Introduction	Framework	Multiscale Expansion	Axisymmetric Problems	FEM	Simulations	Postprocessing
	00	0000	0000	000000	000	0000

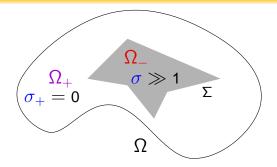
A Transmission Problem in Electromagnetism with a Singular Interface

GABRIEL CALOZ² MONIQUE DAUGE² ERWAN FAOU² <u>V. PÉRON¹</u> CLAIR POIGNARD¹

> ¹ Projet MC2, INRIA Bordeaux Sud-Ouest ² IRMAR, Université de Rennes 1

6th Singular Days on Asymptotic Methods for PDEs WIAS Berlin, April 29 – May 1, 2010

The Skin Effect : A Model Problem



- Ω_- Highly Conducting body $\subset \subset \Omega$: Conductivity $\sigma_- \equiv \sigma \gg 1$
- $\Sigma = \partial \Omega_-$: Interface
- Ω_+ Insulating or Dielectric body: Conductivity $\sigma_+ = 0$

The Skin Effect : rapid decay of electromagnetic fields with depth inside the conductor.

The Skin Depth :
$$\ell(\sigma) = \sqrt{2/\omega\mu_0\sigma}$$

Introduction	Framework	Multiscale Expansion	Axisymmetric Problems	FEM	Simulations	Postprocessing		
	00	0000	0000	000000	000	0000		
References								

🧃 V. Péron (PhD 09)

G. Caloz, M. Dauge, V. Péron (JMAA 10)

Uniform Estimates for Transmission Problems with High Contrast in Heat Conduction and Electromagnetism

M. DAUGE, E. FAOU, V. PÉRON (CRAS 10)

Asymptotic Behavior for High Conductivity of the Skin Depth Electromagnetism

• Aim : Understanding the influence of the geometry of a conducting body on the skin effect in electromagnetism.

Introduction	Framework	Multiscale Expansion	Axisymmetric Problems	FEM 000000	Simulations	Postprocessing
Outline						

- **2** 3D Multiscaled Asymptotic Expansion
- Axisymmetric Problems
- Finite Element Computations
- 5 Numerical simulations of skin effect

Introduction	Framework	Multiscale Expansion	Axisymmetric Problems	FEM 000000	Simulations	Postprocessing
Outline						

Framework

2 3D Multiscaled Asymptotic Expansion

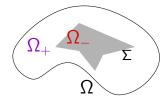
3 Axisymmetric Problems

- 4 Finite Element Computations
- 5 Numerical simulations of skin effect

Introduction	Framework ●○	Multiscale Expansion	Axisymmetric Problems	FEM 000000	Simulations	Postprocessing
Framev	vork					
Maxwell Pr	oblem					

$$(\mathbf{P}_{\underline{\sigma}}) \quad \operatorname{curl} \mathbf{E} - i\omega\mu_0 \mathbf{H} = 0 \quad \text{and} \quad \operatorname{curl} \mathbf{H} + (i\omega\varepsilon_0 - \underline{\sigma})\mathbf{E} = \mathbf{j}$$
$$\underline{\sigma} = (\mathbf{0}, \sigma \gg \mathbf{1})$$

 $\textbf{j}\in H_0(\text{div},\Omega)=\{\textbf{u}\in L^2(\Omega)\mid \ \text{div}\,\textbf{u}\in L^2(\Omega), \ \textbf{u}\cdot\textbf{n}=0 \ \text{on} \ \partial\Omega\}$



Perfectly Conducting Magnetic Wall B. C .:

$$\mathbf{E} \cdot \mathbf{n} = 0$$
 and $\mathbf{H} \times \mathbf{n} = 0$ on $\partial \Omega$

Introduction	Framework ○●	Multiscale Expansion	Axisymmetric Problems	FEM 000000	Simulations	Postprocessing
Exister	nce of so	olutions				

Hypothesis (SH)

The angular frequency ω is not an eigenfrequency of the problem

 $\begin{cases} \operatorname{curl} \mathbf{E} - i\omega\mu_0 \mathbf{H} = 0 \quad \text{and} \quad \operatorname{curl} \mathbf{H} + i\omega\varepsilon_0 \mathbf{E} = 0 \quad \text{in} \quad \Omega_+ \\ \mathbf{E} \times \mathbf{n} = 0 & \text{on} \quad \Sigma \\ B.C. & \text{on} \quad \partial\Omega \end{cases}$

