On the Numerics of 3D Kohn-Sham System

Kurt Hoke

Weierstrass Institute for Applied Analysis and Stochastics

Workshop: Mathematical Models for Transport in Macroscopic and Mesoscopic Systems, Feb. 2008

(本間) (本語) (本語)

Outline

Physical System

- The Kohn-Sham System
- 2 Analytical Results
 - Existence and Uniqueness of Solutions

- The Kerkhoven Scheme
- Results

프 🖌 🖌 프 🕨

The Kohn-Sham System

Outline

Analytical Results

• Existence and Uniqueness of Solutions

3 Numerics

- The Kerkhoven Scheme
- Results

< 🗇 🕨

→ E → < E →</p>

The Kohn-Sham System

The System

Poisson equation:

$$-\nabla \cdot (\epsilon \nabla \varphi) = q \left(N_A - N_D + \sum e_{\xi} u_{\xi} \right)$$
 on Ω + mixed b.c.

Schrödinger equation:

$$\left[-\frac{\hbar^2}{2}\nabla(m_{\xi}^{-1}\nabla)+V_{\xi}\right]\psi_{l,\xi}=\mathcal{E}_{l,\xi}\psi_{l,\xi}\quad\text{on }\Omega+\text{hom. Dirichl. b.c.}$$

with carrier density $\mathbf{u} = (u_1, \ldots, u_\sigma), \sigma \in \mathbb{N}$

$$u_{\xi}(x) = \sum_{l=1}^{\infty} N_{l,\xi}(V_{\xi}) |\psi_{l,\xi}(V_{\xi})(x)|^2$$

and effective potential

$$V_{\xi}(\mathbf{u}) = -e_{\xi} riangle E_{\xi} + V_{xc,\xi}(\mathbf{u}) + e_{\xi}qarphi(\mathbf{u})$$

・ロ と ・ 「 日 と ・ 「 日 と ・ 「 日 と ・ 」

The Kohn-Sham System

The System

Poisson equation:

$$-\nabla \cdot (\epsilon \nabla \varphi) = q \left(N_A - N_D + \sum e_{\xi} u_{\xi} \right)$$
 on Ω + mixed b.c.

Schrödinger equation:

$$\left[-\frac{\hbar^2}{2}\nabla(m_{\xi}^{-1}\nabla)+V_{\xi}\right]\psi_{l,\xi}=\mathcal{E}_{l,\xi}\psi_{l,\xi}\quad\text{on }\Omega+\text{hom. Dirichl. b.c.}$$

with carrier density $\mathbf{u} = (u_1, \ldots, u_\sigma), \sigma \in \mathbb{N}$

$$u_{\xi}(x) = \sum_{l=1}^{\infty} N_{l,\xi}(V_{\xi}) |\psi_{l,\xi}(V_{\xi})(x)|^2$$

and effective potential

$$V_{\xi}(\mathbf{u}) = -e_{\xi} riangle E_{\xi} + V_{xc,\xi}(\mathbf{u}) + e_{\xi}qarphi(\mathbf{u})$$

・ロ と ・ 「 日 と ・ 「 日 と ・ 「 日 と ・ 」

The Kohn-Sham System

The System

Poisson equation:

$$-\nabla \cdot (\epsilon \nabla \varphi) = q \left(N_A - N_D + \sum e_{\xi} u_{\xi} \right)$$
 on Ω + mixed b.c.

Schrödinger equation:

$$\left[-\frac{\hbar^2}{2}\nabla(m_{\xi}^{-1}\nabla)+V_{\xi}\right]\psi_{l,\xi}=\mathcal{E}_{l,\xi}\psi_{l,\xi}\quad\text{on }\Omega+\text{hom. Dirichl. b.c.}$$

with carrier density $\mathbf{u} = (u_1, \dots, u_\sigma), \sigma \in \mathbb{N}$

$$u_{\xi}(x) = \sum_{l=1}^{\infty} N_{l,\xi}(V_{\xi}) |\psi_{l,\xi}(V_{\xi})(x)|^2$$

and effective potential

$$V_{\xi}(\mathbf{u}) = -e_{\xi} riangle E_{\xi} + V_{xc,\xi}(\mathbf{u}) + e_{\xi}q\varphi(\mathbf{u})$$

くロト (過) (目) (日)

The Kohn-Sham System

The System

Poisson equation:

$$-\nabla \cdot (\epsilon \nabla \varphi) = q \left(N_A - N_D + \sum e_{\xi} u_{\xi} \right)$$
 on Ω + mixed b.c.

Schrödinger equation:

$$\left[-\frac{\hbar^2}{2}\nabla(m_{\xi}^{-1}\nabla)+V_{\xi}\right]\psi_{l,\xi}=\mathcal{E}_{l,\xi}\psi_{l,\xi}\quad\text{on }\Omega+\text{hom. Dirichl. b.c.}$$

with carrier density $\mathbf{u} = (u_1, \dots, u_\sigma), \sigma \in \mathbb{N}$

$$u_{\xi}(x) = \sum_{l=1}^{\infty} N_{l,\xi}(V_{\xi}) |\psi_{l,\xi}(V_{\xi})(x)|^2$$

and effective potential

$$V_{\xi}(\mathsf{u}) = -e_{\xi} riangle E_{\xi} + V_{xc,\xi}(\mathsf{u}) + e_{\xi}qarphi(\mathsf{u})$$

