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Physical View

� Bounded region of laminar flow.

� Particle type space X .

� Particles of type x0 incepted

with intensity I ≥ 0.

� Pairs of particles collide and

coagulate according to K ≥ 0.

� Particles drift at velocity u > 0.

� Particles simply flow out of the

domain from its end.
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Delocalised Model

� Avoid simulating random walks

and detecting collisions!

� Require a model for coagulation

probabilities.

� Look for simulable dynamics.

� Follow Gas DSMC approach:

� discretise space into cells,

� delocaliase coagulation

within each cell.

� We consider just one cell of size

∆x in 1-d.
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Existing Results

� Infinite homogeneous box, no flow:

� Boltzmann setting: Wagner 92

� Coagulation: Jeon 98, Norris 99

� Famous review by Aldous 99

� More general interactions: Eibeck & Wagner 03, Kolokoltsov book 10

� Diffusion in infinite domain: via jump process Guiaş 01

� Diffusion in infinite domain: via SDE Deaconu & Fournier 02

� Hammond, Rezakhanlou & co-workers 06-10
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Physical Applications

Example Applications:
� Particle synthesis,

� Pollutant formation,

� Precipitation/crystallisation in

clouds.

Mathematical Consequences:

� Bounded domain,

� Inflow & outflow,

� Outflow is dependent on rest of

process,

� Convergence of approximations

not covered in literature.
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One Cell Particle Systems

� Need a sequence of Markov Chains to study convergence; index n.

� Replace continuum with finite computable number of particles.

� Spatial cell is [0, 1], i.e. ∆x = 1.

� Scaling factor n: Inverse of concentration represented by one computational

particle.

� Coagulation x and y at rate K(x, y)/n.

� Formation of new particles of type x0 ∈ X at rate nI throughout the cell.

� Constant velocity u > 0 for all particles.

� Particles absorbed at 1.
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Notation

� Individual particle and position an

element of X ′ = X × [0, 1].

� Fock state space for the particle

systems E =
⋃∞
k=0 X ′

k.

� Let ψ : X ′ → R and define

ψ⊕ : E → R by

ψ⊕ (x1, . . . xk) =
∑k
j=1 ψ(xj).

� Xn(t) is the E-valued process.

� N (Xn(t)) is the number of

particles.

� Xn(t, i) ∈ X ′ is the type and

location of the i-th particle.

Figure: The disjoint union E.
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The Generator

Let X ∈ E, X = (X(1), . . . , X (N(X))), then the generators An satisfy

Anψ
⊕(X) = nI

∫
[0,1]

ψ(x0, y)dy + u∇ψ⊕(X)+

1
2

N(X)∑
j1,j2=1
j1 6=j2

[ψ (X(j1) +X(j2))− ψ (X(j1))− ψ (X(j2))]
K (X(j1), X(j2))

n
.

� inceptions of x0 at times Rni ,

� advection with velocity u,

� coagulations at times Uni ,

� exits from 1 at times Sni ,

� Tni will be time of any kind of jump.

� Rn(t), Sn(t),Un(t) and Tn(t) ∈ N are defined as the respective jump

counting processes hence Rn(t) + Sn(t) + Un(t) = Tn(t).
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Current Work

� Overall goal is proof of convergence of the simulable particle systems to a

solution of the PBE.

� Immediate goal is relative compactness of approximating sequence via:

� construction of approximating sequence,

� martingales that converge to 0,

� compact containment,

� control of Modified Variation,

� Deviations and confidence intervals also interesting and studied by Kolokoltsov

for the classical cases mentioned previously.

� Uniqueness of limit point is an additional question.
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Non-explosion

We now have piecewise deterministic Markov processes (Davis 1993) defined by

jumps and jump rates.

Theorem

For all t ≥ 0 and k ∈ N there exists A2(t, k) which isO(tk) uniformly in n such

that:

E

[(
Tn(t)
n

)k]
≤ A2(t, k). (1)

Proof.

Coagulation and exit events each remove one particle, hence

Un(t) + Sn(t) ≤ Rn(t), thus Tn(t) ≤ 2Rn(t) and Rn(t) ∼ Poi(nIt).

A further, important result of Davis (1993) is that the following processes are shown

by direct calculation to be Martingales:
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Martingales

Theorem

Let ψ ∈ C0,1
B (X ′) = C0,1

B (X × [0, 1]) then for all n the following process is a

Martingale:

Mψ
n (t) =

1
n
ψ⊕ (Xn(t))− 1

n
ψ⊕ (Xn(0))−

∫ t

0

1
n
Anψ

⊕ (Xn(s)) ds

+
1
n

Sn(t)∑
i=1

ψ(Zni , 1)

Proof.

