The Dirichlet problem

 for non-divergence parabolic equations with discontinuous in time coefficients in a wedgeVladimir Kozlov

(Linköping University, Sweden)

$$
2010
$$

$$
L u \equiv \partial_{t} u-a^{i j}(t) D_{i} D_{j} u=f
$$

$a^{i j}$ are measurable real valued functions of t satisfying $a^{i j}=a^{j i}$ and

$$
\nu|\xi|^{2} \leqslant a^{i j} \xi_{i} \xi_{j} \leqslant \nu^{-1}|\xi|^{2}, \quad \xi \in \mathbb{R}^{n}
$$

$\nu=$ const >0. We use the space $L_{p, q}(\Omega \times \mathbb{R})$ with the norm

$$
\|f\|_{p, q}=\left(\int_{\mathbb{R}}\left(\int_{\Omega}|f(x, t)|^{p} d x\right)^{q / p} d t\right)^{1 / q}
$$

N.V. Krylov (2001): for $f \in L_{p, q}\left(\mathbb{R}^{n} \times \mathbb{R}\right), 1<$ $p, q<\infty$, equation (1) has a unique solution s.t.

$$
\left\|\partial_{t} u\right\|_{p, q}+\sum_{i j}\left\|D_{i} D_{j} u\right\|_{p, q} \leq C\|f\|_{p, q}
$$

He proved also coercive estimates for u in spaces $L^{q}\left(\mathbb{R} ; C^{2+\alpha}\right), \alpha \in(0,1)$.

The Dirichlet BVP in the half-space $\mathbb{R}_{+}^{n}=\left\{x=\left(x^{\prime}, x_{n}\right) \in \mathbb{R}^{n}: x_{n}>0\right\}$.

Now equation (1) is satisfied for $x_{n}>0$ and $u=$ 0 for $x_{n}=0$. The weighted coercive estimate

$$
\begin{equation*}
\left\|x_{n}^{\mu} \partial_{t} u\right\|_{p, q}+\sum_{i j}\left\|x_{n}^{\mu} D_{i} D_{j} u\right\|_{p, q} \leq C\left\|x_{n}^{\mu} f\right\|_{p, q} \tag{2}
\end{equation*}
$$

was proved by Krylov (2001), with $1<p, q<\infty$ and $\mu \in(1-1 / p, 2-1 / p)$.

In

Vladimir Kozlov and Alexander Nazarov, The Dirichlet problem for non-divergence parabolic equations with discontinuous in time coefficients, Math. Nachr. 282 (2009), No. 9, 1220 1241.
estimate (2) is proved for solutions of the Dirichlet problem to (1) for the same p, q and

$$
-1 / p<\mu<2-1 / p
$$

Remarks In the paper [2007] Krylov and Kim proved, in particular, estimate (2) in the halfspace for $\mu=0$ and $p=q$. In
D. Kim, Parabolic Equations with Partially BMO Coefficients and Boundary Value Problems in Sobolev Spaces with Mixed Norms, Potential Anal., published on line in 2009.
estimate (2) is proved for $\mu=0$ and arbitrary $1<p, q<\infty$.

Dirichlet problem in bounded domain Ω

Let $Q=\Omega \times \mathbb{R}$. We introduce the spaces $\mathbb{L}_{p, q,(\mu)}(Q)$ with the norm

$$
\|f\|_{p, q,(\mu)}=\left\|(\widehat{d}(x))^{\mu} f\right\|_{p, q}
$$

where $\widehat{d}(x)$ is the distance from $x \in \Omega$ to $\partial \Omega$.
We consider the boundary value problem

$$
\begin{gathered}
\partial_{t} u-a^{i j}(x, t) D_{i} D_{j} u+b^{i}(x, t) D_{i} u=f(x, t) \text { in } Q \\
\left.u\right|_{\partial^{\prime} Q}=0 ;
\end{gathered}
$$