ヘロト ヘ戸ト ヘヨト ヘヨト

quasi Fermi-Level and Fermi-Function

• occupation factor $N_{l,\xi}(V_{\xi})$ given by

$$N_{l,\xi}(V_{\xi}) = f_{\xi}(\mathcal{E}_{l,\xi}(V_{\xi}) - \mathcal{E}_{F,\xi}(V_{\xi}))$$

• f_{ξ} a distribution function, i.e. Fermi's function (3D)

$$f(s) = \frac{1}{1 + e^{s/k_BT}}$$

• and quasi Fermi-level $\mathcal{E}_{F,\xi}(V_{eff,\xi})$ defined

$$\int_{\Omega} u_{\xi}(V_{eff,\xi}(x)) dx = \sum_{l=1}^{\infty} N_{l,\xi}(V_{eff,\xi}) = N_{\xi}$$

 N_{ξ} being the fixed total number of ξ -type carriers.

通 とう ほうとう ほうとう

quasi Fermi-Level and Fermi-Function

• occupation factor $N_{l,\xi}(V_{\xi})$ given by

$$N_{l,\xi}(V_{\xi}) = f_{\xi}(\mathcal{E}_{l,\xi}(V_{\xi}) - \mathcal{E}_{F,\xi}(V_{\xi}))$$

• f_{ξ} a distribution function, i.e. Fermi's function (3D)

$$f(s) = \frac{1}{1 + e^{s/k_BT}}$$

• and quasi Fermi-level $\mathcal{E}_{F,\xi}(V_{eff,\xi})$ defined

$$\int_{\Omega} u_{\xi}(V_{eff,\xi}(x)) dx = \sum_{l=1}^{\infty} N_{l,\xi}(V_{eff,\xi}) = N_{\xi}$$

 N_{ξ} being the fixed total number of ξ -type carriers.

Existence and Uniqueness of Solutions

Outline

2 Analytical Results

Existence and Uniqueness of Solutions

Numerics

- The Kerkhoven Scheme
- Results

< 🗇 🕨

→ E > < E >

The Particle Density Operator

Definition

Define the carrier density operator corresponding to f and m by

$$\mathcal{N}(V)(x) = \sum_{l=1}^{\infty} f(\mathcal{E}_l(V) - \mathcal{E}_F(V)) |\psi_l(V)(x)|^2 , \ V \in L^2(\Omega) \ x \in \Omega .$$

E_l(V) and ψ_l(V) are EV and L²-normalized EF of H_V *E_F(V)* defined by

$$\int \mathcal{N}(\mathcal{V}) dx = \sum f(\mathcal{E}_I(V) - \mathcal{E}_F(V)) = N$$

 eigenvlue asymptotics of *H_V* and properties of *f* ensure well-definedness of *E_F* → right-hand side series absolutely converges

(B) → (A) B →

The Particle Density Operator

Definition

Define the carrier density operator corresponding to f and m by

$$\mathcal{N}(V)(x) = \sum_{l=1}^{\infty} f(\mathcal{E}_l(V) - \mathcal{E}_F(V)) |\psi_l(V)(x)|^2 , \ V \in L^2(\Omega) \ x \in \Omega .$$

E_l(V) and ψ_l(V) are EV and L²-normalized EF of H_V *E_F(V)* defined by

$$\int \mathcal{N}(\mathcal{V}) dx = \sum f(\mathcal{E}_{l}(\mathcal{V}) - \mathcal{E}_{F}(\mathcal{V})) = N$$

 eigenvlue asymptotics of *H_V* and properties of *f* ensure well-definedness of *E_F* → right-hand side series absolutely converges

The Particle Density Operator

Definition

Define the carrier density operator corresponding to f and m by

$$\mathcal{N}(V)(x) = \sum_{l=1}^{\infty} f(\mathcal{E}_l(V) - \mathcal{E}_F(V)) |\psi_l(V)(x)|^2 , \ V \in L^2(\Omega) \ x \in \Omega .$$

- $\mathcal{E}_l(V)$ and $\psi_l(V)$ are EV and L^2 -normalized EF of H_V
- $\mathcal{E}_F(V)$ defined by

$$\int \mathcal{N}(\mathcal{V}) dx = \sum f(\mathcal{E}_l(\mathcal{V}) - \mathcal{E}_F(\mathcal{V})) = N$$

- eigenvlue asymptotics of *H_V* and properties of *f* ensure well-definedness of *E_F*
 - \rightarrow right-hand side series absolutely converges

Solution of the Kohn-Sham System

Definition

Suppose

$$N_{\mathcal{A}} - N_{\mathcal{D}} \in W_{\Gamma}^{-1,2}(\Omega), \quad riangle E_{\xi} \in L^{2}(\Omega), \ \xi \in \{1,\ldots,\sigma\}.$$

Let $\epsilon, m_1, \ldots, m_\sigma, f_1, \ldots, f_\sigma$ be from $L_\infty(\Omega, \mathcal{B}(\mathbb{R}^3, \mathbb{R}^3))$ and φ_{Γ} given. Define the external potentials V_{ξ} and the effective doping D by

$$D = q(N_A - N_D) - \tilde{\varphi}_{\Gamma}, \quad V_{\xi} = e_{\xi}q\varphi_{\Gamma} - e_{\xi} \triangle E_{\xi}, \ \xi \in \{1, \ldots, \sigma\}.$$

