Weierstrass Institute for
Applied Analysis and Stochastics

C. Kraus

Inhomogeneous and anisotropic phase-field quantities in the sharp interface limit
joint work with
Harald Garcke, University of Regensburg.

Outline

\triangleright Sharp interface and diffuse phase-field setting
\triangleright Modeling of surface quantities
\triangleright The Γ-limit of the phase-field energies
\triangleright Asymptotic behavior for minimizers
\triangleright Weak formulations of the Euler-Lagrange equations
\triangleright Convergence of the Lagrange multipliers
\triangleright Extended Gibbs-Thomson law in the sharp interface limit

Application: Morphology of solder materials

\triangleright Phase separation and coarsening in alloys

Tin-lead solder at $120^{\circ} \mathrm{C}$
\triangleright Crack initiation and propagation

Sharp interface model

Phase indicator function
$c: \Omega \rightarrow\left\{c_{-}, c_{+}\right\}, \quad I=\partial\left\{c=c_{-}\right\} \cap \Omega$
Surface energy

$$
\begin{aligned}
E(I)=\sigma_{0} \int_{I} d \mathcal{H}^{n-1} & =\frac{\sigma_{0}}{c_{+}-c_{-}} \int_{\Omega}|\nabla c| \\
& =E(c)
\end{aligned}
$$

First variation

$$
\begin{aligned}
\delta E(c)(\xi) & =\sigma_{0} \int_{I} \operatorname{div}_{I} \xi d \mathcal{H}^{n-1} \\
& =\sigma_{0} \int_{I} H \xi \cdot \nu d \mathcal{H}^{n-1}
\end{aligned}
$$

Diffuse phase-field model

Smooth phase-field
$c_{\varepsilon}: \Omega \rightarrow \mathbb{R}, \quad I_{\varepsilon}$: small transition region

Diffuse surface energy

(van der Waals, Cahn-Hilliard)

$$
E_{\varepsilon}\left(c_{\varepsilon}\right)=\int_{\Omega}\left(\varepsilon\left|\nabla c_{\varepsilon}\right|^{2}+\frac{1}{\varepsilon} \psi\left(c_{\varepsilon}\right)\right) d x
$$

First variation

$\delta E_{\varepsilon}\left(c_{\varepsilon}\right)(\xi)=\int_{\Omega}\left(-\varepsilon \triangle c_{\varepsilon}+\frac{1}{\varepsilon} \psi^{\prime}\left(c_{\varepsilon}\right)\right) \xi d x$

Phase indicator function
$c: \Omega \rightarrow\left\{c_{-}, c_{+}\right\}, \quad I=\partial\left\{c=c_{-}\right\} \cap \Omega$
Surface energy

$$
\begin{aligned}
E(I)=\sigma_{0} \int_{I} d \mathcal{H}^{n-1} & =\frac{\sigma_{0}}{c_{+}-c_{-}} \int_{\Omega}|\nabla c| \\
& =E(c)
\end{aligned}
$$

First variation

$$
\begin{aligned}
\delta E(c)(\xi) & =\sigma_{0} \int_{I} \operatorname{div}_{I} \xi d \mathcal{H}^{n-1} \\
& =\sigma_{0} \int_{I} H \xi \cdot \nu d \mathcal{H}^{n-1}
\end{aligned}
$$

Smooth phase-field

$$
c_{\varepsilon}: \Omega \rightarrow \mathbb{R}, \quad I_{\varepsilon}: \text { small transition region }
$$

Diffuse surface energy

(van der Waals, Cahn-Hilliard)

$$
E_{\varepsilon}\left(c_{\varepsilon}\right)=\int_{\Omega}\left(\varepsilon\left|\nabla c_{\varepsilon}\right|^{2}+\frac{1}{\varepsilon} \psi\left(c_{\varepsilon}\right)\right) d x
$$

First variation

$\delta E_{\varepsilon}\left(c_{\varepsilon}\right)(\xi)=\int_{\Omega}\left(-\varepsilon \triangle c_{\varepsilon}+\frac{1}{\varepsilon} \psi^{\prime}\left(c_{\varepsilon}\right)\right) \xi d x$

Sharp interface limit

Minimizers (Modica \& Mortola)