Theorem (CALOZ, DAUGE, P., 09)

If the surface Σ is Lipschitz, under Hypothesis (SH), there exist σ_0 and C > 0, such that for all $\sigma \ge \sigma_0$, $(\mathbf{P}_{\underline{\sigma}})$ with B.C. and $\mathbf{j} \in \mathrm{H}(\mathrm{div}, \Omega)$ has a unique solution (\mathbf{E}, \mathbf{H}) in $\mathrm{L}^2(\Omega)^2$, and

 $\|\mathbf{E}\|_{0,\Omega} + \|\mathbf{H}\|_{0,\Omega} + \sqrt{\sigma} \|\mathbf{E}\|_{0,\Omega_{-}} \leq C \|\mathbf{j}\|_{\mathrm{H}(\mathrm{div},\Omega)}$

Application: Convergence of asymptotic expansion for large conductivity

Introduction	Framework	Multiscale Expansion	Axisymmetric Problems	FEM	Simulations	Postprocessing
	00	0000	0000	000000	000	0000
Outline	2					

Framework

2 3D Multiscaled Asymptotic Expansion

Axisymmetric Problems

- 4 Finite Element Computations
- 5 Numerical simulations of skin effect

Introduction	Framework	Multiscale Expansion	Axisymmetric Problems	FEM	Simulations	Postprocessing
	00	0000	0000	000000	000	0000
Defere		A Notations				

References and Notations

Asymptotic Expansion as $\sigma \to \infty$ of solutions of (\mathbf{P}_{σ}) when Σ is smooth :

🔋 Е.Р. Stephan, R.C. McCamy (83-84-85)

Plane Interface and Eddy Current Problems

- H. HADDAR, P. JOLY, H.N. NGUYEN (08) Generalized Impedance Boundary Conditions
- G. Caloz, M. Dauge, V. Péron (JMAA 10)
- M. DAUGE, E. FAOU, V. PÉRON (CRAS 10)
- 🔋 Péron (09)

Hypothesis

- Σ is a Smooth Surface
- **2** ω satisfies the Spectral Hypothesis (SH)
- **3** j is smooth and j = 0 in Ω_{-}

Introduction	Framework	Multiscale Expansion	Axisymmetric Problems	FEM 000000	Simulations	Postprocessing
Asymp	totic Ex	oansion				

$$\delta:=\sqrt{\omegaarepsilon_0/\sigma}\longrightarrow 0 \ \ {
m as} \ \ \sigma o \infty$$

By Theorem there exists δ_0 s.t. for all $\delta \leq \delta_0$, the solution $\mathbf{H}_{(\delta)}$ to $(\mathbf{P}_{\underline{\sigma}})$:

$$\begin{split} \mathbf{H}^+_{(\delta)}(\mathbf{x}) &\approx \mathbf{H}^+_0(\mathbf{x}) + \delta \mathbf{H}^+_1(\mathbf{x}) + \mathcal{O}(\delta^2) \\ \mathbf{H}^-_{(\delta)}(\mathbf{x}) &\approx \mathbf{H}^-_0(\mathbf{x};\delta) + \delta \mathbf{H}^-_1(\mathbf{x};\delta) + \mathcal{O}(\delta^2) \\ &\text{with} \quad \mathbf{H}^-_j(\mathbf{x};\delta) = \chi(y_3) \, \mathbf{V}_j(y_\beta,\frac{y_3}{\delta}) \,. \end{split}$$

 (y_{β}, y_3) : "normal coordinates " to Σ in a tubular region \mathcal{U}_- of Σ in Ω_-

$$egin{aligned} \mathsf{H}_{j}^{+} \in \mathrm{H}(\mathrm{curl}, \Omega_{+}) & ext{and} & \mathsf{V}_{j} \in \mathrm{H}(\mathrm{curl}, \Sigma imes \mathbb{R}_{+}) & ext{profiles.} \ & \|\mathsf{H}_{j}^{-}(\mathbf{x}; \delta)\|_{0, \Omega_{-}} \leqslant C_{j}\sqrt{\delta} & ext{for all} & j \in \mathbb{N} \end{aligned}$$

Introduction	Framework	Multiscale Expansion	Axisymmetric Problems	FEM 000000	Simulations	Postprocessing			
Profiles	Profiles of the Magnetic Field								

