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Boundary Value Problems

Elliptic boundary value problems

Ω: domain in Rn (n ≥ 2), i.e. bounded and conected.
We consider
• corner domains, e.g. polygons if n = 2, polyhedra if n = 3,
• and also smooth domains

L: second order elliptic operator or system with smooth coefficients.
Example: L = ∆ (Laplacian), L = Lamé system (elasticity)

B: operator of order k = 0 or 1 with smooth coeff. which “covers” L on ∂Ω
Example: B = Id (Dirichlet, k = 0),

B = conormal derivative associated with L (Neumann, k = 1)

Problem :

Given f , find u

(BVP)

{
Lu = f in Ω
Bu = 0 on ∂Ω.
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Sobolev Regularity Shift

Sobolev Regularity Shift for Smooth Domains

Sobolev spaces

Hm(Ω) = {v ∈ D ′(Ω) : ∂α
x v ∈ L2(Ω), |α| ≤ m}

Theorem: [AGMON-DOUGLIS-NIRENBERG 1959, 1964]

Let Ω be a smooth domain.
Let m ≥ 2. If u ∈ H2(Ω) solves (BVP) with

f ∈ Hm−2(Ω)

then u ∈ Hm(Ω) with estimates

‖u‖Hm(Ω)
≤ C

{
‖f‖Hm−2(Ω)

+ ‖u‖H1(Ω)

}
.

Remark

If (BVP) has a coercive variational formulation in V ⊂ H1(Ω), the above
statement holds for u ∈ H1(Ω).
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Sobolev Regularity Shift

Case of corner domains

Let Ω be a domain with conical points.

The Sobolev regularity shift does not hold in general, due to the presence
of singular functions.

Nevertheless, using Sobolev-Slobodeckii spaces Hs(Ω) with real exponents:

Theorem: [KONDRAT’EV 1967] [DAUGE 1988]

Let (BVP) have a coercive variational formulation in V ⊂ H1(Ω).
Then there exists sΩ,L,B > 0 such that the following regularity holds:

∀s, 0 < s < sΩ,L,B , s 6= 1
2 , variational solutions u of (BVP) satisfy

f ∈ Hs−1(Ω) =⇒ u ∈ Hs+1(Ω)

NB If s < 1
2 , the problem does not have the form (BVP) and the RHS has

to be defined in variational form and set in the correct dual space.
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Weighted Regularity for Corner Domains

Homogeneous Weighted Sobolev spaces

Let C be the set of corners the c of Ω.
Weight := powers of r(x) = minc∈C |x − c|
Weight exponent := β ∈ R
Homogeneous weighted Sobolev spaces
KONDRAT’EV, MAZ’YA-PLAMENEVSKII, NAZAROV, ROSSMANN

Km
β (Ω) = {v ∈ D ′(Ω) : r(x)|α|+β︸ ︷︷ ︸

depending on α

∂α
x v ∈ L2(Ω), |α| ≤ m}

Theorem: [KONDRAT’EV 1967] + [Co-Da-Ni 2010]

Assume the coercive variational setting.

If the variational space V is embedded in K1
−1(Ω), there exists

bΩ,L,B > 0 such that the following regularity holds:

∀b, 0 ≤ b < bΩ,L,B and ∀m ≥ 1

u ∈ V and f ∈ Km−1
−b+1(Ω) =⇒ u ∈ Km+1

−b−1(Ω)
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Weighted Regularity for Corner Domains

Non-Homogeneous Weighted Sobolev spaces

Weight := powers of r(x) = minc∈C |x − c|
Weight exponent := β ∈ R

Non-Homogeneous weighted Sobolev spaces
MAZ’YA-PLAMENEVSKII, NAZAROV, ROSSMANN

Jm
β (Ω) = {v ∈ D ′(Ω) : r(x)m+β︸ ︷︷ ︸

independent of α

∂α
x v ∈ L2(Ω), |α| ≤ m}

Theorem: [MAZ’YA-PLAMENEVSKII 1984]

Assume the coercive variational setting.

There exists b∗Ω,L,B > 0 such that the following regularity holds.

