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1.6 Quasi-Variational Inequalities and Optimal Control

Amal Alphonse and Michael Hintermüller

Introduction

A plethora of real-world applications involving nonlinear and non-smooth structures lead to a class

of mathematical models called quasi-variational inequalities (QVIs). These are highly complex

mathematical objects that have shown great versatility in their ability to be used to describe many

phenomena in the applied and physical sciences such as game theory, solid mechanics, elasto-

plasticity, superconductivity, and thermoforming. Our interests lie in studying the properties of

QVIs, modeling of specific physical phenomena via QVIs, and using them as a base to study many

aspects of what one calls optimal control problems where the aim is to find a control or action that

most closely achieves some objective given that the underlying model is described by a QVI.

A large focus of our studies in QVIs is an application to thermoforming, which is the process where

shapes (such as pots of yogurt or panels in cars) are mass-reproduced by heating up a plastic

membrane to a high temperature and forcing it onto a mould shape (which is the desired shape to

be reproduced), enabling it to take on the desired shape. Figure 1 shows the results of simulations

based on a QVI model that describes such a thermoforming process. Indeed, Figure 1 (a) shows

the (initial) mould shape that is to be reproduced, while Figure 1 (b) is the shape taken on by the

membrane as a result of the thermoforming process. One sees that it is an accurate fit to the mould

shape. In Figure 1 (c), we see the quasi-variational effect of the model in action: The mould shape

has changed as a result of contact with the membrane.

(a) Mould shape (b) Membrane (c) Final mould shape
Fig. 1: Computational results
of thermoforming process

Mathematical description

The defining feature of QVIs distinguishing them from variational inequalities (VIs) is that the con-

straint set in which the solution of the QVI is sought itself depends on the solution. Thus, QVIs

are generalizations of VIs. The latter are simpler because the above-mentioned constraint sets are

known a priori and are independent of the solution. This fundamental difference leads to consid-

erable difficulties in the study of QVIs, requiring novel tools and methodologies.
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The types of problems we are interested in are as follows. Given a constraint set K in some func-

tion space, VIs (of elliptic type) have the form

Find y ∈ K : 〈Ay − f, y − v〉 ≤ 0 ∀v ∈ K,

whereas QVIs take the form: given a set-valued map K(·) , consider

Find y ∈ K(y) : 〈Ay − f, y − v〉 ≤ 0 ∀v ∈ K(y). (1)

Note that the constraint set depends on the solution. We are primarily interested in inequalities of

obstacle type, i.e.,

K(y) := {v ∈ V : v ≤ 8(y)} ,

where V is a reflexive Banach space which is also a vector lattice possessing an ordering ≤ ,

8 : V → V is a given map, f ∈ V ∗ is given data, and A : V → V ∗ is a linear elliptic operator.

In the context of thermoforming, the inequality (1) could be the implicit obstacle problem where

the membrane u lies below the mould shape 8(u) and 8 could be the solution map of a partial

differential equation (PDE) describing the relationship between the membrane and mould taking

into account physical modeling assumptions. For full details, we refer the reader to [1, §6].

A fundamental pecularity of QVIs is that solutions of (1) are typically non-unique and in some cases

they can be ordered with the existence of a smallest and largest solution.

We conducted extensive research on the following topics:

1. the analysis of the resulting QVIs of the above form: existence of solutions and properties [1, 2,

3],

2. directional differentiability of the solution map Q : V ∗ ⇒ V that takes f into y and the solu-

tion maps related to smallest and largest solutions [1, 3],

3. optimal control problems with QVI constraints and stationarity conditions [2, 3].

The first two items relate directly to (1) whereas the third involves optimal control problems, which

in this context looks like

min
u∈Uad
y∈Q(u)

1
2
‖y − yd‖

2
H +

ν

2
‖u‖2H , (2)

where H is a Hilbert space with V ⊂ H and Uad ⊂ H is an admissible set of controls.