There exists a sequence $\left\{c_{\varepsilon}\right\}_{\varepsilon>0}$ of global minimizers c_{ε} for E_{ε} such that

$$
c_{\varepsilon} \rightarrow c \quad \text { in } L^{1}(\Omega) \text { as } \varepsilon \rightarrow 0, \quad c \in B V\left(\Omega,\left\{c_{-}, c_{+}\right\}\right) .
$$

Energies (Modica \& Mortola)

$$
\begin{aligned}
& E_{\varepsilon} \xrightarrow{\Gamma-\text { convergence }} E \\
& E_{\varepsilon}\left(c_{\varepsilon}\right)=\int_{\Omega}\left(\varepsilon\left|\nabla c_{\varepsilon}\right|^{2}+\frac{1}{\varepsilon} \psi\left(c_{\varepsilon}\right)\right) d x \rightarrow E(c)=\frac{\sigma_{0}}{c_{+}-c_{-}} \int_{I}|\nabla c| \\
& \sigma_{0}=2 \int_{c_{-}}^{c_{+}} \sqrt{\psi(s)} d s
\end{aligned}
$$

Diffuse surface area measures

$$
\mu_{\varepsilon}:=\left(\varepsilon\left|\nabla c_{\varepsilon}\right|^{2}+\frac{1}{\varepsilon} \psi\left(c_{\varepsilon}\right)\right) \mathcal{L}^{n} \rightarrow \mu:=\frac{\sigma_{0}}{c_{+}-c_{-}}|\nabla c| \quad \text { weakly* }
$$

Sharp interface limit

Structure of the interface (Modica)
$\Omega_{-}=\left\{x \in \Omega: c(x)=c_{-}\right\}$has minimal perimeter $P_{\Omega}\left(\Omega_{-}\right)$, i. e.

$$
P_{\Omega}\left(\Omega_{-}\right)=\min \left\{P_{\Omega}(G): G \subset \Omega,|G|=\frac{c_{+}|\Omega|}{c_{+}-c_{-}}\right\} .
$$

Theory of $\underset{ }{\text { minimal surfaces }}$
I : smooth hypersurface, minimal surface area
$\partial I \cap \partial \Omega: 90^{\circ}$ contact angle
Lagrange multipliers (Luckhaus \& Modica)

$$
\lambda_{\varepsilon} \rightarrow \lambda=\frac{\sigma_{0} H}{c_{+}-c_{-}}, \quad H: \text { mean curvature } .
$$

Gibbs-Thomson law for minimizers

$$
\lambda=\frac{\sigma_{0} H}{c_{+}-c_{-}}
$$

Gibbs-Thomson law

\triangleright Isotropic case

$$
E(c)=\frac{\sigma_{0}}{c_{+}-c_{-}} \int_{\Omega}|\nabla c|=\sigma_{0} \int_{I} d \mathcal{H}^{n-1}
$$

Classical Gibbs-Thomson law

$$
w=\sigma_{0} H /\left(c_{+}-c_{-}\right), \quad H=\operatorname{div}_{I} \cdot \nu, \quad \nu: \text { outer unit normal of } I
$$

Boundary condition for I

$$
\partial I \cap \partial \Omega: \quad 90^{\circ} \text { contact angle }
$$

\triangleright Inhomogeneous, anisotropic, elastic case

$$
E_{0}(c, u)=\int_{I} \sigma_{0}(x, \nu) d \mathcal{H}^{n-1}+\int_{\Omega} W(c, \mathcal{E}(u)) d x
$$

Extended Gibbs-Thomson law

$$
w=\left(-\sigma_{0, x}(x, \nu) \cdot \nu-\nabla_{I} \cdot \sigma_{0, p}(x, \nu)+\nu\left[W I d-(\nabla u)^{T} W_{, \mathcal{E}}\right]_{-}^{+} \nu\right) /\left(c_{+}-c_{-}\right)
$$

Boundary condition for I

$$
\partial I \cap \partial \Omega: \quad \sigma_{, p}(x, \nu) \cdot \nu_{\partial \Omega}=0, \quad \nu_{\partial \Omega}: \text { outer unit normal of } \partial \Omega
$$

