
The Dirichlet problem

for non-divergence

parabolic equations

with discontinuous

in time coefficients in a

wedge

Vladimir Kozlov
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Lu ≡ ∂tu− aij(t)DiDju = f, (1)

aij are measurable real valued functions of t sat-

isfying aij = aji and

ν|ξ|2 6 aijξiξj 6 ν−1|ξ|2, ξ ∈ Rn

ν = const > 0. We use the space Lp,q(Ω × R)
with the norm

‖f‖p,q =
( ∫

R

( ∫
Ω
|f(x, t)|pdx

)q/p
dt

)1/q
.

N.V. Krylov (2001): for f ∈ Lp,q(Rn × R), 1 <

p, q <∞, equation (1) has a unique solution s.t.

‖∂tu‖p,q +
∑
ij
‖DiDju‖p,q ≤ C‖f‖p,q .

He proved also coercive estimates for u

in spaces Lq(R;C2+α), α ∈ (0,1).



The Dirichlet BVP in the half-space

Rn+ = {x = (x′, xn) ∈ Rn : xn > 0}.

Now equation (1) is satisfied for xn > 0 and u =
0 for xn = 0. The weighted coercive estimate

‖xµn∂tu‖p,q +
∑
ij

‖xµnDiDju‖p,q ≤ C‖xµnf‖p,q , (2)

was proved by Krylov (2001), with 1 < p, q <∞
and µ ∈ (1− 1/p,2− 1/p).
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estimate (2) is proved for solutions of the Dirich-

let problem to (1) for the same p, q and

−1/p < µ < 2− 1/p . (3)



Remarks In the paper [2007] Krylov and Kim

proved, in particular, estimate (2) in the half-

space for µ = 0 and p = q. In

D. Kim, Parabolic Equations with Partially BMO

Coefficients and Boundary Value Problems in

Sobolev Spaces with Mixed Norms, Potential

Anal., published on line in 2009.

estimate (2) is proved for µ = 0 and arbitrary

1 < p, q <∞.



Dirichlet problem in bounded do-
main Ω

Let Q = Ω× R. We introduce the spaces Lp,q,(µ)(Q) with

the norm

‖f‖p,q,(µ) = ‖(d̂(x))µf‖p,q,

where d̂(x) is the distance from x ∈ Ω to ∂Ω.

We consider the boundary value problem

∂tu− aij(x, t)DiDju+ bi(x, t)Diu = f(x, t) in Q;

u|∂′Q = 0;

the matrix (aij) ∈ C(Ω→ L∞(0, T )) is symmetric and uni-
formly elliptic. Here ∂Q is the boundary of Q.

K.-N.,2009:Let ∂Ω ∈ C1,δ with δ ∈ [0,1], 1 < p, q < ∞,

and let 1 − δ − 1
p
< µ < 2 − 1

p
. Then, for bi in a suitable

class and for any f ∈ Lp,q,(µ)(Q), the above problem has

a unique solution in Lp,q,(µ)(Q). Moreover, this solution

satisfies

‖∂tu‖p,q,(µ) +
∑
ij

‖DiDju‖p,q,(µ) 6 C‖f‖p,q,(µ),

Remarks. For p = q and δ = 0 this theorem

was proved by Kim and Krylov (2004).
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We use the notation (x′, x′′) ∈ Rn, where x′ ∈ R
and x′′ ∈ Rn−m. Let K be a cone in Rm such

that the boundary ∂K \O is of class C2. We put

K = K × Rn−m. For µ ∈ R and 1 < p, q < ∞ we

introduce spaces Lp,q,µ = Lp,q,µ(K × R) with the

norm

||u||p,q,µ =
( ∫

R

( ∫
K
|x′|µp|u(x, t)|pdx

)q/p
dt

)1/q

Let also

QKR(t0) =
(
BR(0) ∩ K

)
× (t0 −R2, t0)

where BR(x0) is the ball |x− x0| < R.



By V (QKR (t0)) we denote the set of functions u

with finite norm

||u||
V (QKR (t0)) = sup

τ∈(t0−R2,t0)
||u(τ, ·)||L2(BR(0)∩K)

+||Dxu||L2(QKR (t0)))

+
∫ t0
t0−R2

||Dtu(t, ·)||W−1(BR(0)∩K)dt.

We define the critical exponent for the operator

L and the wedge K as the supremum of all λ

such that

|u(x, t)| ≤ Cλ
(|x|
R

)λ
sup

(y,τ)∈QKR (t0)
|u(y, τ)| (4)

for (x, t) ∈ QKR/2(t0). This inequality must be

satisfied for all t0, R > 0 and u ∈ V (QKR (t0))

subject to

Lu = 0 in QKR (t0) (5)

and

u = 0 on QKR (t0) ∩ ∂K× R.

We shall denote this critical exponent by λc.

Since λ = 0 satisfies (4) we conclude that

λc ≥ 0. Below we give some estimates for λc
for various geometries of K.



Estimates for the critical expo-
nent

1. Using weighted energy estimates one can

show that

λc ≥
2−m

2
+ ν

√
ΛD + (m− 2)2/4,

where ΛD is the first positive eigenvalue of the

Dirichlet-Laplacian on K ∩ Sm−1.

2. Using barrier technique one can show that

a) the critical exponent is positive provided the

complement of K is non-empty;

b) if K is contained in a half-space then λc > 1.