Davis (1993) Theorem 31.3.

The domain of the generator is in some sense restricted to ψ such that ψ(·, 1) ≡ 0.
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Notation

� Particle leaving at Uni is Zni ∈ X .

� Particle (with position) incepted at Rni is Y ni ∈ X ′.
� Let ψ ∈ CB(X ′) = CB(X × [0, 1]) and define [ψ] by

[ψ](x1, x2) = ψ(x1 + x2)− ψ(x1)− ψ(x2) (one coagulation).

� A ‘self coagulation’ is given by [[ψ]](x) = [ψ](x, x).

� Expected coagulation effects are given by

Kn(ψ)(X) =
1

2n

N(X)∑
i1,i2=1

[ψ] (X(i1), X(i2))K.

� Expected (& unwanted) self-coagulation effects are given by

K̃n(ψ)(X) =
1

2n

N(X)∑
i=1

[[ψ]] (X(i))K.
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Martingales

Expanding the generator gives a representation for the martingale that is easier to

use for calculations:

Mψ
n (t) =

1
n

N(Xn(t))∑
i=1

ψ (Xn(t, i))− 1
n

N(Xn(0))∑
i=1

ψ (Xn(0, i))

+
1
n

Sn(t)∑
i=1

ψ(Zni , 1)−
∫ t

0

1
n

N(Xn(s))∑
i=1

u∇ψ (Xn(s, i)) ds

− t
∫

[0,1]

ψ(x0, y)Idy −
∫ t

0

1
n
Knψ (Xn, s) ds+

∫ t

0

1
n
K̃nψ (Xn, s) ds
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Square Convergence

Theorem

For all t ≥ 0 and ψ ∈ C0,1
B (X ′) there exists A4(t, ψ) independent of n such that

E
[
Mψ
n (t)2

]
≤ A4(t, ψ)

n
.

Proof.

Not proved here.
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Supremum Vanishes

Theorem

For all t ≥ 0 and ψ ∈ C0,1
B (X ′) there exists A5(t, ψ), independent of n such that

P
(

sup
s≤t

∣∣Mψ
n (s)

∣∣ ≥ ε) ≤ A5(t, ψ)
ε2n

.

Proof.

Doob’s inequality

This result has two important applications:

� Demonstates properties of weak limit points.

� As a technical tool in the remainder of the talk.

Necessary now to move to a weak point of view ...
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Measure Valued Processes

The processes can be viewed as measures:

µnt :=
1
n

N(Xn(t))∑
i=1

δXn(t,i),

which are elements of the space of finite measuresM(X ′), which is given the

topology generated by pairings with ψ ∈ C0,1
B (X ′).

One therefore has µn ∈ D (R+,M(X ′)) and

1
n
ψ⊕ (Xn(t)) = 〈ψ, µnt 〉 =

∫
X ′
ψ(x, y)µnt (dx, dy).
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Weak Limit Equation

Note first that if ψ(·, 1) = 0 then

Mψ
n (t) = 〈ψ, µnt 〉 − 〈ψ, µn0 〉 −

∫ t

0

〈u∇ψ, µns 〉ds− t
∫

[0,1]

ψ(x0, y)Idy

− 1
2

∫ t

0

〈[ψ]K,µns ⊗ µns 〉ds+
1

2n

∫ t

0

〈[[ψ]]K,µns 〉ds.

Suppose that µnt
w−→ µt for all t (convergence in Skorohod space is sufficient) then

0 = 〈ψ, µt〉 − 〈ψ, µ0〉 −
∫ t

0

〈u∇ψ, µs〉ds− t
∫

[0,1]

ψ(x0, y)Idy

− 1
2

∫ t

0

〈[ψ]K,µs ⊗ µs〉ds,

which is a weak form of the PBE.

Are there any limit points?
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Conditions for Relative Compactness

Theorem

Let (E, r) be a complete and separable metric space and let {Xn} be a sequence

of processes with sample paths in D ([0,∞), (E, r)). Then {Xn} is relatively

compact if and only if the following two conditions hold:

a) For every η > 0 and rational t ≥ 0 there exists a compact set Γη,t ⊂ E such that

lim inf
n

P
(
Xn(t) ∈ Γηη,t

)
≥ 1− η.

b) For every η > 0 and T > 0 there exists δ(η, T ) > 0 such that

lim sup
n

P (w′ (Xn, δ(η, T ), T ) ≥ η) ≤ η.