Gibbs-Thomson law

$\triangleright I$: not enough regularity is known in the singular limit \Longrightarrow Weak formulation of the extended Gibbs-Thomson law
\triangleright Weak formulation (generalized BV-setting)

$$
\begin{aligned}
& \int_{\Omega}\left(\sigma_{0}(x, \nu) \nabla \cdot \xi+\sigma_{0, x}(x, \nu) \cdot \xi-\nu \cdot \nabla \xi \sigma_{0, p}(x, \nu)\right)|\nabla \chi| \\
& \quad+\int_{\Omega}\left(W(c, \mathcal{E}(u)) I d-(\nabla u)^{T} W_{, \mathcal{E}}(c, \mathcal{E}(u))\right): \nabla \xi d x=\lambda \int_{\Omega} c \nabla \cdot \xi d x
\end{aligned}
$$

$\xi \in C^{1}\left(\bar{\Omega}, \mathbb{R}^{n}\right)$ with $\xi \cdot \nu_{\partial \Omega}=0$ on $\partial \Omega, \quad \nu_{\partial \Omega}$: outer unit normal of $\partial \Omega$,
$\nabla \chi$: distributional derivative of the characteristic function χ of Ω_{-}.

Phase-field approach

Two components

Concentrations: $c_{+}, c_{-}, c_{+}+c_{-}=1 \quad \Longrightarrow c=c_{+}-c_{-}$
Mass conservation
$\int_{\Omega} c d x=m$
Total free energy
Ginzburg-Landau free energy

$$
E(c, u)=\int_{\Omega}\left(\varepsilon \sigma^{2}(x, c, \nabla c)+\frac{1}{\varepsilon} \psi(c)+W(c, \mathcal{E}(u))\right) d x
$$

(Classical case: $\sigma(x, c, \nabla c)=|\nabla c|, W \equiv 0$)

Assumptions:
(A1) $\Omega \subset \mathbb{R}^{n}$: bounded domain with Lipschitz-boundary
(A2) $\psi \in C^{1}(\mathbb{R}), \psi \geq 0$ and $\psi(c)=0 \Longleftrightarrow c \in\left\{c_{-}, c_{+}\right\}$,
$\psi(c) \geq d_{1}|c|^{2}-d_{2}, \quad d_{1}, d_{2}>0$ constants.

Phase-field approach

$$
E(c, u)=\int_{\Omega}\left(\varepsilon \sigma^{2}(x, c, \nabla c)+\frac{1}{\varepsilon} \psi(c)+W(c, \mathcal{E}(u))\right) d x
$$

(A3) The anisotropic function $\sigma \in C\left(\bar{\Omega} \times \mathbb{R} \times \mathbb{R}^{n}, \mathbb{R}^{+}\right)$satisfies the properties:

* $\sigma_{, x}, \sigma_{, p} \in C\left(\bar{\Omega} \times \mathbb{R} \times \mathbb{R}^{n} \backslash\{0\}\right), \quad \sigma_{, p p} \in C\left(\bar{\Omega} \times \mathbb{R} \times \mathbb{R}^{n} \backslash\{0\}\right)$.
* σ is 1 -homogenous, i.e. $\sigma(x, s, \lambda p)=\lambda \sigma(x, s, p)$ for all $p \in \mathbb{R}^{n}$ and $\lambda>0$.
* There exist constants $\lambda_{1}>0, \lambda_{2}>0$ such that

$$
\lambda_{1}|p| \leq \sigma(x, s, p) \leq \lambda_{2}|p| \text { for all } x \in \bar{\Omega}, s \in \mathbb{R} \text { and all } p \in \mathbb{R}^{n}
$$

* σ is strictly convex, i.e. there exists a constant $d_{0}>0$ such that

$$
\sigma_{, p p}(x, s, p) q \cdot q \geq d_{0}|q|^{2}
$$

for all $x \in \Omega$, all $s \in \mathbb{R}$ and all $p, q \in \mathbb{R}^{n}$ with $p \cdot q=0,|p|=1$.

(A4) Elasticity

* u : displacement field
* $\mathcal{E}(u)=\frac{1}{2}\left(\nabla u+(\nabla u)^{T}\right)$: linearized strain tensor
* Elastic energy density $W \in C^{1}\left(\mathbb{R} \times \mathbb{R}^{n \times n}, \mathbb{R}\right)$:

$$
W(c, \mathcal{E}(u))=\frac{1}{2}\left(\mathcal{E}(u)-\mathcal{E}^{*}(c)\right): C(c)\left(\mathcal{E}(u)-\mathcal{E}^{*}(c)\right),
$$

$\mathcal{E}^{*}(c)$: eigenstrain, $C(c)$: stiffness tensor (symmetric, positive definite).