The motivation for this is the following: often in a QVI model there is an external quantity that

influences the state (i.e., the solution of the QVI). We wish to control this external quantity so that

the state satisfies some predefined performance criteria. The task of finding and characterizing

such a control that maximizes our criteria is the optimal control problem. The specific objective

functional appearing in (2) is known as a tracking-type objective and it models the case where we

wish the state to be as close as possible to a desired state yd whilst trying to minimize the control

cost.
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More details

Directional differentiability

We studied in [3, 1] the directional differentiability associated to (1), in particular, the directional

differentiability of the multi-valued (or set-valued) mapping Q taking the source term f into the

set of solutions y. It is important to know if the map is directionally differentiable and to character-

ize the derivative as it enables us to find out the effect that changes in the source term have on the

solution (which can be useful in applications such as thermoforming), and it is a necessary step

for obtaining useful first-order characterizations of the optimal control problem (2). Furthermore,

it is an interesting problem in mathematical analysis and a fundamental question that deserves to

be addressed.

Showing directional differentiability is completely non-trivial due to the nonsmooth nature of the

inequality (which in addition contains a nonsmooth obstacle mapping 8 ) as well as the multiplic-

ity of solutions to the QVI that can be expected in general. This means that one needs to take care

with multivalued solution concepts as well as conduct a fine and careful analysis of the ensuing

subproblems. For full details, we refer to the aforementioned papers.

Let V be a reflexive Banach space, 8 : V → V a Hadamard differentiable operator, and A : V →

V ∗ an elliptic operator. Theorem 3.2 of [3] essentially states that under some assumptions, given

f ∈ V ∗ and y ∈ Q( f ) , there exists ys
∈ Q( f + sd) and α = α(d) such that

lim
s→0+

ys
− y − sα

s
= 0 in V ,

where α satisfies the QVI

α ∈ 𝒦K(y)(y, α) : 〈Aα − d, v − α〉 ≥ 0 ∀v ∈ 𝒦K(y)(y, α),

and the constraint set appearing above is the critical cone defined by

𝒦K(y)(y, α) := {ϕ ∈ V : ϕ ≤ 8′(y)(α) q.e. on {y = 8(y)} and 〈Ay − f, ϕ −8′(y)(α)〉 = 0}.

This is a powerful result and it considerably improves our previous contribution [1] (which was the

first result for the directional differentiability for QVIs in the infinite-dimensional setting) in which

we needed further assumptions on the signs of the source and direction term. Let us also mention

that directional differentiability of the minimal and maximal solution maps is studied in [4]; we

refer the reader there for more details.

Optimal control

In [3, §4], we gave an existence result on the optimal points of the control problem (2), which we

recall here:

min
u∈Uad
y∈Q(u)

1
2
‖y − yd‖

2
H +

ν

2
‖u‖2H . (2)
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Furthermore, we also provided comprehensive first order characterizations of optimality in [3, §5].

Here, as mentioned above, Uad is the so-called admissible set of controls, which is taken to be

non-empty, closed, and convex.

These results were achieved by approximating the control problem (2) by

min
u∈Uad

1
2
‖yρ − yd‖

2
H +

ν

2
‖u‖2H where Ayρ +

1
ρ

mρ(yρ −8(yρ)) = u, (3)

deriving stationarity conditions for this problem (by standard constraint qualification) and then

performing a delicate analysis in the passage to the limit in the parameter ρ under varying sets of

assumptions. Here, for each ρ > 0 , mρ : V → V ∗ is a C1 map possessing certain properties that

in some sense generalizes the positive part function (·)+ . Thus, we have approximated the nons-

mooth QVI by a sequence of more regular PDEs with penalization parameter ρ with the intention

being to send ρ → 0 and obtain results for the original problem.

The PDE in (3) is well posed in certain circumstances and solutions of (3) can be shown to converge

to solutions of (2).

Stationarity systems are useful because they characterize optimal points and can often be easier

to numerically solve than the original optimal control problem. There are a multitude of stationarity

systems that can be derived depending on the hypotheses and structure of the problem.