the matrix $\left(a^{i j}\right) \in \mathcal{C}\left(\bar{\Omega} \rightarrow L^{\infty}(0, T)\right)$ is symmetric and uniformly elliptic. Here ∂Q is the boundary of Q.
K.-N.,2009:Let $\partial \Omega \in \mathcal{C}^{1, \delta}$ with $\delta \in[0,1], 1<p, q<\infty$, and let $1-\delta-\frac{1}{p}<\mu<2-\frac{1}{p}$. Then, for b^{i} in a suitable class and for any $f \in \mathbb{L}_{p, q,(\mu)}(Q)$, the above problem has a unique solution in $L_{p, q,(\mu)}(Q)$. Moreover, this solution satisfies

$$
\left\|\partial_{t} u\right\|_{p, q,(\mu)}+\sum_{i j}\left\|D_{i} D_{j} u\right\|_{p, q,(\mu)} \leqslant C\|f\|_{p, q,(\mu)}
$$

Remarks. For $p=q$ and $\delta=0$ this theorem was proved by Kim and Krylov (2004).

Coercive estimates for the heat equation with constant coefficients in a wedge.

Conical points

1. V. A. Kozlov and V. G.Maz'ya, On singularities of a solution to the first boundary-value problem for the heat equation in domains with conical points, Izv. Vyssh. Uchebn. Zaved., Ser. Mat., No. 2, 38-46 (1987) and No.3, 3744 (1987).
2. V. A. Kozlov, On asymptotic of the Green function and the Poisson kernels of the mixed parabolic problem in a cone, Zeitschr. Anal. Anw., 8 (1989), No. 2, 131-151 and 10 (1991), No. 1, 27-42.

Dihedral angles and wedges

5. Solonnikov, V. A., L_{p}-estimates for solutions of the heat equation in a dihedral angle, Rend. Mat. Appl. (7) 21 (2001), N1-4, 1-15.
6. Nazarov, A. I., L_{p}-estimates for a solution to the Dirichlet problem and to the Neumann problem for the heat equation in a wedge with edge of arbitrary codimension, Probl. Mat. Anal., 22 (2001), 126-159 (Russian); English transl.: J. Math. Sci., 106 (2001), N3, 2989-3014.

We use the notation $\left(x^{\prime}, x^{\prime \prime}\right) \in \mathbb{R}^{n}$, where $x^{\prime} \in \mathbb{R}$ and $x^{\prime \prime} \in \mathbb{R}^{n-m}$. Let K be a cone in \mathbb{R}^{m} such that the boundary $\partial K \backslash \mathcal{O}$ is of class C^{2}. We put $\mathcal{K}=K \times \mathbb{R}^{n-m}$. For $\mu \in \mathbb{R}$ and $1<p, q<\infty$ we introduce spaces $L_{p, q, \mu}=L_{p, q, \mu}(\mathcal{K} \times \mathbb{R})$ with the norm

$$
\|u\|_{p, q, \mu}=\left(\int_{\mathbb{R}}\left(\int_{\mathcal{K}}\left|x^{\prime}\right|^{\mu p}|u(x, t)|^{p} d x\right)^{q / p} d t\right)^{1 / q}
$$

Let also

$$
Q_{R}^{\mathcal{K}}\left(t_{0}\right)=\left(B_{R}(0) \cap \mathcal{K}\right) \times\left(t_{0}-R^{2}, t_{0}\right)
$$

where $B_{R}\left(x_{0}\right)$ is the ball $\left|x-x_{0}\right|<R$.