* There exists a constant $d_{4}>0$ such that for all $c \in \mathbb{R}$ and all $\mathcal{E} \in \mathbb{R}^{n \times n}$:

$$
\begin{aligned}
& |W(c, \mathcal{E})| \leq d_{4}\left(|c|^{2}+|\mathcal{E}|^{2}+1\right), \\
& \left|W_{, c}(c, \mathcal{E})\right| \leq d_{4}\left(|c|+|\mathcal{E}|^{2}+1\right), \\
& \left|W_{, \mathcal{E}}(c, \mathcal{E})\right| \leq d_{4}(|c|+|\mathcal{E}|+1) .
\end{aligned}
$$

Definition:

$X_{\text {ird }}^{\perp}:=\left\{u \in H^{1}\left(\Omega, \mathbb{R}^{n}\right):(u, v)_{H^{1}}=0\right.$ for all $\left.v \in X_{\text {ird }}\right\}$
$X_{\text {ird }}:=\left\{v \in H^{1}\left(\Omega, \mathbb{R}^{n}\right)\right.$: there exist $b \in \mathbb{R}^{n}$ and a skew symmetric $K \in \mathbb{R}^{n \times n}$

$$
\text { such that } v(x)=b+K x\}
$$

Γ-limit of the Ginzburg-Landau energy

$$
\begin{aligned}
& E_{\varepsilon}: B V(\Omega) \times X_{\text {ird }}^{\perp} \rightarrow \mathbb{R} \cup\{+\infty\} \\
& E_{\varepsilon}(c, u)=\left\{\begin{array}{ll}
\int_{\Omega}\left(\varepsilon \sigma^{2}(x, c, \nabla c)+\frac{1}{\varepsilon} \psi(c)+W(c, \mathcal{E}(u))\right) d x, & \text { if } c \in H^{1}(\Omega), \\
\infty, & \text { else. }
\end{array} \int_{\Omega} c d x=m,\right. \\
& E_{0}: B V(\Omega) \times X_{\text {ird }}^{\perp} \rightarrow \mathbb{R} \cup\{+\infty\} \\
& E_{0}(c, u)= \begin{cases}\int_{I} \sigma_{0}(x, \nu) d \mathcal{H}^{n-1}+\int_{\Omega} W(c, \mathcal{E}(u)) d x, & \text { if } c \in B V\left(\Omega,\left\{c_{-}, c_{+}\right\}\right), \\
\infty, & \text { else. }\end{cases}
\end{aligned}
$$

Definition:

$I=\partial^{*} \Omega_{-}, \Omega_{-}=\left\{x \in \Omega: c(x)=c_{-}\right\}, \nu$: outer normal of $I=\partial^{*} \Omega_{-}$, $\sigma_{0}(x, p)=2 \int_{c_{-}}^{c_{+}} \sqrt{\psi(s)} \sigma(x, s, p) d s ;$
(Extension of results by Bouichetté 90, Owen and Sternberg 91 and Garcke 08)

Characterization of minimizers

Theorem [Garcke \& Kraus 09]
Let the assumptions (A1) - (A4) be satisfied.
(i) For $\varepsilon>0$ there exist minimizers $\left(c_{\varepsilon}, u_{\varepsilon}\right) \in H^{1}(\Omega) \times X_{\text {ird }}^{\perp}$ of E_{ε}. In addition,

$$
E_{\varepsilon}\left(c_{\varepsilon}, u_{\varepsilon}\right) \text { is uniformly bounded as } \varepsilon \rightarrow 0 \text {. }
$$

(ii) For every sequence of minimizers $\left\{\left(c_{\varepsilon_{k}}, u_{\varepsilon_{k}}\right)\right\}_{k \in \mathbb{N}} \subset H^{1}(\Omega) \times L^{2}\left(\Omega, \mathbb{R}^{n}\right)$ there exists a subsequence with

$$
\begin{aligned}
& c_{\varepsilon_{k_{j}}} \rightarrow c \quad \text { in } L^{2}(\Omega), \quad c \in L^{2}(\Omega) \cap B V\left(\Omega,\left\{c_{-}, c_{+}\right\}\right), \\
& u_{\varepsilon_{k_{j}}} \rightarrow u \text { in } H^{1}\left(\Omega, \mathbb{R}^{n}\right) .
\end{aligned}
$$

(iii) (c, u) is a global minimizer of E_{0}.