 $\mathbf{V}_{i} =: (\mathcal{V}_{i}^{\alpha}; v_{i})$ in coordinates $(y_{\beta}, \mathbf{Y}_{3})$ with $\mathbf{Y}_{3} = \frac{y_{3}}{\lambda}$

$$\begin{split} \mathbf{V}_0(y_\beta,\,\mathbf{Y}_3) &= \mathbf{h}_0(y_\beta)\,\mathbf{e}^{-\lambda\,\mathbf{Y}_3} \\ \mathcal{V}_1^\alpha(y_\beta,\,\mathbf{Y}_3) &= \Big[\mathbf{h}_1^\alpha + \mathbf{Y}_3\Big(\mathcal{H}\,\mathbf{h}_0^\alpha + \mathbf{b}_\sigma^\alpha\,\mathbf{h}_0^\sigma\Big)\Big](y_\beta)\,\mathbf{e}^{-\lambda\,\mathbf{Y}_3} \end{split}$$

Here,

 ${\cal H}$ mean curvature of Σ

$$egin{aligned} \mathsf{h}_0(y_eta) &= (\mathsf{n} imes \mathsf{H}_0^+) imes \mathsf{n}(y_eta, 0) & ext{and} & \mathsf{h}_j^lpha(y_eta) \coloneqq (\mathsf{H}_j^+)^lpha(y_eta, 0) \ \lambda &= \omega \sqrt{arepsilon_0 \mu_0} \, \mathrm{e}^{-i\pi/4} \end{aligned}$$

Introduction	Framework	Multiscale Expansion ○○○●	Axisymmetric Problems	FEM 000000	Simulations	Postprocessing
Applica	ation					

A New Definition of the Skin Depth

$$\mathbf{V}_{(\delta)}(y_{lpha},y_{3}) \mathrel{\mathop:}= \mathbf{H}^{-}_{(\delta)}(\mathbf{x}), \hspace{1em} y_{lpha} \in \Sigma, \hspace{1em} 0 \leq y_{3} < h_{0}$$

Definition

Let Σ be a smooth surface, and **j** s.t. $\mathbf{V}_{(\delta)}(y_{\alpha}, 0) \neq 0$. The skin depth is the smallest length $\mathcal{L}(\sigma, y_{\alpha})$ defined on Σ s.t.

$$\|\mathbf{V}_{(\delta)}(y_{\alpha},\mathcal{L}(\sigma,y_{\alpha}))\| = \|\mathbf{V}_{(\delta)}(y_{\alpha},0)\| e^{-1}$$

Theorem (DAUGE, FAOU, P., 10)

Let Σ be a regular surface with mean curvature \mathcal{H} , and assume $\mathbf{h}_0(y_\alpha) \neq 0$.

$$\mathcal{L}(\sigma,y_{lpha})=\ell(\sigma)\Big(1+\mathcal{H}(y_{lpha})\,\ell(\sigma)+\mathcal{O}(\sigma^{-1})\Big), \hspace{1em} \sigma
ightarrow\infty$$

Key of the proof:

$$\|\mathbf{V}_{(\delta)}\|^2 = \left[\|\mathbf{h}_0\|^2 + 2y_3\mathcal{H}\|\mathbf{h}_0\|^2 + 2\delta\operatorname{Re}\langle\mathbf{h}_0,\mathbf{h}_1\rangle + \mathcal{O}((\delta+y_3)^2)\right] e^{-2y_3/\ell(\sigma)}$$

V. Péron

Introduction	Framework	Multiscale Expansion	Axisymmetric Problems	FEM 000000	Simulations	Postprocessing
Outline						

Framework

2 3D Multiscaled Asymptotic Expansion

Axisymmetric Problems

4 Finite Element Computations

Numerical simulations of skin effect

Introduction	Framework	Multiscale Expansion	Axisymmetric Problems	FEM	Simulations	Postprocessing
	00	0000	●000	000000	000	0000
Axisyn	nmetric o	domains				

The meridian domain

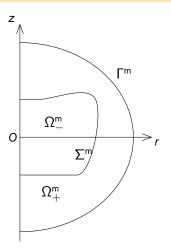


Figure: The meridian domain $\Omega^{\tt m} = \Omega^{\tt m}_{-} \cup \Omega^{\tt m}_{+} \cup \Sigma^{\tt m}$

Introduction	Framework	Multiscale Expansion	Axisymmetric Problems	FEM 000000	Simulations	Postprocessing
Reduct	ion prob	lem				

$$\begin{cases} (\operatorname{curl} \mathbf{H})_r = \frac{1}{r} \partial_{\theta} H_z - \partial_z H_{\theta} ,\\ (\operatorname{curl} \mathbf{H})_{\theta} = \partial_z H_r - \partial_r H_z ,\\ (\operatorname{curl} \mathbf{H})_z = \frac{1}{r} (\partial_r (rH_{\theta}) - \partial_{\theta} H_r) . \end{cases}$$

The Maxwell problem is axisymmetric : the coefficients do not depend on the angular variable θ .