 $(V, u_1, \ldots, u_{\sigma}) \in W^{1,2}_{\Gamma} \times (L^2(\Omega)^{\sigma})$ is a solution of the Kohn-Sham system, if

$$\begin{aligned} \mathsf{AV} &= \mathsf{D} + q \sum_{\xi} \mathbf{e}_{\xi} u_{\xi} \,, \\ u_{\xi} &= \mathcal{N}_{\xi} (V_{\xi} + V_{xc,\xi}(\mathbf{u}) + \mathbf{e}_{\xi} q V) \,. \end{aligned}$$

Existence and Uniqueness of Solution without V_{xc}

Monotonicity and Lipschitz continuity of the Operator *A* yield the result:

Theorem

The Schrödinger-Poisson system without exchange-correlation potential has the unique solution

$$(\underline{V}, \mathcal{N}_1(\underline{V}_1 + \underline{V}), \ldots, \mathcal{N}_{\sigma}(\underline{V}_{\sigma} + \underline{V})).$$

• the operator assigning the solution \underline{V} to $\mathbf{V} = (V_1, \dots, V_{\sigma})$ is

$$\mathcal{L}: (L^2(\Omega))^{\sigma} \mapsto W^{1,2}_{\Gamma}(\Omega), \quad \mathcal{L}(\mathbf{V}) = \underline{V}$$

• \mathcal{L} is boundedly Lipschitz continuous

ヘロト ヘアト ヘビト ヘビト

Existence and Uniqueness of Solution without V_{xc}

Monotonicity and Lipschitz continuity of the Operator *A* yield the result:

Theorem

The Schrödinger-Poisson system without exchange-correlation potential has the unique solution

$$(\underline{V}, \mathcal{N}_1(\underline{V}_1 + \underline{V}), \ldots, \mathcal{N}_{\sigma}(\underline{V}_{\sigma} + \underline{V})).$$

• the operator assigning the solution \underline{V} to $\mathbf{V} = (V_1, \dots, V_{\sigma})$ is

$$\mathcal{L}: (L^2(\Omega))^{\sigma} \mapsto W^{1,2}_{\Gamma}(\Omega), \quad \mathcal{L}(\mathbf{V}) = \underline{V}$$

• \mathcal{L} is boundedly Lipschitz continuous

ヘロト 人間 ト くほ ト くほ トー

Existence of Solution to the Kohn-Sham System

Definition (Fixed Point Mapping)

Let $\mathbf{V} = (V_1, \dots, V_{\sigma}) \in (L^2(\Omega))^{\sigma}$ be a given tupel of external potentials and N_1, \dots, N_{σ} the fixed number of carriers. Define $L_N^1 = \{\mathbf{u} = (u_1, \dots, u_{\sigma}) : u_{\xi} \ge 0, \int u_{\xi}(x) dx = N_{\xi}\}$ and $\Phi : L_N^1 \mapsto L_N^1$ as $\Phi_{\xi}(\mathbf{u}) =$ $\mathcal{N}_{\xi} (V_{\xi} + V_{xc,\xi}(\mathbf{u}) + e_{\xi}q\mathcal{L}(V_1 + V_{xc,1}(\mathbf{u}), \dots, V_{\sigma} + V_{xc,\sigma}(\mathbf{u})))$

Theorem (Existence of Fixed Point)

If $V_{xc,\xi}$ is for any $\xi \in \{1, \ldots, \sigma\}$ a bounded and continuous mapping from $(L^1(\Omega))^{\sigma}$ into $L^2(\Omega)$, then the mapping Φ has a fixed point.

-

Existence of Solution to the Kohn-Sham System

Definition (Fixed Point Mapping)

Let $\mathbf{V} = (V_1, \dots, V_{\sigma}) \in (L^2(\Omega))^{\sigma}$ be a given tupel of external potentials and N_1, \dots, N_{σ} the fixed number of carriers. Define $L_N^1 = \{\mathbf{u} = (u_1, \dots, u_{\sigma}) : u_{\xi} \ge 0, \int u_{\xi}(x) dx = N_{\xi}\}$ and $\Phi : L_N^1 \mapsto L_N^1$ as $\Phi_{\xi}(\mathbf{u}) =$ $\mathcal{N}_{\xi} (V_{\xi} + V_{xc,\xi}(\mathbf{u}) + e_{\xi}q\mathcal{L}(V_1 + V_{xc,1}(\mathbf{u}), \dots, V_{\sigma} + V_{xc,\sigma}(\mathbf{u})))$

Theorem (Existence of Fixed Point)

If $V_{xc,\xi}$ is for any $\xi \in \{1, \ldots, \sigma\}$ a bounded and continuous mapping from $(L^1(\Omega))^{\sigma}$ into $L^2(\Omega)$, then the mapping Φ has a fixed point.

Existence of Solution to the Kohn-Sham System

Theorem (Equivalence of Solutions)

 $\mathbf{u} = (u_1, \dots, u_\sigma)$ is a fixed point of Φ if and only if

$$(V, u_1, \ldots, u_{\sigma}) = \left(A^{-1}\left(D + q\sum e_{\xi}u_{\xi}\right), u_1, \ldots, u_{\sigma}\right)$$

is a solution of the Kohn-Sham system.

 \Rightarrow the Kohn-Sham system always admits a solution.