∀b, 0 < b < b∗Ω,L,B ∀m ≥ 1, variational sol. u of (BVP) satisfy

f ∈ Jm−1
−b+1(Ω) =⇒ u ∈ Jm+1

−b−1(Ω)
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Weighted Regularity for Corner Domains

Compare results

1 The assumption V ⊂ K1
−1(Ω) means that u ∈ V⇒ u/r ∈ L2(Ω).

It is satisfied for any BC if n ≥ 3 and for Dirichlet BC if n = 2.

2 The statement in J-spaces is valid for any BC, in particular Neumann
BC for n = 2.

3 We have identity Jm
−m(Ω) = Hm(Ω) and equality sΩ,L,B = b∗Ω,L,B .

4 Statements in K-spaces and J-spaces are valid for all m ∈ N. Hence
the possibility of statements with m = +∞.

5 If Ω has an analytic boundary, the analytic regularity shift holds.

6 In cormer domains with analytic corners, the only hope for an analytic
regularity shift is an analytic limit of Kβ and Jβ families.
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Results

Analytic regularity shift in smooth domains

Theorem: [MORREY-NIRENBERG 1957]

Assume

∂Ω is analytic,

the coefficients of L and B are analytic,

the rhs f is analytic: f ∈ A(Ω),

then u solution of (BVP) is analytic: u ∈ A(Ω).

A recent improvement is the proof of analytic estimates

i.e. the Cauchy-type control of constants in the “standard” estimate

‖u‖Hm(Ω)
≤ C(m)

{
‖f‖Hm−2(Ω)

+ ‖u‖H1(Ω)

}
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Results

Global analytic estimates

Theorem: [COSTABEL-DAUGE-NICAISE 2010]

Assume

∂Ω is analytic,

the coefficients of L and B are analytic,

the rhs f ∈ Hm−2(Ω) for some m ≥ 2.

Then u satisfies the a priori estimates of analytic type, k = 0, 1, . . . ,m

1
k!

∑
|α|=k

‖∂α
x u‖L2(Ω)

≤ Ak+1
{ k−2∑
`=0

1
`!

∑
|α|=`

‖∂α
x f‖L2(Ω)

+
∑
|α|≤1

‖∂α
x u‖L2(Ω)

}
with a constant A independent of k , m and u.

Proof

Nested open sets on local model problems, see later

Faà di Bruno formula for local maps
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Results

Local analytic estimates

As usual the global statement is a consequence of a local statement.

With U and U ′ two open sets in Rn such that U ⊂ U ′, set

V = U ∩ Ω, V ′ = U ′ ∩ Ω and Γ := ∂V ′ ∩ ∂Ω

Main Proposition: [COSTABEL-DAUGE-NICAISE 2010]

Assume

each connected component of Γ is an analytic part in ∂Ω.

the coefficients of L and B are analytic.

Then u satisfies the local a priori estimates of analytic type, k = 0, 1, . . .

1
k!

∑
|α|=k

‖∂α
x u‖L2(V)

≤ Ak+1
{ k−2∑
`=0

1
`!

∑
|α|=`

‖∂α
x f‖L2(V ′) +

∑
|α|≤1

‖∂α
x u‖L2(V ′)

}
with a constant A independent of k and u.
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Proofs

Interior estimates, preparation: ρ-estimates

BR = B(0,R), ball centered at 0. Assume 0 ∈ Ω. For R ≤ R0, BR ⊂ Ω.

Lemma

L is assumed to be elliptic. Let u ∈ H2(BR) for R < R0. Let ρ ∈ (0, R
2 ).