Proof.

This is Ethier & Kurtz (1986) Chap. 3 Coroll. 7.4.
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Definition of Modified Variation

Definition

The modified variation of a càdlàg function f from R+
0 to a metric space (E, r) is

defined by

w′ (f, δ, T ) = inf
{ti}

max
i

sup
s,t∈[ti−1,ti)

r (f(s), f(t)) ,

where the ti define partitions of [0, T ] with minimum spacing at least δ.

� Modulus of continuity, that can ignore a few awkard points.

� Random if f is random.
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Conditions for Relative Compactness of Measure Valued Processes

Theorem

Let {Xn} be a sequence of processes with sample paths in D ([0,∞),M(X ′)).

Then {Xn} is relatively compact if and only if the following two conditions hold:

a) For every η > 0 and rational t ≥ 0 and ψ ∈ C0,1
B (X ′) there exists a compact set

Γψη,t ⊂ R such that

lim inf
n

P
(
〈ψ,Xn(t)〉 ∈ Γψ,ηη,t

)
≥ 1− η.

b) For every η > 0, T > 0 and ψ ∈ C0,1
B (X ′) there exists δψ > 0 such that

lim sup
n

P
(
w′
(
〈ψ,Xn(·)〉 , δψ, T

)
≥ η

)
≤ η.

Proof.

Vague topology: Kallenberg (2001). Weak topology: Dawson (1993).
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Compact Containment Result

Theorem

For every T > 0 and ψ ∈ C0,1
B (X ′) there exists γψ(T ) <∞ such that

lim
n

P
(

sup
t≤T
|〈ψ, µnt 〉| ≤ γψ(T )

)
= 1.

� Sufficient, not necessary.

� Growth rate not optimal.

� Assume µn0 = 0.

� Recall for ψ ∈ C0,1
B (X ′)

Mψ
n (t) = 〈ψ, µnt 〉 −

∫ t

0

〈u∇ψ, µns 〉ds− t
∫

[0,1]

ψ(x0, y)Idy

−1
2

∫ t

0

〈[ψ]K,µns ⊗ µns 〉ds+
1

2n

∫ t

0

〈[[ψ]]K,µns 〉ds+
1
n

Sn(t)∑
i=1

ψ(Zni , 1).
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Containment Estimates

|〈ψ, µnt 〉| ≤ tI
∫

[0,1]

|ψ(x0, y)|dy +
∫ t

0

|〈u∇ψ, µns 〉|ds

+
1
2

∫ t

0

|〈[ψ]K,µns ⊗ µns 〉|ds+
1

2n

∫ t

0

|〈[[ψ]]K,µns 〉|ds

+
1
n

Sn(t)∑
i=1

|ψ(Zni , 1)|+
∣∣Mψ

n (t)
∣∣

Defining A8(n, T ) = supt≤T µnt (X ′) one has

sup
t≤T
|〈ψ, µnt 〉| ≤ TI ‖ψ‖+ TA8(n, T )

(
‖u∇ψ‖+

3
2n
‖ψ‖K

)
+

3
2
T ‖ψ‖KA8(n, T )2 +

1
n
Sn(T ) ‖ψ‖+ sup

t≤T

∣∣Mψ
n (t)

∣∣ .
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Containment Estimates

sup
t≤T
|〈ψ, µnt 〉| ≤ TI ‖ψ‖+ TA8(n, T )

(
‖u∇ψ‖+

3
2n
‖ψ‖K

)
+

3
2
T ‖ψ‖KA8(n, T )2 +

1
n
Sn(T ) ‖ψ‖+ sup

t≤T

∣∣Mψ
n (t)

∣∣ .
� TI ‖ψ‖ is constant.

� Already stated that

P
(

sup
s≤t

∣∣Mψ
n (s)

∣∣ > ε

)
≤ A5(t, ψ)

ε2n
.

� nA8(n, T ) ≤ Rn(T ) since every particle must have been incepted.