ヘロト ヘ戸ト ヘヨト ヘヨト

The Kerkhoven Scheme Results

Outline

2 Analytical Results

Existence and Uniqueness of Solutions

- The Kerkhoven Scheme
- Results

・ 回 ト ・ ヨ ト ・ ヨ ト

э

The Kerkhoven Scheme Results

The Mapping $T(\eta) \mapsto \overline{\eta}$

- $\eta = (\eta_1, \ldots, \eta_\sigma)$
- $u = e^{\eta} \delta$, $\delta > 0$ constant
- solve Poisson's equation for potential $\varphi(u, N_A N_D)$
- obtain $V_{\xi}(u) = -e_{\xi} \triangle E_{\xi} + V_{xc,\xi}(u) + e_{\xi}q\varphi$
- solve EVP for Schrödinger's equation

$$[-(\hbar^2/2)\nabla\cdot(1/m_{\xi}\nabla)+V_{eff,\xi}]\psi_{l,\xi}=\mathcal{E}_{l,\xi}\psi_{l,\xi}$$

compute carrier densities

$$\overline{u}_{\xi}(x) = \sum_{l} N_{l,\xi} |\psi_{l,\xi}(x)|^2$$

• $\overline{\eta} = \log(\overline{u} + \delta)$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

The Kerkhoven Scheme Results

The Mapping $T(\eta) \mapsto \overline{\eta}$

- $\eta = (\eta_1, \ldots, \eta_\sigma)$
- $u = e^{\eta} \delta$, $\delta > 0$ constant
- solve Poisson's equation for potential $\varphi(u, N_A N_D)$
- obtain $V_{\xi}(u) = -e_{\xi} riangle E_{\xi} + V_{xc,\xi}(u) + e_{\xi}q arphi$

• solve EVP for Schrödinger's equation

$$[-(\hbar^2/2)\nabla\cdot(1/m_{\xi}\nabla)+V_{eff,\xi}]\psi_{l,\xi}=\mathcal{E}_{l,\xi}\psi_{l,\xi}$$

compute carrier densities

$$\overline{u}_{\xi}(x) = \sum_{l} N_{l,\xi} |\psi_{l,\xi}(x)|^2$$

• $\overline{\eta} = \log(\overline{u} + \delta)$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

The Kerkhoven Scheme Results

The Mapping $T(\eta) \mapsto \overline{\eta}$

- $\eta = (\eta_1, \ldots, \eta_\sigma)$
- $u = e^{\eta} \delta$, $\delta > 0$ constant
- solve Poisson's equation for potential $\varphi(u, N_A N_D)$
- obtain $V_{\xi}(u) = -e_{\xi} riangle E_{\xi} + V_{xc,\xi}(u) + e_{\xi}q arphi$
- solve EVP for Schrödinger's equation

$$[-(\hbar^2/2)\nabla\cdot(1/m_{\xi}\nabla)+V_{eff,\xi}]\psi_{I,\xi}=\mathcal{E}_{I,\xi}\psi_{I,\xi}$$

compute carrier densities

$$\overline{u}_{\xi}(x) = \sum_{l} N_{l,\xi} |\psi_{l,\xi}(x)|^2$$

• $\overline{\eta} = \log(\overline{u} + \delta)$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

The Kerkhoven Scheme Results

The Mapping $T(\eta) \mapsto \overline{\eta}$

- $\eta = (\eta_1, \ldots, \eta_\sigma)$
- $u = e^{\eta} \delta$, $\delta > 0$ constant
- solve Poisson's equation for potential $\varphi(u, N_A N_D)$
- obtain $V_{\xi}(u) = -e_{\xi} riangle E_{\xi} + V_{xc,\xi}(u) + e_{\xi}q arphi$
- solve EVP for Schrödinger's equation

$$[-(\hbar^2/2)\nabla\cdot(1/m_{\xi}\nabla)+V_{eff,\xi}]\psi_{I,\xi}=\mathcal{E}_{I,\xi}\psi_{I,\xi}$$

compute carrier densities

$$\overline{u}_{\xi}(x) = \sum_{l} N_{l,\xi} |\psi_{l,\xi}(x)|^2$$

• $\overline{\eta} = \log(\overline{u} + \delta)$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

The Kerkhoven Scheme Results

Properties of $T(\eta)$

• Solution of Kohn-Sham system is a fixed point of $T(\eta)$

- $\delta = 10^{-14}$ added to avoid singularity of logarithm at zero
- additional smoothness of logarithm improves convergence
- pure iteration scheme may or may not converge
- stabilization and acceleration needed

ヘロト ヘワト ヘビト ヘビト

The Kerkhoven Scheme Results

Properties of $T(\eta)$

- Solution of Kohn-Sham system is a fixed point of $T(\eta)$
- $\delta = 10^{-14}$ added to avoid singularity of logarithm at zero
- additional smoothness of logarithm improves convergence
- pure iteration scheme may or may not converge
- stabilization and acceleration needed

くロト (過) (目) (日)

The Kerkhoven Scheme Results

Properties of $T(\eta)$

- Solution of Kohn-Sham system is a fixed point of $T(\eta)$
- $\delta = 10^{-14}$ added to avoid singularity of logarithm at zero
- additional smoothness of logarithm improves convergence
- pure iteration scheme may or may not converge
- stabilization and acceleration needed