Local surface quantities

Theorem [Garcke \& Kraus 09]
Let the assumptions (A1) - (A4) be satisfied. Furthermore, let $\left(c_{\varepsilon}, u_{\varepsilon}\right)$ be a minimizer of E_{ε}. Then for each sequence $\left\{\varepsilon_{k}\right\}_{k \in \mathbb{N}}, \lim _{k \rightarrow \infty} \varepsilon_{k}=0$, with

$$
c_{\varepsilon_{k}} \rightarrow c \quad \text { in } \quad L^{1}(\Omega),
$$

there exists a subsequence $\left\{\varepsilon_{k}\right\}_{k \in \mathbb{N}}$ such that for a.e. $s \in\left[c_{-}, c_{+}\right]$:

$$
\begin{array}{ll}
* & \nabla \chi_{s, k} \rightarrow \nabla \chi_{\left\{c=c_{-}\right\}} \text {weakly* in } \Omega \\
* & \int_{\Omega} \sigma\left(x, s, \nu_{s, k}\right)\left|\nabla \chi_{s, k}\right| \rightarrow \int_{\Omega} \sigma(x, s, \nu)\left|\nabla \chi_{\left\{c=c_{-}\right\}}\right| \\
* & \left|\nabla \chi_{s, k}\right| \rightarrow \mu
\end{array}
$$

$$
\mu=\left|\nabla \chi_{\left\{c=c_{-}\right\}}\right|
$$

$\chi_{s, k}$: characteristic function of $\Omega_{s, k}=\left\{x \in \Omega: c_{\varepsilon_{k}}(x)<s\right\}$, $\nu_{s, k}$: outer unit normal of $\partial \Omega_{s, k}$.

Convergence of the Lagrange multipliers $\lambda_{\varepsilon_{k}}$

Theorem [Garcke \& Kraus 09]
Let the assumptions (A2) - (A4) be satisfied and let Ω be with C^{1}-boundary.
Furthermore, let $\left(c_{\varepsilon}, u_{\varepsilon}\right)$ be a minimizer of E_{ε}.
Then for each sequence $\left\{\varepsilon_{k}\right\}_{k \in \mathbb{N}}, \lim _{k \rightarrow \infty} \varepsilon_{k}=0$, with

$$
\begin{array}{lll}
c_{\varepsilon_{k}} \rightarrow c & \text { in } \quad L^{1}(\Omega), \\
u_{\varepsilon_{k}} \rightarrow u & \text { in } & L^{2}\left(\Omega, \mathbb{R}^{n}\right),
\end{array}
$$

the corresponding sequence of Lagrange multipliers $\left\{\lambda_{\varepsilon_{k}}\right\}_{k \in \mathbb{N}}$ converges, i. e.

$$
\lambda_{\varepsilon_{k}} \rightarrow \lambda,
$$

where λ is a Lagrange multiplier of the minimum problem for E_{0} with $\int_{\Omega} c d x=m$.
Euler-Lagarange equation for E_{0} :

$$
\begin{aligned}
\int_{I}\left(\sigma_{0}(x, \nu)\right. & \left.\nabla \cdot \xi+\sigma_{0, x}(x, \nu) \cdot \xi-\nu \cdot \nabla \xi \sigma_{0, p}(x, \nu)\right) d \mathcal{H}^{n-1} \\
& +\int_{\Omega}\left(W(c, \mathcal{E}(u)) I d-(\nabla u)^{T} W_{, \mathcal{E}}(c, \mathcal{E}(u)): \nabla \xi d x \quad=\lambda \int_{\Omega} c \nabla \cdot \xi d x\right.
\end{aligned}
$$

for all $\xi \in C^{1}\left(\bar{\Omega}, \mathbb{R}^{n}\right)$ with $\xi \cdot \nu_{\partial \Omega}=0$ on $\partial \Omega$.