� Sn(T ) ≤ Rn(T ) since every particle must have been incepted before it can

leave.
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Containment Estimates

sup
t≤T
|〈ψ, µnt 〉| ≤ TI ‖ψ‖+ T

Rn(T )
n

(
‖u∇ψ‖+

3
2n
‖ψ‖K

)
+

3
2
T ‖ψ‖K

(
Rn(T )
n

)2

+
Rn(T )
n
‖ψ‖+ sup

t≤T

∣∣Mψ
n (t)

∣∣ .
Rn(T ) ∼ Poi(nIT ) thus P

(
Rn(T )
n > 2eIT

)
≤ 2

(
e22e

)−nIT
and

Theorem

For every T > 0 and ψ ∈ C0,1
B (X ′) there exists γψ(T ) <∞ such that

lim
n

P
(

sup
t≤T
|〈ψ, µnt 〉| ≤ γψ(T )

)
= 1.

Proof.

Just proved.
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Comments on Containment Proof

� γψ(T ) ∼ O(T 3), which is not optimal.

� Conjecture γψ(T ) ∼ O(
√
T ) possible by exploiting outflow.

� Zero initial condition simplifies the calculation, more general version of the result

is:

Theorem

For every T > 0 and f ∈ C0,1
B (X ′) there exists γψ(T, η) <∞ such that

lim inf
n

P
(

sup
t≤T
|〈ψ, µnt 〉| ≤ γψ(T, η)

)
≥ 1− η.

� Can replace P
(
Rn(T )
n > 2eIT

)
≤ 2

(
e22e

)−nIT
with

P
(
Rn(T )
n > 2IT

)
≤
√

1
nIT to get smaller leading constant in γψ(T ).
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Definition of Modified Variation

Definition

The modified variation of a function f from R+
0 to a metric space (E, r) is defined by

w′ (f, δ, T ) = inf
{ti}

max
i

sup
s,t∈[ti−1,ti)

r (f(s), f(t)) ,

where the ti define partitions of [0, T ] with minimum spacing at least δ.

We will use the following partition: t0 = 0, t1 = δ, t2 = 2δ, . . . , tk = kδ, tk+1 = T

where k = bT/δc − 1 and consider a ‘majorant’ variation

w̄ (f, δ, T ) = max
i

sup
s,t∈[ti−1,ti)

r (f(s), f(t)) ≥ w′ (f, δ, T )

defined on this particular partition, which has spacing between δ and 2δ.

In the case of non-zero initial conditions which lead to fixed jumps: adjust the partition

points to include the fixed jumps.
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Required Result Concerning Variation

Theorem

For every T > 0 and ψ ∈ C0,1
B (X ′) there exists δψ(T, η) <∞ such that

lim
n

P
(
w′
(
〈ψ, µnt 〉 , δψ(T, η), T

)
≥ η

)
= 0.

� Sufficient, not necessary.

� Assume µn0 = 0.

� Recall for ψ ∈ C0,1
B (X ′)

Mψ
n (t) = 〈ψ, µnt 〉 −

∫ t

0

〈u∇ψ, µns 〉ds− t
∫

[0,1]

ψ(x0, y)Idy

−1
2

∫ t

0

〈[ψ]K,µns ⊗ µns 〉ds+
1

2n

∫ t

0

〈[[ψ]]K,µns 〉ds+
1
n

Sn(t)∑
i=1

ψ(Zni , 1).
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Outline of Proof 1

∣∣〈f, µnt2〉− 〈f, µnt1〉∣∣ ≤ ∫ t2

t1

|〈u∇f, µns 〉|ds+ (t2 − t1)I
∫

[0,1]

|f(x0, y)|dy

+
1
2

∫ t2

t1

|〈[f ]K,µns ⊗ µns 〉|ds+
1

2n

∫ t2

t1

|〈[[f ]]K,µns 〉|ds

+
1
n

Sn(t2)∑
i=Sn(t1)

|f(Zni , 1)|+
∣∣Mf

n (t2)−Mf
n (t1)

∣∣
Recalling A8(n, t) = sups≤t µns (X ′) one has, for r < s ≤ t

|〈ψ, µns 〉 − 〈ψ, µnr 〉| ≤ (s− r)I ‖ψ‖+ (s− r)3
2
‖ψ‖KA8(n, t)2

+ (s− r)A8(n, t)
(
‖u∇ψ‖+

3
2n
‖ψ‖K

)
+

1
n

(Sn(s)− Sn(r)) ‖ψ‖+ 2 sup
s≤t

∣∣Mψ
n (s)

∣∣ .
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Outline of Proof 2

Focusing on one interval [ti−1, ti) of the time partition and noting ti − ti−1 ≤ 2δ

sup
r,s∈[ti−1,ti)

|〈ψ, µns 〉 − 〈ψ, µnr 〉| ≤ 2δI ‖ψ‖+ 3δ ‖ψ‖KA8(n, T )2

+ 2δA8(n, T )
(
‖u∇ψ‖+

3
2n
‖ψ‖K

)
+

1
n

(Sn(ti)− Sn(ti−1)) ‖ψ‖+ 2 sup
s≤T

∣∣Mψ
n (s)

∣∣ .
� Same bound on Rn(T )/n ≥ A8(n, T ) as before provides the key.