Introduction	Framework	Multiscale Expansion	Axisymmetric Problems	FEM 000000	Simulations	Postprocessing
Reducti						

$$\begin{cases} (\operatorname{curl} \mathbf{H})_r = \frac{1}{r} \partial_\theta H_z - \partial_z H_\theta ,\\ (\operatorname{curl} \mathbf{H})_\theta = \partial_z H_r - \partial_r H_z ,\\ (\operatorname{curl} \mathbf{H})_z = \frac{1}{r} (\partial_r (rH_\theta) - \partial_\theta H_r) \end{cases}$$

.

The Maxwell problem is axisymmetric : the coefficients do not depend on the angular variable $\boldsymbol{\theta}.$

H is axisymmetric iff $\breve{H} := (H_r, H_\theta, H_z)$ does not depend on θ .

Assume that the right-hand side is axisymmetric and orthoradial. Then, $\mathbf{H}_{(\delta)}$ is axisymmetric and orthoradial :

$$\breve{\mathbf{H}}_{(\delta)}(r,\theta,z) = (0,\mathsf{h}_{(\delta)}(r,z),0).$$

Configuration A

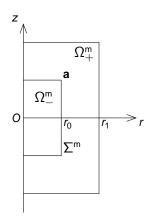


Figure: The meridian domain Ω^m in configuration A

Introduction	Framework	Multiscale Expansion	Axisymmetric Problems	FEM 000000	Simulations	Postprocessing
Config	urations	chosen for c	computations			

Configuration B

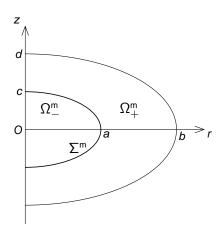


Figure: The meridian domain Ω^m in configuration B

Introduction	Framework	Multiscale Expansion	Axisymmetric Problems	FEM 000000	Simulations	Postprocessing
Outline						

Framework

2 3D Multiscaled Asymptotic Expansion

Axisymmetric Problems

4 Finite Element Computations

Numerical simulations of skin effect

Introduction	Framework	Multiscale Expansion	Axisymmetric Problems	FEM ●000000	Simulations	Postprocessing
Finite E	lement	Method				

High order elements available in the finite element library Mélina
 h^{p, M}_(δ): the computed solution of the discretized problem with an interpolation degree *p* and a mesh M

$$egin{aligned} &\mathcal{A}^{p,\mathfrak{M}}_{\sigma} &:= \|\mathbf{h}^{p,\mathfrak{M}}_{(\delta)}\|_{\mathrm{L}^{2}_{1}(\Omega^{\mathrm{m}}_{-})} & ext{with} \quad \sigma = \omega arepsilon_{0} \delta^{-2} \ &\|v\|^{2}_{\mathrm{L}^{2}_{1}(\Omega^{\mathrm{m}}_{-})} = \int_{\Omega^{\mathrm{m}}_{-}} |v|^{2} \, \mathrm{rdrdz} \ . \end{aligned}$$

• In the computations, the angular frequency $\omega = 3.10^7$.

Introduction	Framework	Multiscale Expansion	Axisymmetric Problems	FEM ○●○○○○	Simulations	Postprocessing
	Diation de	egree				

We first check the convergence when the interpolation degree p of the finite elements increases.