By $V\left(Q_{R}^{K}\left(t_{0}\right)\right)$ we denote the set of functions u with finite norm

$$
\begin{aligned}
& \|u\|_{V\left(Q_{R}^{K}\left(t_{0}\right)\right)}=\sup _{\tau \in\left(t_{0}-R^{2}, t_{0}\right)}\|u(\tau, \cdot)\|_{L^{2}\left(B_{R}(0) \cap \mathcal{K}\right)} \\
& +\left\|D_{x} u\right\|_{\left.L^{2}\left(Q_{R}^{K}\left(t_{0}\right)\right)\right)} \\
& +\int_{t_{0}-R^{2}}^{t_{0}}\left\|D_{t} u(t, \cdot)\right\|_{W^{-1}\left(B_{R}(0) \cap \mathcal{K}\right)} d t .
\end{aligned}
$$

We define the critical exponent for the operator L and the wedge \mathcal{K} as the supremum of all λ such that

$$
\begin{equation*}
|u(x, t)| \leq C_{\lambda}\left(\frac{|x|}{R}\right)^{\lambda} \sup _{(y, \tau) \in Q_{R}^{K}\left(t_{0}\right)}|u(y, \tau)| \tag{4}
\end{equation*}
$$

for $(x, t) \in Q_{R / 2}^{K}\left(t_{0}\right)$. This inequality must be satisfied for all $t_{0}, R>0$ and $u \in V\left(Q_{R}^{K}\left(t_{0}\right)\right)$ subject to

$$
\begin{equation*}
L u=0 \quad \text { in } Q_{R}^{K}\left(t_{0}\right) \tag{5}
\end{equation*}
$$

and

$$
u=0 \quad \text { on } Q_{R}^{K}\left(t_{0}\right) \cap \partial \mathcal{K} \times \mathbb{R}
$$

We shall denote this critical exponent by λ_{c}. Since $\lambda=0$ satisfies (4) we conclude that $\lambda_{c} \geq 0$. Below we give some estimates for λ_{c} for various geometries of K.

Estimates for the critical exponent

1. Using weighted energy estimates one can show that

$$
\lambda_{c} \geq \frac{2-m}{2}+\nu \sqrt{\Lambda_{D}+(m-2)^{2} / 4}
$$

where Λ_{D} is the first positive eigenvalue of the Dirichlet-Laplacian on $K \cap S^{m-1}$.
2. Using barrier technique one can show that
a) the critical exponent is positive provided the complement of \bar{K} is non-empty;
b) if K is contained in a half-space then $\lambda_{c}>1$.
3). If $L=\partial_{t}-\Delta$ then

$$
\lambda_{c}=\frac{2-m}{2}+\sqrt{\Lambda_{D}+(m-2)^{2} / 4}
$$

Theorem Let λ_{c} be the critical exponent. Then for

$$
\left|\mu+\frac{n}{p}-\frac{m+2}{2}\right|<\lambda_{c}+\frac{m-2}{2}
$$

the following estimate holds:

$$
\left\|u_{t}\right\|_{p, q, \mu}+\|\nabla \nabla u\|_{p, q, \mu} \leq C\|f\|_{p, q, \mu}
$$

For $\delta>0$ we define $K_{\delta}=\left\{x^{\prime} \in K\right.$: $\left.\operatorname{dist}\left(x^{\prime}, \partial K\right)>\delta\left|x^{\prime}\right|\right\}$ and $\mathcal{K}_{\delta}=K_{\delta} \times \mathbb{R}$.

The next statement can be found (up to scaling) in [LSU].
Proposition 1. (i)Let $u \in W^{2,1}\left(Q_{R}\left(x_{0}, t_{0}\right)\right)$ solve the equation $L u=0$ in $Q_{R}\left(x_{0}, t_{0}\right)$. Then

$$
|D u| \leqslant \frac{C}{R} \sup _{Q_{R}\left(x_{0}, t_{0}\right)}|u| \quad \text { in } \quad Q_{R / 2}\left(x_{0}, t_{0}\right)
$$

(ii) For sufficiently small $\delta>0, x_{0}^{\prime} \in K \backslash K_{\delta}$ and $\left|x_{0}^{\prime}\right|=1$ the following assertion is valid. Let $u \in W_{2}^{2,1}\left(Q_{R}^{+}\left(x_{0}, t_{0}\right)\right)$ solve the equation $L u=0$ in $Q_{R}^{+}\left(x_{0}, t_{0}\right)$, where $R \leq 1 / 2$, and let $u(x, t)=0$ for $x \in \partial \mathcal{K}$. Then

$$
|D u| \leqslant \frac{C}{R} \sup _{Q_{R}^{+}\left(x_{0}, t_{0}\right)}|u| \quad \text { in } \quad Q_{R / 2}^{+}\left(x_{0}, t_{0}\right)
$$

Here C depends only on ν and K and δ.