ヘロト ヘ戸ト ヘヨト ヘヨト

Heuristic Motivation via Gummel's Method

Gummel's method → originally for the drift-diffusion model

- Kerkhoven analyzed qualitative behavior

 → converges while sufficiently far away from solution
 → slows down when approaching to the solution
- opposite to Newton's method
- this behavior is due to the ellipticity of the involved equations
 - \rightarrow true for the quantum-mechanical system as well

イロト イポト イヨト イヨト

The Kerkhoven Scheme Results

Heuristic Motivation via Gummel's Method

• Gummel's method

- \rightarrow originally for the drift-diffusion model
- Kerkhoven analyzed qualitative behavior
 - \rightarrow converges while sufficiently far away from solution
 - \rightarrow slows down when approaching to the solution
- opposite to Newton's method
- this behavior is due to the ellipticity of the involved equations
 - \rightarrow true for the quantum-mechanical system as well

ヘロト ヘ戸ト ヘヨト ヘヨト

The Kerkhoven Scheme Results

Heuristic Motivation via Gummel's Method

Gummel's method

- \rightarrow originally for the drift-diffusion model
- Kerkhoven analyzed qualitative behavior
 - \rightarrow converges while sufficiently far away from solution
 - \rightarrow slows down when approaching to the solution
- opposite to Newton's method
- this behavior is due to the ellipticity of the involved equations
 - \rightarrow true for the quantum-mechanical system as well

・ 同 ト ・ ヨ ト ・ ヨ ト ・

The Kerkhoven Scheme Results

Stabilization and Acceleration of $T(\eta)$

Stabilization:

- pure appliance of $T(\eta)$ causes convergence instabilities
- stabilize through adaptive underrelaxation
 - \rightarrow fixed point iteration $T(\eta) = \eta$
- until 'close' to the solution

Acceleration:

- accelerate convergence by employing Newton's method \rightarrow root-finding problem $T(\eta) - \eta = 0$
- Jacobian-free version based on GMRES
- until convergence

ヘロト ヘアト ヘビト ヘビト

Stabilization and Acceleration of $T(\eta)$

Stabilization:

- pure appliance of $T(\eta)$ causes convergence instabilities
- stabilize through adaptive underrelaxation
 - \rightarrow fixed point iteration $T(\eta) = \eta$
- until 'close' to the solution

Acceleration:

- accelerate convergence by employing Newton's method \rightarrow root-finding problem $T(\eta) - \eta = 0$
- Jacobian-free version based on GMRES
- until convergence

ヘロン 人間 とくほ とくほ とう

The Kerkhoven Scheme Results

Adaptive Underrelaxation

• initialize: $\omega = 1$, choose η_0 , set $\eta_{-1} = 0$ and $\eta_{-2} = \eta_0$

• Iterate on *i*: if

$$\frac{\|T(\eta_i) - \eta_i\|}{\|T(\eta_{i-1}) - \eta_{i-1}\|} > \frac{\|T(\eta_{i-1}) - \eta_{i-1}\|}{\|T(\eta_{i-2}) - \eta_{i-2}\|}$$

then

$$\omega := \omega * 0.8, \quad \omega' := \min(\omega, \frac{\|T(\eta_{i-1}) - \eta_{i-1}\|}{\|T(\eta_i) - \eta_i\|})$$

•
$$\eta_{i+1} = \omega' T(\eta_i) + (1 - \omega')\eta_i$$

• until convergence

ightarrow or ω decreases 5 times in a row

 \rightarrow or ω remains constant 10 times in a row

프 🖌 🛪 프 🛌

The Kerkhoven Scheme Results

Adaptive Underrelaxation

- initialize: $\omega = 1$, choose η_0 , set $\eta_{-1} = 0$ and $\eta_{-2} = \eta_0$
- Iterate on i: if

$$\frac{\|T(\eta_i) - \eta_i\|}{\|T(\eta_{i-1}) - \eta_{i-1}\|} > \frac{\|T(\eta_{i-1}) - \eta_{i-1}\|}{\|T(\eta_{i-2}) - \eta_{i-2}\|}$$

then

$$\omega := \omega * \mathbf{0.8} , \quad \omega' := \min(\omega, \frac{\|T(\eta_{i-1}) - \eta_{i-1}\|}{\|T(\eta_i) - \eta_i\|})$$

•
$$\eta_{i+1} = \omega' T(\eta_i) + (1 - \omega')\eta_i$$

- until convergence
 - \rightarrow or ω decreases 5 times in a row
 - \rightarrow or ω remains constant 10 times in a row

프 🖌 🛪 프 🛌

The Kerkhoven Scheme Results

Adaptive Underrelaxation

- initialize: $\omega = 1$, choose η_0 , set $\eta_{-1} = 0$ and $\eta_{-2} = \eta_0$
- Iterate on i: if

$$\frac{\|T(\eta_i) - \eta_i\|}{\|T(\eta_{i-1}) - \eta_{i-1}\|} > \frac{\|T(\eta_{i-1}) - \eta_{i-1}\|}{\|T(\eta_{i-2}) - \eta_{i-2}\|}$$

then

$$\omega := \omega * \mathbf{0.8} , \quad \omega' := \min(\omega, \frac{\|\mathcal{T}(\eta_{i-1}) - \eta_{i-1}\|}{\|\mathcal{T}(\eta_i) - \eta_i\|})$$

•
$$\eta_{i+1} = \omega' T(\eta_i) + (1 - \omega') \eta_i$$

- until convergence
 - \rightarrow or ω decreases 5 times in a row
 - \rightarrow or ω remains constant 10 times in a row

