W I A S

Weierstraß-Institut für Angewandte Analysis und Stochastik

Joachim Rehberg

Optimal elliptic regularity near 3-dimensional, heterogeneous Neumann vertices

In collaboration with R. Haller-Dintelmann, W. Höppner, H.-C. Kaiser, G. Ziegler

6th Singular Days, WIAS, Berlin

1 Introduction

Let $\Pi \subseteq \mathbb{R}^3$ be a domain, whose closure $\overline{\Pi}$ is simultaneously a polyhedron and a manifold with boundary. For a bounded, measurable coefficient function $\mu : \Pi \to \mathbb{R}^{3 \times 3}$ we define the operator $-\nabla \cdot \mu \nabla : W^{1,2}(\Pi) \to (W^{1,2}(\Pi))'$ as usual by

$$\langle -\nabla \cdot \mu \nabla v, w \rangle := \int_{\Omega} \mu \nabla v \cdot \nabla \overline{w} \, d\mathbf{x} \,, \quad v, w \in W^{1,2}(\Pi), \tag{1}$$

in order to have (homogeneous) Neumann boundary conditions for the restriction of this operator to $L^2(\Pi)$.

THEOREM 1. There is a p > 3, such that, for any $f \in (W^{1,p'}(\Pi))'$, every solution v of $-\nabla \cdot \mu \nabla v = f$ is in $W^{1,p}$ locally around a vertex a of Π , provided the following assumptions hold true:

- μ is elliptic and takes symmetric matrices as values.
- $\Pi = |K|$ for some finite, Euclidean complex K and μ is constant on the inner of every 3-cell belonging to K, i.e. μ is piecewise constant on a cellular subpartition of the polyhedron Π .
- Any edge from the boundary of Π that has one endpoint in a is a geometric edge or a bimaterial outer edge, such that both opening angles do not exceed π .

• Every inner edge with endpoint a is well-behaved, i.e. the singularity exponent associated to this edge, is larger than 1/3.

Strategy of proof

1) Deform a neighbourhood of a by a PL homeomorphism ϕ , such that $\phi(a) = 0 \in \mathbb{R}^3$ and the corresponding boundary part becomes part of the x - z-plane

2) Diminish the neighbourhood such that the image under ϕ equals a suitable half cube and, additionally, the only occurring edges have either one of their endpoints in $0 \in \mathbb{R}^3$ or are situated on the boundary of the half cube

3) Reflect the problem across the x - z-plane and end up with a Dirichlet problem

4) Restrict the edge singularities and exploit a theorem on elliptic regularity in case of polyhedral Dirichlet problems

2 The PL flattening theorem

DEFINITION 2. Let K be a complex in \mathbb{R}^d . A continuous mapping f from |K| onto a subset of \mathbb{R}^m is then called piecewise linear, if there is a subdivision K' of K, such that the restricted function $f|_{\sigma}$ is linear for every $\sigma \in K'$.

DEFINITION 3. If v is a vertex of the Euclidean complex K, then we call the set of all cells from K which contain v, together with all their faces, the star around v within K.

LEMMA 4. Let K be a finite simplicial complex in \mathbb{R}^3 whose polyhedron |K| is a 3-dimensional manifold with boundary. Let $v \in \partial |K|$ be any vertex of K. If we denote by K_v^* the star around v within K, then the polyhedron $|K_v^*|$ is homeomorphic to the closed unit ball in \mathbb{R}^3 . Moreover, the boundary of $|K_v^*|$ is topologically a 2-sphere and, additionally, a polyhedron.

PROPOSITION 5. Let S be a polyhedron in \mathbb{R}^3 which is topologically a 2-sphere, and let W be a convex, open set containing S. Then there is a PL homeomorphism

$$\phi_S: \mathbb{R}^3 \leftrightarrow \mathbb{R}^3, \qquad S \leftrightarrow \partial \sigma^3,$$

where σ^3 is a tetrahedron, such that $\phi_S|_{\mathbb{R}^3\setminus\mathcal{W}}$ is the identity.

