated on the boundary of the half cube
3) Reflect the problem across the $x-z$-plane and end up with a Dirichlet problem
4) Restrict the edge singularities and exploit a theorem on elliptic regularity in case of polyhedral Dirichlet problems

2 The PL flattening theorem

DEFINITION 2. Let K be a complex in \mathbb{R}^{d}. A continuous mapping f from $|K|$ onto a subset of \mathbb{R}^{m} is then called piecewise linear, if there is a subdivision K^{\prime} of K, such that the restricted function $\left.f\right|_{\sigma}$ is linear for every $\sigma \in K^{\prime}$.

DEFINITION 3. If v is a vertex of the Euclidean complex K, then we call the set of all cells from K which contain v , together with all their faces, the star around v within K.
LEMMA 4. Let K be a finite simplicial complex in \mathbb{R}^{3} whose polyhedron $|K|$ is a 3-dimensional manifold with boundary. Let $\mathrm{v} \in \partial|K|$ be any vertex of K. If we denote by K_{v}^{\star} the star around v within K, then the polyhedron $\left|K_{\mathrm{v}}^{\star}\right|$ is homeomorphic to the closed unit ball in \mathbb{R}^{3}. Moreover, the boundary of $\left|K_{\mathrm{v}}^{\star}\right|$ is topologically a 2 -sphere and, additionally, a polyhedron.

PROPOSITION 5. Let S be a polyhedron in \mathbb{R}^{3} which is topologically a 2-sphere, and let \mathcal{W} be a convex, open set containing S. Then there is a PL homeomorphism

$$
\phi_{S}: \mathbb{R}^{3} \leftrightarrow \mathbb{R}^{3}, \quad S \leftrightarrow \partial \sigma^{3},
$$

where σ^{3} is a tetrahedron, such that $\left.\phi_{S}\right|_{\mathbb{R}^{3} \backslash \mathcal{W}}$ is the identity.
According to Lemma 4, we may apply Proposition 5 to the polyhedron K_{a}^{\star}. Clearly, $\operatorname{Int}\left(K_{\mathrm{a}}^{\star}\right)$ is mapped onto $\operatorname{Int}\left(\sigma^{3}\right)$ and $\partial\left(K_{\mathrm{a}}^{\star}\right)$ is mapped onto $\partial \sigma^{3}$. Modulo another PL homeomorphism $\phi_{3}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ one may arrange that

- $\phi_{S}(\mathrm{a})=0$
- $\phi_{S}\left(\partial\left(K_{\mathrm{a}}^{\star}\right)\right)$ is an open neighbourhood of 0 in the plane $y=0$.
- $\phi_{S}\left(\operatorname{Int}\left(K_{\mathrm{a}}^{\star}\right)\right)$ is an open subset of $\{\mathrm{x}=(x, y, z): x, z \in \mathbb{R}, y>0\}$.

COROLLARY 6. Let $\Lambda \subset \mathbb{R}^{3}$ be a polyhedron, which is the closure of its interior Ω, and suppose that Λ is a 3-manifold with boundary. Then Ω is a Lipschitz domain, even more: the local bi-Lipschitz charts around boundary points may be chosen as PL homeomorphisms.

Consider now the image $\phi_{S}\left(K_{\mathrm{a}}^{\star}\right)$, which carries the Euclidean structure from the PL subdivision of K_{a}^{\star}. Denote the star around $\phi_{S}(\mathrm{a})$ within this complex by L. Finally, intersect this complex by a sufficiently small cube \mathcal{C}, such that all edges of $\mathcal{C} \cap L$ which intersect int K, have one endpoint in 0 .
Bild We reflect the problem now symmetrically at the plane $y=0$ and end up with a Dirichlet problem of the same type.

LEMMA 7.

$$
\begin{equation*}
-\nabla \cdot \hat{\mu} \nabla: W_{0}^{1, p}(\mathcal{C}) \rightarrow W^{-1, p}(\mathcal{C}) \tag{2}
\end{equation*}
$$

is a topological isomorphism for a $p>3$.

PROPOSITION 8. Let $\left\{\Omega_{k}\right\}_{k}$ be a polyhedral partition of Ω, such that the coefficient function μ is constant on the inner of each Ω_{k}. If for every such edge the associated singularity exponent is larger than $\frac{1}{3}$, then there is a $p>3$, such that

$$
\begin{equation*}
-\nabla \cdot \mu \nabla: W_{0}^{1, p}(\Omega) \rightarrow W^{-1, p}(\Omega) \tag{3}
\end{equation*}
$$

is a topological isomorphism.
Let us denote the upper half cube of \mathcal{C} by \mathcal{C}_{+}and the midplane of \mathcal{C} by Σ. Now we are going to identify the occurring edges E in $\overline{\mathcal{C}}$.

$$
\begin{array}{ll}
\text { I edges from } \partial \mathcal{C}, & \text { III edges from } \Sigma \\
\text { II edges from } \mathcal{C}_{+}, & \text {IV edges from } \mathcal{C}_{-}
\end{array}
$$

DEFINITION 9. Let E be an edge in $\bar{\Omega}$ that lies in $\partial \Omega$. Then we define:

1. E is a geometric edge, if all relative inner points of E possess a neighbourhood in $\bar{\Omega}$ on which μ is constant a.e. with respect to 3-dimensional Lebesgue measure.
2. E is a bimaterial outer edge, if it is adjacent to exactly two material sectors.

PROPOSITION 10. For any geometric edge E the kernels of the associated operators \mathcal{A}_{λ} are trivial, if $\Re \lambda \in] 0,1 / 2]$. This same is true for bimaterial outer edges, if both sectors have an opening angle not larger than π.

LEMMA 11. The edges from $\partial \mathcal{C}$ are either geometrical edges or bimaterial outer edges with opening angles not larger than π. Hence, their singularity exponents are uncritical, due to Proposition 10.

Edges from \mathcal{C}_{+}: By the definition of the cube K, all edges which intersect \mathcal{C}_{+}, have one endpoint in 0 . Thus, their inverse image is either I part of an original edge or
II E lies in the inner of a tetrahedron from the original triangulation of $\bar{\Pi}$ or
III E does not intersect an edge from the original triangulation of $\bar{\Pi}$, but is contained in the intersection of two faces $\mathfrak{F}_{1}, \mathfrak{F}_{2}$ from two tetrahedra $\mathfrak{T}_{1}, \mathfrak{T}_{2}$.

Optimal elliptic regularity near 3-dimensional, heterogeneous Neumann vertices

By transforming back and exploiting known (but nontrivial) regularity theorems, one obtains
LEMMA 12. The singularities associated to the edges from I, II, III are not critical.
It remains to discuss the edges from Σ.