3). If L = ∂t −∆ then

λc =
2−m

2
+
√

ΛD + (m− 2)2/4



Theorem Let λc be the critical exponent. Then

for ∣∣∣∣µ+
n

p
−
m+ 2

2

∣∣∣∣ < λc +
m− 2

2

the following estimate holds:

||ut||p,q,µ + ||∇∇u||p,q,µ ≤ C||f ||p,q,µ



For δ > 0 we define Kδ = {x′ ∈ K :

dist(x′, ∂K) > δ|x′|} and Kδ = Kδ × R.

The next statement can be found (up to scaling)

in [LSU].

Proposition 1. (i)Let u ∈W2,1(QR(x0, t0)) solve

the equation Lu = 0 in QR(x0, t0) . Then

|Du| 6
C

R
sup

QR(x0,t0)
|u| in QR/2(x0, t0).

(ii) For sufficiently small δ > 0, x′0 ∈ K \Kδ and

|x′0| = 1 the following assertion is valid. Let

u ∈W2,1
2 (Q+

R (x0, t0)) solve the equation Lu = 0

in Q+
R (x0, t0), where R ≤ 1/2, and let u(x, t) = 0

for x ∈ ∂K. Then

|Du| 6
C

R
sup

Q+
R (x0,t0)

|u| in Q+
R/2(x0, t0).

Here C depends only on ν and K and δ.

We used the notations

QR(x0, t0) = BR(x0)× (t0 −R2, t0)

and

Q+
R (x0, t0) =

(
BR(x0) ∩ K

)
× (t0 −R2, t0).



Iterating the inequality from Proposition (i) we

arrive at

Lemma 1. Let u ∈ W
2,1
2 (QR(x0, t0)) solve the

equation Lu = 0 in QR(x0, t0). Then

|Dαu| 6
C

R|α|
sup

QR(x0,t0)
|u| in QR/2(x0, t0).

Next Lemma is actually proved in [KN].

Lemma 2. For sufficiently small δ > 0, x′0 ∈
K \ Kδ, x′′0 ∈ Rn−m and |x′0| = 1 the following

assertion is valid. Let u ∈W2,1
2 (Q+

R (x0, t0)) solve

the equation Lu = 0 in Q+
R (x0, t0), where R <

1/2, and let u(x, t) = 0 for x ∈ ∂K. For |α| > 2

and arbitrary small ε > 0

d(x)|α|−2+ε|Dα
xu| 6

C

R2−ε sup
Q+
R (x0,t0)

|u| , (6)

in Q+
R/8|α|

(x0, t0), where C is a positive constant

depending on ν, |α|, K, δ and ε.



Green’s function in K× R

Let us consider (1) in the whole space. Using

the Fourier transform with respect to x we ob-

tain:

u(x, t) =

t∫
−∞

∫
Rn

Γ(x, y; t, s)f(y, s) ds, (7)

where Γ is the Green function of the operator

L0 given by

Γ(x, y; t, s) =
det

( ∫ t
s A(τ)dτ

)−1
2

(4π)
n
2

× exp

(
−

(( ∫ t
s A(τ)dτ

)−1
(x− y), (x− y)

)
4

)
for t > s and 0 otherwise. Here by A(t) is de-

noted the matrix {aij(t)}. The above represen-

tation implies:∣∣∣∣∂ktDα
xD

β
yΓ(x, y; t, s)

∣∣∣∣ ≤ Ck,α,β

(t− s)(n+2k+|α|+|β|)/2

× exp

(
−
σ|x− y|2

t− s

)
, (8)

where k ≤ 1 and α and β are arbitrary indexes.

Here σ is a positive constant depending on ν.



We denote by ΓK = ΓK(x, y; t, s) Green’s func-

tion to the homogeneous Dirichlet problem of

(1), in the half-space. Clearly, ΓK(x, y; t, s) ≤
Γ(x, y; t, s) and therefore

ΓK(x, y; t, s) ≤
C

(t− s)n/2
exp

(
−
σ|x− y|2

t− s

)
in K× R.

(9)

We shall use the notations

Rx =
|x′|

|x′|+
√
t− s

, Ry =
|y′|

|y′|+
√
t− s

and

rx =
d(x)(|x′|+

√
t− s)

|x′|
√
t− s

, ry =
d(y)(|y′|+

√
t− s)

|y′|
√
t− s

,

where d(x) is the distance from x to the bound-

ary ∂K.



Proposition 2. The following inequality

|ΓK(x, y; t, s)| 6 CRλxRλy(t−s)−n/2 exp

(
−
σ1|x− y|2

t− s

)
(10)

holds for x, y ∈ K and s < t. Here σ1 is a pos-

itive constant depending only on the ellipticity

constant ν and C may depend on ν and λ.

The proof of this proposition and the next the-

orem essentially uses the above local estimates

and the definition of the critical exponent.



Theorem 1. Let |α|, |β| ≤ 2. For x, y ∈ K, 0 6
s < t the following estimate is valid

|Dα
xD

β
yΓK(x, y; t; s)| 6 CRλ−|α|x Rλ−|β|y r−εx r−εy

(t− s)−
n+|α|+|β|

2 exp

(
−
σ1|x− y|2

t− s

)
, (11)

where σ1 is a positive constant depending on ν, ε

is an arbitrary small positive number and C may

depend on ν, α, β and ε. If |α| 6 1 (or |β| 6 1)

then the factor r−εx (r−εy ) must be removed from

the right-hand side respectively.