Let us now describe the cascade of stationarity systems that we derived, in increasing order of the

number of assumptions needed.

In the general vector lattice setting, we showed in [3, Theorem 5.5] the existence of multipliers

(p∗, ξ∗, λ∗) ∈ V × V ∗ × V ∗ satisfying what we call the weak C-stationarity system

y∗ + (Id−8′(y∗))∗λ∗ + A∗ p∗ = yd , (4a)

Ay∗ − u∗ + ξ∗ = 0, (4b)

ξ∗ ≥ 0 in V ∗, y∗ ≤ 8(y∗), 〈ξ∗, y∗ −8(y∗)〉 = 0, (4c)

u∗ ∈ Uad : (νu∗ − p∗, u∗ − v)H ≤ 0 ∀v ∈ Uad , (4d)

〈λ∗, p∗〉 ≥ 0. (4e)

This is a system that lies in between the traditional notions of weak stationarity and C-stationarity,

hence its name.

In case V is a Sobolev space over some domain � ⊂ Rn , we have at our disposal a specific family

mρ that possesses enough regularity allowing us to improve the above system to an ℰ -almost C-

stationarity system [3, Theorem 5.11] by additionally giving us the conditions

〈ξ∗, (p∗)+〉 = 〈ξ∗, (p∗)−〉 = 0 , (5a)

〈λ∗, y∗ −8(y∗)〉 = 0, (5b)

∀τ > 0, ∃Eτ ⊂ ℐ with |ℐ \ Eτ | ≤ τ : 〈λ∗, v〉 = 0 ∀v ∈ V : v = 0 a.e. on� \ Eτ . (5c)

The final condition arises from an application of Egorov’s theorem. Under an extra assumption of
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continuity of (Id−8) : V → L∞(�) , we can strengthen the condition (5c) to

〈λ∗, v〉 = 0 ∀v ∈ V : v = 0 a.e. on {y∗ = 8(y∗)} .

This is a fully C-stationarity system (with no need for the ℰ -almost damping).

By making further assumptions on the admissible set Uad , we showed in [3, Theorem 5.16] that

(y∗, u∗) is a strong stationarity point, i.e., the multipliers (p∗, ξ∗, λ∗) ∈ V × V ∗ × V ∗ indeed

satisfy

y∗ + (Id−8′(y∗)∗)λ∗ + A∗ p∗ = yd ,

Ay∗ − u∗ + ξ∗ = 0,

ξ∗ ≥ 0 in V ∗, y∗ ≤ 8(y∗), 〈ξ∗, y∗ −8(y∗)〉 = 0,

u∗ ∈ Uad : (νu∗ − p∗, u∗ − v) ≤ 0 ∀v ∈ Uad ,

p∗ ≥ 0 q.e. on ℬ(y∗) and p∗ = 0 q.e. on 𝒜s(y∗),

〈λ∗, v〉 ≥ 0 ∀v ∈ V : v ≥ 0 q.e. on ℬ(y∗), and

v = 0 q.e. on 𝒜s(y∗).

Here, note that 𝒜s(y∗) := {ξ∗ > 0} is the strongly active set , and ℬ(y∗) := {y∗ = 8(y∗)} ∩ {ξ∗ =

0} is the biactive set. This is the strongest form of stationarity available; note in particular the

pointwise q.e. (quasi everywhere) sign conditions on the adjoint p∗ as well as a finer charac-

terization of the multiplier λ∗ in comparison to the previous systems.

Conclusions and outlook

As mentioned above, directional differentiability results for the minimal and maximal solution

mappings do appear in our work [4], however, only for signed source and direction terms. The

removal of these restrictions, as well as the obtainment of stationarity systems for optimal control

problems with minimal/maximal control-to-state maps, are highly delicate and subjects of ongoing

work.

As a final remark, we highlight that this work has been conducted within projects funded via the

DFG SPP 1962 Priority Programme in collaboration with Carlos N. Rautenberg (George Mason Uni-

versity). A joint work [5] with José-Francisco Rodrigues (Lisbon University) has also been finished.
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