� Mψ
n vanishes as n→∞.

� Sn(ti)− Sn(ti−1) can be estimated as Poi(2δnI).
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Assembling the Estimate

For every interval

P

(
sup

r,s∈[ti−1,ti)

|〈ψ, µns 〉 − 〈ψ, µnr 〉| > η

)
≤ O

(√
1
n

)
.

Recall the partition: 0, δ, 2δ, 3δ, . . . , kδ, T where k = bT/δc − 1 and ‘majorant’

variation.

For fixed δ ≤ δψ = δψ(η, T )

P (w̄ (〈ψ, µn〉 , δ, T ) ≥ η)

≤
i=bT/δc−1∑

i=0

P

(
sup

s,r∈[ti−1,ti)

|〈ψ, µns 〉 , 〈ψ, µnr 〉| ≥ η

)
= bT/δcO

(√
1
n

)
.
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QED

Theorem

lim sup
n

P
(
w′
(
〈f, µnt 〉 , δf , T

)
≥ η

)
= 0,

Proof.

See above.

Theorem

The µn are relatively compact in distribution on DM(X ′)(R+
0 ).

Proof.

Most of this talk so far!
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Weak Limit Equation

Recall the Martingale

Mψ
n (t) = 〈ψ, µnt 〉 − 〈ψ, µn0 〉 −

∫ t

0

〈u∇ψ, µns 〉ds+
1
n

Sn(t)∑
i=1

ψ(Zni , 1)

− t
∫

[0,1]

ψ(x0, y)Idy− 1
2

∫ t

0

〈[ψ]K,µns ⊗ µns 〉ds+
1

2n

∫ t

0

〈[[ψ]]K,µns 〉ds.

We only get a limit equation for pairings with ψ such that ψ(·, 1) ≡ 0, in which case

〈ψ, µt〉 = 〈ψ, µ0〉+
∫ t

0

〈u∇ψ, µs〉ds+ t

∫
[0,1]

ψ(x0, y)Idy

+
1
2

∫ t

0

〈[ψ]K,µs ⊗ µs〉ds,

which is effectively a restriction on the domain of the generator.
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Density of Limit

� Suppose a limit point µt(dx,dy) has a density ct(x, y)

� Suppose the existence of regular time derivatives.

∂t

∫
X×[0,1]

ψ(x, y)ct(x, y)dxdy =
∫

[0,1]

ψ(x0, y)Idy

+
∫
X×[0,1]

u (∂yψ(x, y)) ct(x, y)dxdy

+
1
2

∫
(X×[0,1])2

[ψ(x1 + x2, y1)− ψ(x1, y1)− ψ(x2, y2)]K

ct(x1, y1)ct(x2, y2)dx1dy1dx2dy2.

Integrating by parts and using ψ(·, 1) ≡ 0, the second term becomes

−
∫
X
uψ(x, 0)ct(x, 0)dx−

∫
X×[0,1]

uψ(x, y)∂yct(x, y)dxdy.
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Boundary Conditions

Letting ψ approach a δ function at any interior point of X × [0, 1] we see:

∂tct(x, y) + u∂yct(x, y) = I1{x0}(x)

+
1
2

∫
X 2×[0,1]
x1+x2=x

Kct(x1, y)ct(x2, y2)dx1dx2dy2

−Kct(x, y)
∫
X×[0,1]

ct(x2, y2)dx2dy2.

Letting ψ(x, y) approach δ{x1}(x)1{0}(y):

uct(x, 0) = Iin(x)

where Iin(x) is the inception rate on the inflow boundary (assumed 0 above).

� No boundary condition at y = 1 since ψ(·, 1) ≡ 0.

� First order equation should have one boundary condition.

Convergence of Simulable Processes · 22 February 2012 · Page 35 (36)



Summary

What we know:

� Limit points satisfy a weak equation.

� The simulation algorithm has limit points.

Open questions:

� Is there a unique limit point?

� What can we say about the distribution of 〈f, µnt 〉 for finite n?

� Can we refine the spatial grid and ‘re-localise’ the coagulation?
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