Some aspects of the proof

Euler-Lagrange equation for E_{ε} :
$\int_{\Omega}\left(2 \varepsilon \sigma\left(x, c_{\varepsilon}, \nabla c_{\varepsilon}\right) \sigma_{, x}\left(x, c_{\varepsilon}, \nabla c_{\varepsilon}\right) \cdot \xi-2 \varepsilon \sigma\left(x, c_{\varepsilon}, \nabla c_{\varepsilon}\right) \nabla c_{\varepsilon} \cdot \nabla \xi \sigma_{, p}\left(c_{\varepsilon}, \nabla c_{\varepsilon}\right)\right.$
$\left.+\left(\varepsilon \sigma^{2}\left(x, c_{\varepsilon}, \nabla c_{\varepsilon}\right)+\frac{1}{\varepsilon} \psi\left(c_{\varepsilon}\right)\right) \nabla \cdot \xi+\left(W\left(c_{\varepsilon}, \mathcal{E}\left(u_{\varepsilon}\right)\right) I d-\left(\nabla u_{\varepsilon}\right)^{T} W_{, \mathcal{E}}\left(c_{\varepsilon}, \mathcal{E}\left(u_{\varepsilon}\right)\right)\right): \nabla \xi\right) d x$

Euler-Lagrange equation for E_{0} :

$$
=\lambda_{\varepsilon} \int_{\Omega} c_{\varepsilon} \nabla \cdot \xi d x
$$

$$
\begin{aligned}
& \int_{I}\left(\sigma_{0, x}(x, \nu) \cdot \xi-\nu \cdot \nabla \xi \sigma_{0, p}(x, \nu)+\sigma_{0}(x, \nu) \nabla \cdot \xi\right) d \mathcal{H}^{n-1} \\
& \quad+\int_{\Omega}\left(W(c, \mathcal{E}(u)) I d-(\nabla u)^{T} W_{, \mathcal{E}}(c, \mathcal{E}(u)): \nabla \xi d x=\lambda \int_{\Omega} c \nabla \cdot \xi d x\right.
\end{aligned}
$$

Generalized total variation (Amar \& Belletini 94/95): $f \in B V(\Omega)$ $\int_{\Omega}|\nabla f|_{\sigma(s)}=\sup \left\{\int_{\Omega} f \operatorname{div} \eta d x: \eta \in C_{c}^{1}(\Omega), \sigma^{*}(x, s, \eta) \leq 1\right\}, \quad \sigma^{*}$: dual function.
Integral formula

$$
\int_{\Omega}|\nabla f|_{\sigma(s)}=\int_{\Omega} \sigma\left(x, s, \nu_{f}\right)|\nabla f|, \quad \nu_{f}:=-\frac{\nabla f}{|\nabla f|}
$$

Some aspects of the proof

\triangleright Equipartition of energy

$$
\lim _{k \rightarrow \infty} \int_{\Omega}\left|\frac{1}{\varepsilon_{k}} \psi\left(c_{\varepsilon_{k}}\right)-\varepsilon_{k} \sigma^{2}\left(x, c_{\varepsilon_{k}}, \nabla c_{\varepsilon_{k}}\right)\right| d x=0
$$

\triangleright Local convergence properties There exists a subsequence $\left\{\varepsilon_{k}\right\}_{k \in \mathbb{N}}$ such that for a.e. $s \in\left[c_{-}, c_{+}\right]$:

$$
\begin{aligned}
& * \int_{\Omega} \nu_{s, k} \cdot \nabla \xi \sigma_{, p}\left(x, s, \nu_{s, k}\right)\left|\nabla \chi_{s, k}\right| \rightarrow \int_{\Omega} \nu \cdot \nabla \xi \sigma_{, p}(x, s, \nu)\left|\nabla \chi_{\left\{c=c_{-}\right\}}\right| \\
& * \int_{\Omega} \xi \cdot \sigma_{, x}\left(x, s, \nu_{s, k}\right)\left|\nabla \chi_{s, k}\right| \rightarrow \int_{\Omega} \xi \cdot \sigma_{, x}(x, s, \nu)\left|\nabla \chi_{\left\{c=c_{-}\right\}}\right|
\end{aligned}
$$

$\chi_{s, k}:$ characteristic function of $\Omega_{s, k}:=\left\{x \in \Omega: c_{\varepsilon_{k}}(x)<s\right\}$, $\nu_{s, k}$: outer unit normal of $\partial \Omega_{s, k}$.