The Kerkhoven Scheme Results

Acceleration by Newton's Method

• Reformulation: $\eta_{i+1} = T(\eta_i) \rightsquigarrow \eta - T(\eta) = 0$

• Newton:

 \rightarrow requires solution of linear system

$$[I - \nabla_{\eta} T(\eta_i)] d\eta = -[\eta_i - T(\eta_i)]$$

- $\nabla_{\eta} T(\eta_i)$ is the Jacobian matrix of T at $\eta_i \rightarrow$ not known explicitly
- solve system without generating the Jacobian
 → nonlinear version of GMRES (NLGMR)

・ロト ・ ア・ ・ ヨト ・ ヨト

The Kerkhoven Scheme Results

Acceleration by Newton's Method

- Reformulation: $\eta_{i+1} = T(\eta_i) \rightsquigarrow \eta T(\eta) = 0$
- Newton:

 \rightarrow requires solution of linear system

$$[I - \nabla_{\eta} T(\eta_i)] d\eta = -[\eta_i - T(\eta_i)]$$

- ∇_ηT(η_i) is the Jacobian matrix of T at η_i → not known explicitly
- solve system without generating the Jacobian
 → nonlinear version of GMRES (NLGMR)

くロト (過) (目) (日)

The Kerkhoven Scheme Results

Acceleration by Newton's Method

- Reformulation: $\eta_{i+1} = T(\eta_i) \rightsquigarrow \eta T(\eta) = 0$
- Newton:

 \rightarrow requires solution of linear system

$$[I - \nabla_{\eta} T(\eta_i)] d\eta = -[\eta_i - T(\eta_i)]$$

- ∇_ηT(η_i) is the Jacobian matrix of T at η_i → not known explicitly
- solve system without generating the Jacobian
 → nonlinear version of GMRES (NLGMR)

ヘロア 人間 アメヨア 人口 ア

The Kerkhoven Scheme Results

Derivative-free GMRES

• Solution of Newton's equation equivalent to minimization over $d\eta$ of

 $\|(I-T)(\eta_i)+[I-\nabla_{\eta}T(\eta_i)]d\eta\|_2$

GMRES: find approximate solution in Krylov subspace

 $K_m = span\{v_1, [I - \nabla_{\eta} T(\eta_i)]v_1, \dots, [I - \nabla_{\eta} T(\eta_i)]^{m-1}v_1\}$

- ONB of K_m easily gained by Arnoldi process, provided
 v ↦ [I − ∇_ηT(η_i)]v is available
- ∇_ηT(η_i) never needed explicitly
 → only matrix-vector multiplication ∇_ηT(η_i).

• approximate by:

$$abla_{\eta} T(\eta_i) \mathbf{v} \approx rac{T(\eta_i + h\mathbf{v}) - T(\eta_i)}{h}$$

イロト 不得 とくほと くほとう

1

The Kerkhoven Scheme Results

Derivative-free GMRES

• Solution of Newton's equation equivalent to minimization over $d\eta$ of

$$\|(I-T)(\eta_i)+[I-\nabla_{\eta}T(\eta_i)]d\eta\|_2$$

GMRES: find approximate solution in Krylov subspace

$$K_m = span\{v_1, [I - \nabla_{\eta} T(\eta_i)]v_1, \dots, [I - \nabla_{\eta} T(\eta_i)]^{m-1}v_1\}$$

- ONB of K_m easily gained by Arnoldi process, provided
 ν ↦ [I − ∇_ηT(η_i)]ν is available
- $\nabla_{\eta} T(\eta_i)$ never needed explicitly \rightarrow only matrix-vector multiplication $\nabla_{\eta} T(\eta_i) v$

• approximate by:

$$T_{\eta}T(\eta_i)v \approx \frac{T(\eta_i + hv) - T(\eta_i)}{h}$$

・ロト ・ 理 ト ・ ヨ ト ・

The Kerkhoven Scheme Results

Derivative-free GMRES

• Solution of Newton's equation equivalent to minimization over $d\eta$ of

$$\|(I-T)(\eta_i)+[I-\nabla_{\eta}T(\eta_i)]d\eta\|_2$$

GMRES: find approximate solution in Krylov subspace

$$K_m = span\{v_1, [I - \nabla_{\eta} T(\eta_i)]v_1, \dots, [I - \nabla_{\eta} T(\eta_i)]^{m-1}v_1\}$$

- ONB of K_m easily gained by Arnoldi process, provided
 ν ↦ [I − ∇_ηT(η_i)]ν is available
- ∇_ηT(η_i) never needed explicitly
 → only matrix-vector multiplication ∇_ηT(η_i)v
- approximate by:

$$abla_{\eta} T(\eta_i) \mathbf{v} \approx \frac{T(\eta_i + h\mathbf{v}) - T(\eta_i)}{h}$$

ヘロト ヘアト ヘビト ヘビト

The Kerkhoven Scheme Results

Adaption of NLGMR

- adjust accuracy of solution to Newton's method adaptively
 → vary number *m* of steps in NLGMR
- η_0 : current approximate solution to $\eta T(\eta) = 0$
- η_m : solution after *m* steps of GMRES
- nonlinear residual:

$$res_{nl} = \eta_m - T(\eta_m)$$

• linear residual:

$$res_{lin} = \eta_0 - T(\eta_0) + [I - \nabla_\eta T(\eta_0)](\eta_m - \eta_0)$$