We consider the discretized problem with different degrees: Q_p , p = 1, ..., 20, and with 2 different meshes:

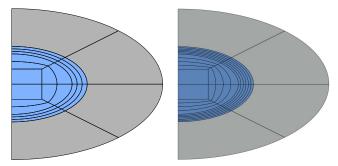
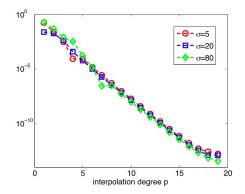


Figure: The meshes \mathfrak{M}_3 and \mathfrak{M}_6

Introduction	Framework	Multiscale Expansion	Axisymmetric Problems	FEM 00●000	Simulations	Postprocessing

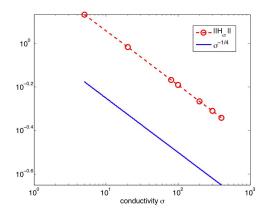
We represent the absolute value of the difference between the weighted norms $A_{\sigma}^{p,\mathfrak{M}_3}$ and $A_{\sigma}^{20,\mathfrak{M}_6}$, versus *p* in semilogarithmic coordinates



SCHWAB, SURI (96)

theoretical results of convergence for the p-version of problems with boundary layers

Introduction	Framework	Multiscale Expansion	Axisymmetric Problems	FEM 000●00	Simulations	Postprocessing
	olot in log-log	g coordinates the	weighted norm A_{σ}^{16}	^{m₃} with	respect to σ	⁻ with



The figure shows that $A_{\sigma}^{16,\mathfrak{M}_3}$ behaves like $\sigma^{-1/4}$ (solid line) when $\sigma \to \infty$. This behavior is consistent with the asymptotic expansion.

Introduction	Framework	Multiscale Expansion	Axisymmetric Problems	FEM 0000●0	Simulations	Postprocessing
Configu	uration A	N Contraction of the second seco				

We consider a family of meshes with square elements \mathfrak{M}_k , with size h = 1/k

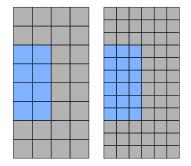
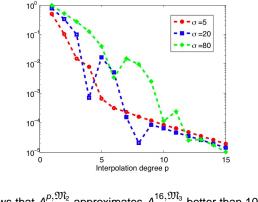


Figure: Meshes \mathfrak{M}_2 , and \mathfrak{M}_3 in configuration A

Introduction	Framework	Multiscale Expansion	Axisymmetric Problems	FEM 000000	Simulations	Postprocessing
Config		4				

We represent the absolute value of the difference between $A_{\sigma}^{p,\mathfrak{M}_2}$ and $A_{\sigma}^{16,\mathfrak{M}_3}$, versus *p* in semilogarithmic coordinates



The figure shows that $A_{\sigma}^{p,\mathfrak{M}_2}$ approximates $A_{\sigma}^{16,\mathfrak{M}_3}$ better than 10^{-4} when $p \ge 12$.

V. Péron

A Transmission Problem in Electromagnetism with a Singular Interface

Introduction	Framework	Multiscale Expansion	Axisymmetric Problems	FEM 000000	Simulations	Postprocessing
Outline						

Framework

2 3D Multiscaled Asymptotic Expansion

3 Axisymmetric Problems

4 Finite Element Computations

5 Numerical simulations of skin effect

Introduction	Framework	Multiscale Expansion	Axisymmetric Problems	FEM 000000	Simulations ●○○	Postprocessing

Skin effect in configuration B

$$|\operatorname{Im} \mathsf{h}^+_{(\delta)}| = \mathcal{O}(\delta)$$
 .

Thus, the imaginary part of the computed field is located in the conductor.

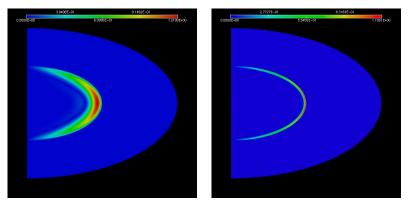


Figure: Configuration B. $|\operatorname{Im} H_{\sigma}|$ when $\sigma =$ 5 and $\sigma =$ 80

Introduction	Framework	Multiscale Expansion	Axisymmetric Problems	FEM	Simulations	Postprocessing
	00	0000	0000	000000	000	0000

Skin effect in configuration A

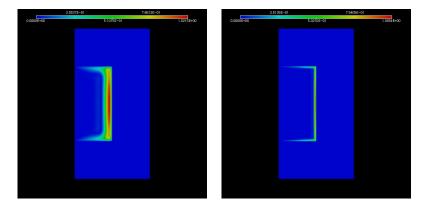


Figure: Configuration A. $|\operatorname{Im} H_{\sigma}|$ when $\sigma=$ 5 and $\sigma=$ 80

Introduction Framework Multiscale Expansion Axisymmetric Problems FEM Simulations Postprocessing

 $\mathcal{H} >$ 0 on the left, and $\mathcal{H} <$ 0 on the right

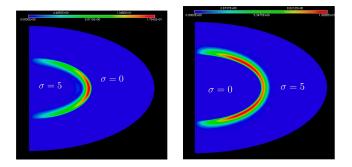


Figure: $| \text{Im } H_{\sigma} |, \sigma = 5$

The skin depth is larger when the mean curvature of the conducting body surface is larger.