∃A > 0 independent of u, R and ρ.∑
|α|≤2

ρ|α|‖∂αu‖BR−|α|ρ
≤ A

(
ρ2‖Lu‖BR−ρ

+
∑
|α|≤1

ρ|α|‖∂αu‖BR−|α|ρ

)
Proof: Let χ ∈ C∞(R) such that χ ≡ 1 on (−∞, 0) and χ ≡ 0 on [1,+∞)

Define for 0 < ρ < R, χR,ρ : x 7−→ χ

(
|x | − R + ρ

ρ

)
χR,ρ ≡ 1 in BR−ρ and 0 outside BR . Use elliptic estimates for χR,ρu

‖χR,ρu‖H2(BR)
≤ C

{
‖L(χR,ρu)‖L2(BR)

+ ‖χR,ρu‖H1(BR)

}
with the control of derivatives

∀ρ ∈ (0,R), ∀α, |α| ≤ 2, |∂αχR,ρ| ≤ C ρ−|α| 11/26
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Proofs

Interior estimates, nested balls (constant coeff case)

Proposition

Assume L elliptic with constant coefficients.
∃A ≥ 1 such that ∀R ∈ (0,R0], ∀ρ ∈ (0, R

k ] and ∀k ≥ 2 there holds∑
|α|≤k

ρ|α|‖∂αu‖BR−|α|ρ
≤ Ak

{
∑
|β|≤k−2

A−|β| ρ2+|β|‖∂βLu‖BR−ρ−|β|ρ
+
∑
|α|≤1

ρ|α|‖∂αu‖BR−|α|ρ

}

Proof: Recurrence. Use the Lemma for ∂βx u and that L ∂βx = ∂βx L

Proof of Main Proposition when Γ = ∅:
Estimates with factors 1/k! are obtained with the choice ρ =

R
k

Proof of Main Proposition when Γ 6= ∅:
Combine with anisotropic estimates along the boundary
(tangential derivatives as above, then normal derivatives using the operator L)
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Weighted spaces and analytic estimates

Homogeneous Weighted Analytic classes

Recall
Weight := powers of r(x) = minc∈C |x − c|
Weight exponent := β ∈ R
Homogeneous weighted Sobolev spaces

Km
β (Ω) = {v ∈ D ′(Ω) : r(x)|α|+β∂α

x v ∈ L2(Ω), |α| ≤ m}

Introduce
Analytic limit

Aβ(Ω) =
{

v ∈
⋂

m∈N
Km
β (Ω) :

∑
|α|=m

‖r(x)m+β∂α
x v‖L2(Ω)

≤ Cm+1m!
}

Remark

Let Ω be a polygon. If S = |x − c|λϕ(θc) is a singular function,
then the angular function ϕ is analytic. Hence

β + Reλ > −1 =⇒ S ∈ K0
β(Ω) =⇒ S ∈ Aβ(Ω)
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Weighted spaces and analytic estimates

Weighted analytic estimates – natural regularity shift

Theorem: [COSTABEL-DAUGE-NICAISE 2010]

If
Ω is an analytic corner domain (e.g., a polygon),

L and B have analytic coefficients (e.g., constant coefficients),

u solution of (BVP)

there exists a constant C ≥ 1 indep. of u such that for all k ∈ N,

1
k!

∑
|α|=k

‖rβ+|α|∂α
x u‖

Ω
≤ Ck+1

{ k−2∑
`=0

1
`!

∑
|α|=`

‖rβ+2+|α|∂α
x f‖

Ω

+
∑
|α|≤1

‖rβ+|α|∂α
x u‖

Ω

}

Corollary: Natural analytic regularity shift

u ∈ K1
β(Ω) and f ∈ Aβ+2(Ω) =⇒ u ∈ Aβ(Ω)
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... in 10 steps

Proof of weighted analytic estimates

1 For simplicity:
Ω polygon and L, B homogeneous with constant coeff.

2 Localization near a corner c. Set c = 0. We have r = r(x) = |x |
Proof on a plane sector K.

3 Regular reference configuration

V̂ = {x ∈ K, 1
2−ε < r < 1} & V̂ ′ = {x ∈ K, 1

2−2ε < r < 1+ε}.

•
0

V̂

V̂ ′
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... in 10 steps

Proof of weighted analytic estimates

4 Unweighted reference estimate

1
k!

∑
|α|=k

‖∂α
x û‖ bV ≤ Ak+1

0

{ k−2∑
`=0

1
`!