- nonlinearity mild $\Rightarrow \|res_{nl}\| \approx \|res_{lin}\|$
- $\|res_{nl}\| \not\approx \|res_{lin}\|$
 - \rightarrow linearized model not good
 - → accurate solution of Newton's method wasteful

The Kerkhoven Scheme Results

Adaption of NLGMR

- adjust accuracy of solution to Newton's method adaptively
 → vary number *m* of steps in NLGMR
- η_0 : current approximate solution to $\eta T(\eta) = 0$
- η_m : solution after *m* steps of GMRES

on nonlinear residual:

$$res_{nl} = \eta_m - T(\eta_m)$$

• linear residual:

$$res_{lin} = \eta_0 - T(\eta_0) + [I - \nabla_{\eta} T(\eta_0)](\eta_m - \eta_0)$$

- nonlinearity mild $\Rightarrow \|res_{nl}\| \approx \|res_{lin}\|$
- $\|res_{nl}\| \not\approx \|res_{lin}\|$
 - \rightarrow linearized model not good
 - → accurate solution of Newton's method wasteful

The Kerkhoven Scheme Results

Adaption of NLGMR

- adjust accuracy of solution to Newton's method adaptively
 → vary number *m* of steps in NLGMR
- η_0 : current approximate solution to $\eta T(\eta) = 0$
- η_m : solution after *m* steps of GMRES
- nonlinear residual:

$$res_{nl} = \eta_m - T(\eta_m)$$

linear residual:

$$\textit{res}_{\textit{lin}} = \eta_0 - T(\eta_0) + [I - \nabla_\eta T(\eta_0)](\eta_m - \eta_0)$$

- nonlinearity mild $\Rightarrow \| res_{nl} \| \approx \| res_{lin} \|$
- $\|res_{nl}\| \not\approx \|res_{lin}\|$
 - \rightarrow linearized model not good
 - → accurate solution of Newton's method wasteful

The Kerkhoven Scheme Results

Adaption of NLGMR

- adjust accuracy of solution to Newton's method adaptively
 → vary number *m* of steps in NLGMR
- η_0 : current approximate solution to $\eta T(\eta) = 0$
- η_m : solution after *m* steps of GMRES
- nonlinear residual:

$$res_{nl} = \eta_m - T(\eta_m)$$

Iinear residual:

$$\textit{res}_{\textit{lin}} = \eta_0 - T(\eta_0) + [I - \nabla_\eta T(\eta_0)](\eta_m - \eta_0)$$

- nonlinearity mild $\Rightarrow \|res_{nl}\| \approx \|res_{lin}\|$
- $\|res_{nl}\| \not\approx \|res_{lin}\|$
 - \rightarrow linearized model not good
 - \rightarrow accurate solution of Newton's method wasteful

The Kerkhoven Scheme Results

Resulting NLGMR Iteration

• set *m* = 2

• get initial guess η_0 for carrier density

- employ *m* steps of GMRES: \rightarrow yields η_m
- adapt *m*:
 - $ightarrow rac{2}{3} \leq \|\textit{res}_{nl}\| / \|\textit{res}_{lin}\| \leq rac{3}{2} \Rightarrow m := \min(2m, 25)$
 - $ightarrow rac{3}{2} \leq \|\textit{res}_{\textit{nl}}\| / \|\textit{res}_{\textit{lin}}\| \leq 5 \Rightarrow m := m$

 \rightarrow else $m := \max(2, m/2)$

• perform linesearch for stepsize τ

ightarrow guarantee decrease of $\|(\eta_0 + au d\eta) - T(\eta_0 + au d\eta)\|$

until convergence

 \rightarrow form of Newton's method \Rightarrow quadratic rate of convergence

1

The Kerkhoven Scheme Results

Resulting NLGMR Iteration

- set *m* = 2
- get initial guess η_0 for carrier density
- employ *m* steps of GMRES:
 - \rightarrow yields η_m
- adapt *m*:
 - $\rightarrow \frac{2}{3} \leq \|\textit{res}_{nl}\| / \|\textit{res}_{lin}\| \leq \frac{3}{2} \Rightarrow m := \min(2m, 25)$
 - $o rac{3}{2} \leq \|\textit{res}_{nl}\| / \|\textit{res}_{lin}\| \leq 5 \Rightarrow m := m$

 \rightarrow else $m := \max(2, m/2)$

- perform linesearch for stepsize τ
 - ightarrow guarantee decrease of $\|(\eta_0 + au d\eta) T(\eta_0 + au d\eta)\|$
- until convergence

 \rightarrow form of Newton's method \Rightarrow quadratic rate of convergence

1

The Kerkhoven Scheme Results

Resulting NLGMR Iteration

- set *m* = 2
- get initial guess η_0 for carrier density
- employ *m* steps of GMRES:
 - \rightarrow yields η_m
- adapt m:

$$rac{2}{3} \leq \|\textit{res}_{\textit{nl}}\| / \|\textit{res}_{\textit{lin}}\| \leq rac{3}{2} \Rightarrow m := \min(2m, 25)$$

$$o rac{3}{2} \leq \|\textit{res}_{\textit{nl}}\| / \|\textit{res}_{\textit{lin}}\| \leq 5 \Rightarrow m := m$$