V. Péron

A Transmission Problem in Electromagnetism with a Singular Interface

Introduction	Framework	Multiscale Expansion	Axisymmetric Problems	FEM 000000	Simulations	Postprocessing
Outline						

Framework

2 3D Multiscaled Asymptotic Expansion

3 Axisymmetric Problems

- 4 Finite Element Computations
- Numerical simulations of skin effect

Introduction	Framework	Multiscale Expansion	Axisymmetric Problems	FEM 000000	Simulations	Postprocessing ●○○○
Configu	uration E	3				

We perform numerical treatments from computations in configuration B. We extract values of $\log_{10} |H_{\sigma}|$ in Ω_{-}^{m} along the axis z = 0: $y_3 = 2 - r$.

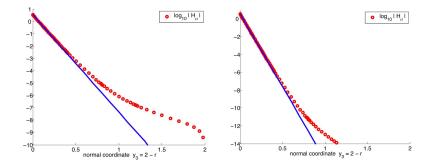
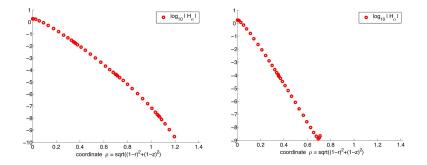


Figure: On the left $\sigma = 20$. On the right, $\sigma = 80$.

The curves exactly behave like lines: the exponential decay is obvious.

Introduction	Framework	Multiscale Expansion	Axisymmetric Problems	FEM 000000	Simulations	Postprocessing ○●○○
Config	uration A	4				

We extract values of $\log_{10}|\mathrm{H}_\sigma|$ in Ω^{m}_- along the diagonal axis r=z



Here, $\rho = \sqrt{(1-r)^2 + (1-z)^2}$ is the distance to the corner point $\mathbf{a}(r=1, z=1)$.

Introduction	Framework	Multiscale Expansion	Axisymmetric Problems	FEM	Simulations	Postprocessing
	00	0000	0000	000000	000	0000

The exponential decay is not obvious in configuration A.

To measure a possible exponential decay, we define the slopes

$$\tilde{\mathfrak{s}}_i(\sigma) := \frac{\log_{10} |\mathrm{H}_\sigma(\mathit{r}_i, \mathit{z}_i)| - \log_{10} |\mathrm{H}_\sigma(\mathit{z}_{i+1}, \mathit{r}_{i+1})|}{\rho_{i+1} - \rho_i}$$

Here, $\rho_i := \sqrt{(1 - r_i)^2 + (1 - z_i)^2}$ is the distance from the extraction points (r_i, z_i) to **a**.

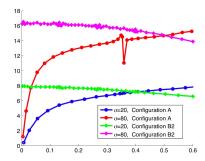


Figure: The graphs of the slopes $\tilde{s}_i(\sigma)$

Introduction Framework Multiscale Expansion Axisymmetric Problems FEM Simulations Postprocessing

Asymptotics in the conducting part

In configuration A, the slopes tend to 0, which means that there is no exponential convergence near the corner.

Nevertheless, a sort of exponential convergence is restored in a region further away from the corner.

The principal asymptotic contribution inside the conductor is a profile globally defined on a sector S (of opening $\frac{\pi}{2}$) solving the model Dirichlet problem

$$\left\{ \begin{array}{rcl} -i(\partial_X^2 + \partial_Y^2) v_0 + \kappa^2 v_0 &=& 0 & \mbox{ in } \mathcal{S} \;, \\ v_0 &=& h_0^+(\textbf{a}) & \mbox{ on } \partial \mathcal{S} \;, \end{array} \right.$$

instead the 1D problem in configuration B

$$\left\{ \begin{array}{rrrr} -i\partial_{Y}^{2}v_{0}+\kappa^{2}v_{0}&=&0 & \mbox{for} & 0< Y<+\infty\,, \\ v_{0}&=&h_{0}^{+} & \mbox{for} & Y=0\,. \end{array} \right.$$