According to Lemma 4, we may apply Proposition 5 to the polyhedron K_{a}^{\bigstar} . Clearly, $Int(K_{a}^{\bigstar})$ is mapped onto $Int(\sigma^{3})$ and $\partial(K_{a}^{\bigstar})$ is mapped onto $\partial\sigma^{3}$. Modulo another PL homeomorphism $\phi_{3}: \mathbb{R}^{3} \to \mathbb{R}^{3}$ one may arrange that

•
$$\phi_S(\mathbf{a}) = 0$$

WIAS

- $\phi_S(\partial(K_a^{\bigstar}))$ is an open neighbourhood of 0 in the plane y = 0.
- $\phi_S(Int(K_a^{\bigstar}))$ is an open subset of $\{x = (x, y, z) : x, z \in \mathbb{R}, y > 0\}.$

COROLLARY 6. Let $\Lambda \subset \mathbb{R}^3$ be a polyhedron, which is the closure of its interior Ω , and suppose that Λ is a 3-manifold with boundary. Then Ω is a Lipschitz domain, even more: the local bi-Lipschitz charts around boundary points may be chosen as PL homeomorphisms.

Consider now the image $\phi_S(K_a^{\bigstar})$, which carries the Euclidean structure from the PL subdivision of K_a^{\bigstar} . Denote the star around $\phi_S(a)$ within this complex by *L*. Finally, intersect this complex by a sufficiently small cube C, such that all edges of $C \cap L$ which intersect *intK*, have one endpoint in 0.

Bild We reflect the problem now symmetrically at the plane y = 0 and end up with a Dirichlet problem of the same type.

LEMMA 7.

$$-\nabla \cdot \hat{\mu} \nabla : W_0^{1,p}(\mathcal{C}) \to W^{-1,p}(\mathcal{C})$$
(2)

is a topological isomorphism for a p > 3.

PROPOSITION 8. Let $\{\Omega_k\}_k$ be a polyhedral partition of Ω , such that the coefficient function μ is constant on the inner of each Ω_k . If for every such edge the associated singularity exponent is larger than $\frac{1}{3}$, then there is a p > 3, such that

$$-\nabla \cdot \mu \nabla : W_0^{1,p}(\Omega) \to W^{-1,p}(\Omega)$$
(3)

is a topological isomorphism.

W I A S

Let us denote the upper half cube of C by C_+ and the midplane of C by Σ . Now we are going to identify the occurring edges E in \overline{C} .

I	edges from ∂C ,		edges from Σ ,
II	edges from \mathcal{C}_+ ,	IV	edges from \mathcal{C} .

DEFINITION 9. Let *E* be an edge in $\overline{\Omega}$ that lies in $\partial\Omega$. Then we define:

- 1. *E* is a geometric edge, if all relative inner points of *E* possess a neighbourhood in $\overline{\Omega}$ on which μ is constant a.e. with respect to 3-dimensional Lebesgue measure.
- 2. *E* is a bimaterial outer edge, *if it is adjacent to exactly two material sectors*.

PROPOSITION 10. For any geometric edge E the kernels of the associated operators A_{λ} are trivial, if $\Re \lambda \in [0, 1/2]$. This same is true for bimaterial outer edges, if both sectors have an opening angle not larger than π .

LEMMA 11. The edges from ∂C are either geometrical edges or bimaterial outer edges with opening angles not larger than π . Hence, their singularity exponents are uncritical, due to Proposition 10.

Edges from C_+ : By the definition of the cube K, all edges which intersect C_+ , have one endpoint in 0. Thus, their inverse image is either I part of an original edge

or

If *E* lies in the inner of a tetrahedron from the original triangulation of $\overline{\Pi}$

or

III *E* does not intersect an edge from the original triangulation of $\overline{\Pi}$, but is contained in the intersection of two faces $\mathfrak{F}_1, \mathfrak{F}_2$ from two tetrahedra $\mathfrak{T}_1, \mathfrak{T}_2$.

By transforming back and exploiting known (but nontrivial) regularity theorems, one obtains **LEMMA 12.** *The singularities associated to the edges from I, II, III are not critical.* It remains to discuss the edges from Σ .