Stability results for sum of sets in \mathbb{R}^{n}

Prof. Dr. Alessio Figalli (University of Texas, Austin, USA)
figalli@math.utexas.edu

Given a Borel A in \mathbb{R}^{n} of positive measure, one can consider its semisum $S=(A+A) / 2$. It is clear that S contains A, and it is not difficult to prove that S and A have the same measure if and only if A is equal to his convex hull minus a set of measure zero. We now wonder whether this statement is 'stable': if the measure of S is close to the one of A, is A close to his convex hull? More in general, one may consider the semisum of two different sets A and B, in which case our question corresponds to proving a stability result for the Brunn-Minkowski inequality. When $n=1$, one can approximate a set with finite unions of intervals to translate the problem onto \mathbb{Z}, and in the discrete setting this question becomes a well studied problem in additive combinatorics, usually known as Freiman's Theorem. In this talk I'll review some results in the one-dimensional discrete setting, and discuss their extension to arbitrary dimension.