∑
|α|=`

‖∂α
x f̂‖ bV ′ +

∑
|α|≤1

‖∂α
x û‖ bV ′}

5 Insert the weight (̂r ' 1 on V ′)⇒ weighted reference estimate

1
k!

∑
|α|=k

‖r̂β+|α|∂α
x û‖ bV ≤ Ak+1

{ k−2∑
`=0

1
`!

∑
|α|=`

‖r̂β+2+|α|∂α
x f̂‖ bV ′

+
∑
|α|≤1

‖r̂β+|α|∂α
x û‖ bV ′}

6 Locally finite covering Vµ = 2−µV̂ and V ′µ = 2−µV̂ ′, for µ = 1, 2, . . .

V := K ∩ B(0, 1) =
⋃
µ∈N
Vµ and V ′ := K ∩ B(0, 1 + ε) =

⋃
µ∈N
V ′µ .
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... in 10 steps

Proof of weighted analytic estimates

7 Scale on Vµ = 2−µV and V ′µ = 2−µV ′, for µ = 1, . . .

•
0

x = 2−µx̂
(µ = 1)

V̂

V̂ ′
Vµ

V ′µ
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... in 10 steps

Proof of weighted analytic estimates

7 Scale on Vµ = 2−µV and V ′µ = 2−µV ′, for µ = 2, . . .

•
0

x = 2−µx̂
(µ = 2)

V̂

V̂ ′
Vµ

V ′µ
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... in 10 steps

Proof of weighted analytic estimates

7 Scale on Vµ = 2−µV and V ′µ = 2−µV ′, for µ = 3, . . .

•
0

x = 2−µx̂
(µ = 3)

V̂

V̂ ′
Vµ

V ′µ
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... in 10 steps

Proof of weighted analytic estimates

7 Scale on Vµ = 2−µV and V ′µ = 2−µV ′, for µ = 4, . . .

•
0

x = 2−µx̂
(µ = 4)

V̂

V̂ ′
Vµ

V ′µ
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... in 10 steps

Proof of weighted analytic estimates

8 To estimate u on Vµ by Lu = f on V ′µ we set

û(x̂) := u(x) and f̂ (x̂) := Lû which implies f̂ (x̂) = 2−2µf (x),

The reference estimate

1
k!

∑
|α|=k

‖r̂β+|α|∂α
x û‖ bV ≤ Ak+1

{
k−2∑
`=0

1
`!

∑
|α|=`

‖r̂β+2+|α|∂α
x f̂‖ bV ′+ ∑

|α|≤1

‖r̂β+|α|∂α
x û‖ bV ′}

becomes

1
k!

∑
|α|=k

2µβ‖rβ+|α|∂α
x u‖Vµ

≤ Ak+1
{

k−2∑
`=0

1
`!

∑
|α|=`

2µ(β+2)‖rβ+2+|α|∂α
x 2−2µf‖V ′µ+

∑
|α|≤1

2µβ‖rβ+|α|∂α
x u‖V ′µ

}
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... in 10 steps

Proof of weighted analytic estimates

9 Eliminate the common factor 2µβ and square:(
1
k!

)2 ∑
|α|=k

‖rβ+|α|∂α
x u‖

2

Vµ
≤ A2k+2

∗

{
k−2∑
`=0

(
1
`!

)2 ∑
|α|=`

‖rβ+2+|α|∂α
x f‖

2

V ′µ+
∑
|α|≤1

‖rβ+|α|∂α
x u‖

2

V ′µ

}
10 Sum µ ∈ N and use the finite covering property(

1
k!

)2 ∑
|α|=k

‖rβ+|α|∂α
x u‖

2

V ≤ CA2k+2
∗

{
k−2∑
`=0

(
1
`!