 \rightarrow else $m := \max(2, m/2)$

• perform linesearch for stepsize τ

ightarrow guarantee decrease of $\|(\eta_0 + au d\eta) - \mathcal{T}(\eta_0 + au d\eta)\|$

until convergence

 \rightarrow form of Newton's method \Rightarrow quadratic rate of convergence

The Kerkhoven Scheme Results

Resulting NLGMR Iteration

- set *m* = 2
- get initial guess η_0 for carrier density
- employ *m* steps of GMRES:
 - \rightarrow yields η_m
- adapt m:

$$riangleq rac{2}{3} \leq \|\textit{res}_{\textit{nl}}\| / \|\textit{res}_{\textit{lin}}\| \leq rac{3}{2} \Rightarrow m := \min(2m, 25)$$

$$o rac{3}{2} \leq \|\textit{res}_{\textit{nl}}\| / \|\textit{res}_{\textit{lin}}\| \leq 5 \Rightarrow m := m$$

 $\rightarrow \overline{\text{else }m} := \max(2, m/2)$

• perform linesearch for stepsize τ

 \rightarrow guarantee decrease of $\|(\eta_0 + \tau d\eta) - T(\eta_0 + \tau d\eta)\|$

until convergence

 \rightarrow form of Newton's method \Rightarrow quadratic rate of convergence

The Kerkhoven Scheme Results

Resulting NLGMR Iteration

- set *m* = 2
- get initial guess η_0 for carrier density
- employ *m* steps of GMRES:
 - \rightarrow yields η_m
- adapt m:

$$rac{2}{3} \leq \|\textit{res}_{\textit{nl}}\| / \|\textit{res}_{\textit{lin}}\| \leq rac{3}{2} \Rightarrow m := \min(2m, 25)$$

$$o rac{3}{2} \leq \|\textit{res}_{\textit{nl}}\| / \|\textit{res}_{\textit{lin}}\| \leq 5 \Rightarrow m := m$$

 $\rightarrow \overline{\text{else }m} := \max(2, m/2)$

• perform linesearch for stepsize τ

 \rightarrow guarantee decrease of $\|(\eta_0 + \tau d\eta) - T(\eta_0 + \tau d\eta)\|$

until convergence

 \rightarrow form of Newton's method \Rightarrow quadratic rate of convergence

The Kerkhoven Scheme Results

Summary of the Algorithm

take initial guess

- perform adaptive underrelaxation
- until 'close' to the solution
- perform NLGMR method
 - \rightarrow Newton's method; derivative-free GMRES
- until convergence

イロト イポト イヨト イヨト

The Kerkhoven Scheme Results

Summary of the Algorithm

- take initial guess
- perform adaptive underrelaxation
- until 'close' to the solution
- perform NLGMR method
 - \rightarrow Newton's method; derivative-free GMRES
- until convergence

・ 同 ト ・ ヨ ト ・ ヨ ト ・

The Kerkhoven Scheme Results

Summary of the Algorithm

- take initial guess
- perform adaptive underrelaxation
- until 'close' to the solution
- perform NLGMR method
 - \rightarrow Newton's method; derivative-free GMRES
- until convergence

・ 同 ト ・ ヨ ト ・ ヨ ト

The Kerkhoven Scheme Results

Outline

2 Analytical Results

Existence and Uniqueness of Solutions

3 Numerics

- The Kerkhoven Scheme
- Results

・ 回 ト ・ ヨ ト ・ ヨ ト

э

The Kerkhoven Scheme Results

General

Implementation:

- in the Framework of WIAS-pdelib2 (C++)
 - \rightarrow www.wias-berlin.de/software/pdelib

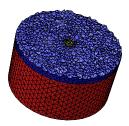
Discretization:

- Finite Volume Method
 - \rightarrow TetGen: Tetrahedral Mesh Generator and 3D Delaunay Triangulator (tetgen.berlios.de)

Eigenvalues:

- ARPACK: Large Scale Eigenvalue Solver
 - $\rightarrow www.caam.rice.edu/software/ARPACK$

・ 同 ト ・ ヨ ト ・ ヨ ト

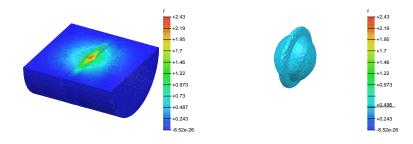


・ロト ・聞 と ・ ヨ と ・ ヨ と

- Input: 320 points, 172 faces, 4 regions, 6 bregions
- Output: 4 regions, 12381 points, 70230 cells, 6 bregions, 9905 bfaces

The Kerkhoven Scheme Results

Single Electron



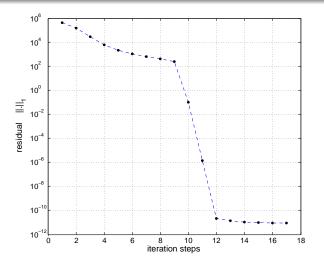
	cpu seconds	steps
total	1410	17
underrelaxed	100	9
Newton	1310	8

ヘロト 人間 とくほとくほとう

₹ 990

The Kerkhoven Scheme Results

Residual Evolution



Kurt Hoke On the Numerics of 3D Kohn-Sham System

< ∃→

æ

The Kerkhoven Scheme Results

A.T. Galick, T. Kerkhoven, U. Ravaioli, J.H. Arends, Y. Saad Efficient numerical simulation of electron states in quantum wires.

J. Appl. Phys., 68(7):3461-3469, 1990

ヘロン 人間 とくほ とくほ とう

3