Some aspects of the proof

- Wulff-shapes and their geometric properties

For all $x \in \Omega, s \in\left[c_{-}, c_{+}\right], \nu \in \mathbb{S}^{n-1}$ and all $p \in \mathbb{R}^{n} \backslash\{0\}$ with $\sigma^{*}(x, s, p) \leq 1$:

$$
C\left|\sigma_{, p}(x, s, \nu)-p\right|^{2} \leq \sigma(x, s, \nu)-p \cdot \nu
$$

\triangleright Construction of smooth approximative functions g_{s}^{δ}

$$
\text { suitable approximations } g_{s}^{\delta} \text { for }\left\{\begin{array}{l}
\text { phase-field quantities: } \sigma_{, p}\left(x, s, \nu_{s, k}\right) \\
\text { Cahn-Hoffman vector: } \sigma_{, p}(x, s, \nu)
\end{array}\right.
$$

Equilibrium conditions for E_{0}

Assumptions:

$$
E_{0}(c, u)=\int_{I} \sigma_{0}(x, \nu) d \mathcal{H}^{n-1}+\int_{\Omega} W(c, \mathcal{E}(u)) d x
$$

* Ω domain with C^{1}-boundary
* $I=\partial^{*} \Omega_{-}$is a C^{2}-hypersurface
* $\partial I \subset \partial \Omega$: finite number of $C^{1}-(\mathrm{n}-2)$ dim. hypersurfaces.
* $\left.u\right|_{\Omega_{-}} \in H^{2}\left(\Omega_{-}, \mathbb{R}^{n}\right)$ and $\left.u\right|_{\Omega_{+}} \in H^{2}\left(\Omega_{+}, \mathbb{R}^{n}\right)$

Necessary conditions:
$\triangleright \ln \Omega_{-}$and Ω_{+} $\nabla \cdot W_{, \mathcal{E}}\left(c_{-}, \mathcal{E}\left(u_{-}\right)\right)=0, \quad \nabla \cdot W_{, \mathcal{E}}\left(c_{+}, \mathcal{E}\left(u_{+}\right)\right)=0$
\triangleright On $\partial \Omega$

$$
W_{, \mathcal{E} \nu \partial \Omega}=0
$$

\triangleright On the interface I

$$
\left[W_{, \mathcal{E} \nu}\right]_{-}^{+}=0, \quad[u]_{-}^{+}=0
$$

Gibbs-Thomson law:
$-\sigma_{0, x} \cdot \nu_{-}-\nabla_{I} \cdot \sigma_{0, p}\left(x, \nu_{-}\right)+\nu\left[W I d-(\nabla u)^{T} W_{, \mathcal{E}}\right]_{-}^{+} \nu=\lambda[c]_{-}^{+}$
\triangleright On $\partial I \cap \partial \Omega$
Force balance: $\sigma_{0, p}(x, \nu) \cdot \nu_{\partial \Omega}=0$

Overview

Phase-field energy functional

$$
E_{\varepsilon}(c, u)=\int_{\Omega}\left(\varepsilon \sigma^{2}(x, c, \nabla c)+\frac{1}{\varepsilon} \psi(c)+W(c, \mathcal{E}(u))\right) d x
$$

Chemical potential

$$
\begin{aligned}
& w_{\varepsilon}=\frac{\delta E_{\varepsilon}}{\delta c}=-2 \varepsilon \nabla \cdot\left(\sigma(x, c, \nabla c) \sigma_{, p}(x, c, \nabla c)\right)+2 \varepsilon \sigma(x, c, \nabla c) \sigma_{, c}(x, c, \nabla c) \\
&+\frac{1}{\varepsilon} \psi_{, c}(c)+W_{, c}(c, \mathcal{E}(u))
\end{aligned}
$$

Sharp interface limit $\downarrow \varepsilon \rightarrow 0$ for global minimizers
Sharp interface energy functional

$$
E_{0}(c, u)=\int_{I} \sigma_{0}(x, \nu) d \mathcal{H}^{n-1}+\int_{\Omega} W(c, \mathcal{E}(u)) d x
$$

Chemical potential
Gibbs-Thomson law

$$
w_{0}=\frac{\delta E_{0}}{\delta c}=\left(-\sigma_{0, x}(x, \nu) \cdot \nu-\nabla_{I} \cdot \sigma_{0, p}(x, \nu)+\nu\left[W I d-(\nabla u)^{T} W_{, \mathcal{E}}\right]_{-}^{+} \nu\right) /\left(c_{+}-c_{-}\right)
$$