We used the notations

$$
Q_{R}\left(x_{0}, t_{0}\right)=B_{R}\left(x_{0}\right) \times\left(t_{0}-R^{2}, t_{0}\right)
$$

and

$$
Q_{R}^{+}\left(x_{0}, t_{0}\right)=\left(B_{R}\left(x_{0}\right) \cap \mathcal{K}\right) \times\left(t_{0}-R^{2}, t_{0}\right)
$$

Iterating the inequality from Proposition (i) we arrive at
Lemma 1. Let $u \in W_{2}^{2,1}\left(Q_{R}\left(x_{0}, t_{0}\right)\right)$ solve the equation $L u=0$ in $Q_{R}\left(x_{0}, t_{0}\right)$. Then

$$
\left|D^{\alpha} u\right| \leqslant \frac{C}{R^{|\alpha|}} \sup _{Q_{R}\left(x_{0}, t_{0}\right)}|u| \quad \text { in } \quad Q_{R / 2}\left(x_{0}, t_{0}\right) .
$$

Next Lemma is actually proved in [KN]. Lemma 2. For sufficiently small $\delta>0, x_{0}^{\prime} \in$ $K \backslash K_{\delta}, x_{0}^{\prime \prime} \in \mathbb{R}^{n-m}$ and $\left|x_{0}^{\prime}\right|=1$ the following assertion is valid. Let $u \in W_{2}^{2,1}\left(Q_{R}^{+}\left(x_{0}, t_{0}\right)\right)$ solve the equation $L u=0$ in $Q_{R}^{+}\left(x_{0}, t_{0}\right)$, where $R<$ $1 / 2$, and let $u(x, t)=0$ for $x \in \partial \mathcal{K}$. For $|\alpha| \geqslant 2$ and arbitrary small $\varepsilon>0$

$$
\begin{equation*}
d(x)^{|\alpha|-2+\varepsilon}\left|D_{x}^{\alpha} u\right| \leqslant \frac{C}{R^{2-\varepsilon}} \sup _{Q_{R}^{+}\left(x_{0}, t_{0}\right)}|u| \tag{6}
\end{equation*}
$$

in $Q_{R / \delta^{|\alpha|}}^{+}\left(x_{0}, t_{0}\right)$, where C is a positive constant depending on $\nu,|\alpha|, K, \delta$ and ε.

Green's function in $\mathcal{K} \times \mathbb{R}$

Let us consider (1) in the whole space. Using the Fourier transform with respect to x we obtain:

$$
\begin{equation*}
u(x, t)=\int_{-\infty}^{t} \int_{\mathbb{R}^{n}} \Gamma(x, y ; t, s) f(y, s) d s \tag{7}
\end{equation*}
$$

where Γ is the Green function of the operator \mathcal{L}_{0} given by

$$
\begin{aligned}
& \Gamma(x, y ; t, s)=\frac{\operatorname{det}\left(\int_{s}^{t} A(\tau) d \tau\right)^{-\frac{1}{2}}}{(4 \pi)^{\frac{n}{2}}} \\
& \times \exp \left(-\frac{\left(\left(\int_{s}^{t} A(\tau) d \tau\right)^{-1}(x-y),(x-y)\right)}{4}\right)
\end{aligned}
$$

for $t>s$ and 0 otherwise. Here by $A(t)$ is denoted the matrix $\left\{a_{i j}(t)\right\}$. The above representation implies:

$$
\begin{align*}
& \left|\partial_{t}^{k} D_{x}^{\alpha} D_{y}^{\beta} \Gamma(x, y ; t, s)\right| \leq \frac{C_{k, \alpha, \beta}}{(t-s)^{(n+2 k+|\alpha|+|\beta|) / 2}} \\
& \times \exp \left(-\frac{\sigma|x-y|^{2}}{t-s}\right) \tag{8}
\end{align*}
$$

where $k \leq 1$ and α and β are arbitrary indexes. Here σ is a positive constant depending on ν.

We denote by $\Gamma_{\mathcal{K}}=\Gamma_{\mathcal{K}}(x, y ; t, s)$ Green's function to the homogeneous Dirichlet problem of (1), in the half-space. Clearly, $\Gamma_{\mathcal{K}}(x, y ; t, s) \leq$ $\Gamma(x, y ; t, s)$ and therefore

$$
\begin{equation*}
\Gamma_{\mathcal{K}}(x, y ; t, s) \leq \frac{C}{(t-s)^{n / 2}} \exp \left(-\frac{\sigma|x-y|^{2}}{t-s}\right) \quad \text { in } \mathcal{K} \times \mathbb{R} \tag{9}
\end{equation*}
$$

We shall use the notations

$$
\mathcal{R}_{x}=\frac{\left|x^{\prime}\right|}{\left|x^{\prime}\right|+\sqrt{t-s}}, \quad \mathcal{R}_{y}=\frac{\left|y^{\prime}\right|}{\left|y^{\prime}\right|+\sqrt{t-s}}
$$

and
$r_{x}=\frac{d(x)\left(\left|x^{\prime}\right|+\sqrt{t-s}\right)}{\left|x^{\prime}\right| \sqrt{t-s}}, \quad r_{y}=\frac{d(y)\left(\left|y^{\prime}\right|+\sqrt{t-s}\right)}{\left|y^{\prime}\right| \sqrt{t-s}}$,
where $d(x)$ is the distance from x to the boundary $\partial \mathcal{K}$.

Proposition 2. The following inequality

$$
\left|\Gamma_{\mathcal{K}}(x, y ; t, s)\right| \leqslant C \mathcal{R}_{x}^{\lambda} \mathcal{R}_{y}^{\lambda}(t-s)^{-n / 2} \exp \left(-\frac{\sigma_{1}|x-y|^{2}}{t-s}\right)
$$

holds for $x, y \in \mathcal{K}$ and $s<t$. Here σ_{1} is a positive constant depending only on the ellipticity constant ν and C may depend on ν and λ.

The proof of this proposition and the next theorem essentially uses the above local estimates and the definition of the critical exponent.

Theorem 1. Let $|\alpha|,|\beta| \leq 2$. For $x, y \in \mathcal{K}, 0 \leqslant$ $s<t$ the following estimate is valid

$$
\begin{align*}
& \left|D_{x}^{\alpha} D_{y}^{\beta} \Gamma_{\mathcal{K}}(x, y ; t ; s)\right| \leqslant C \mathcal{R}_{x}^{\lambda-|\alpha|} \mathcal{R}_{y}^{\lambda-|\beta|} r_{x}^{-\varepsilon} r_{y}^{-\varepsilon} \\
& (t-s)^{-\frac{n+|\alpha|+|\beta|}{2}} \exp \left(-\frac{\sigma_{1}|x-y|^{2}}{t-s}\right), \tag{11}
\end{align*}
$$

where σ_{1} is a positive constant depending on ν, ε is an arbitrary small positive number and C may depend on ν, α, β and ε. If $|\alpha| \leqslant 1$ (or $|\beta| \leqslant 1$) then the factor $r_{x}^{-\varepsilon}\left(r_{y}^{-\varepsilon}\right)$ must be removed from the right-hand side respectively.