)2 ∑
|α|=`

‖rβ+2+|α|∂α
x f‖

2

V ′+
∑
|α|≤1

‖rβ+|α|∂α
x u‖

2

V ′
}

11 QED
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Dirichlet

Weighted analytic regularity in polygons (Dirichlet)

Assume: (BVP) has a coercive variational formulation and recall

Theorem: [Ko 1967]

∃ bΩ,L > 0 such that ∀b, 0 ≤ b < bΩ,L and ∀m ≥ 1

u ∈ H1
0(Ω) and f ∈ Km−1

−b+1(Ω) =⇒ u ∈ Km+1
−b−1(Ω)

Fix m = 1 and combine with “Natural Analytic Regularity Shift” to obtain

Corollary: [CO-DA-NI 2010]

∀b, 0 ≤ b < bΩ,L

u ∈ H1
0(Ω) and f ∈ A−b+1(Ω) =⇒ u ∈ A−b−1(Ω)

Note:
“NARS” does not require any singularity analysis, nor Mellin symbolic calculus.
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Neumann

Non-Homogeneous Weighted Analytic classes

Recall
Weight := powers of r(x) = minc∈C |x − c|
Weight exponent := β ∈ R
Non-homogeneous weighted Sobolev spaces

Jm
β (Ω) = {v ∈ D ′(Ω) : r(x)m+β∂α

x v ∈ L2(Ω), |α| ≤ m}

Property
Embeddings

m > −β − n
2

=⇒ Jm+1
β (Ω) ⊂ Jm

β (Ω)

Introduce
Analytic limit

Bβ(Ω) =
{

v ∈
⋂

m>−β− n
2

Jm
β (Ω) :

∑
|α|=m

‖r(x)m+β∂α
x v‖L2(Ω)

≤ Cm+1m!
}
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Neumann

Weighted analytic regularity in polygons (Neumann)

Recall

Theorem: [Ma-Pl 1984]

∃ bΩ,L,B > 0 such that ∀b, 0 < b < bΩ,L,B ∀m ≥ 1,

u ∈ V and f ∈ Jm−1
−b+1(Ω) =⇒ u ∈ Jm+1

−b−1(Ω)

The “NARS” for J-spaces also holds / see later

Corollary: Natural analytic regularity shift

Let β ∈ (−2,−1) (thus m = 1 > −β − n
2 = −β − 1). Then

u ∈ J1
β(Ω) and f ∈ Bβ+2(Ω) =⇒ u ∈ Bβ(Ω)

Theorem: [CO-DA-NI 2010] Cf. [BABUŠKA-GUO 1988, 1989, 1993]

∀b, 0 < b < bΩ,L,B

u ∈ V and f ∈ B−b+1(Ω) =⇒ u ∈ B−b−1(Ω)
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Neumann

The trick for the proof of the ‘NARS” in J-spaces...

Replace the estimate in the smooth case

u satisfies the a priori estimates of analytic type, k = 0, 1, 2, . . .

1
k!

∑
|α|=k

‖∂α
x u‖

Ω
≤ Ak+1

{ k−2∑
`=0

1
`!

∑
|α|=`

‖∂α
x f‖

Ω
+
∑
|α|≤1

‖∂α
x u‖

Ω

}
with a constant A independent of k and u.
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Neumann

...

... by

u satisfies the a priori estimates of analytic type, k = 1, 2, . . .

1
k!

∑
|α|=k

‖∂α
x u‖

Ω
≤ Ak+1

{ k−2∑
`=0

1
`!

∑
|α|=`

‖∂α
x f‖

Ω
+
∑
|α|=1

‖∂α
x u‖

Ω

}
with a constant A independent of k and u.
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Neumann

Mathematical outcome

1 The proof is much simpler than in original papers by BABUŠKA-GUO

because it clearly separates
• the issue of basic regularity (e.g. in K2

β(Ω) or J2
β(Ω))

• the issue of analytic regularity (natural regularity shift)
These two independent modules can be assembled.

2 The proof can be adapted without much effort to
• homogeneous multi-degree elliptic systems with constant coeff.

e.g. Stokes,
• transmission problems

e.g. div a(x)∇, with x 7→ a(x) piecewise constant on a polygonal
decomposition of Ω

3 The generalization to non-zero boundary conditions, variable
(analytic) coefficients, non-homogeneous operators is feasible with the
same arguments.
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Neumann

Conclusion
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Thank you for your attention!
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