## On the existence of weak solutions to Prandtl's (1945) one-equation model of turbulence

Joachim Naumann

Institut für Mathematik, Humboldt-Universität zu Berlin

Let  $\Omega \subset \mathbb{R}^3$  be a bounded domain. In  $Q_T = \Omega \times ]0, T[$  we consider the following system of PDEs:

(1)  $\operatorname{div} \boldsymbol{u} = 0,$ 

(2) 
$$\partial_t \boldsymbol{u} + (\boldsymbol{u} \cdot \nabla) \boldsymbol{u} = \operatorname{div}(\ell \sqrt{k} \boldsymbol{D}(\boldsymbol{u})) - \nabla p + \boldsymbol{f},$$

(3) 
$$\partial_t k + \boldsymbol{u} \cdot \nabla k = \operatorname{div}(\ell \sqrt{k} \nabla k) + \ell \sqrt{k} |\boldsymbol{D}(\boldsymbol{u})|^2 - \frac{k \sqrt{k}}{\ell},$$

where:  $\boldsymbol{u} = (u_1, u_2, u_3)$  mean velocity,  $\boldsymbol{D}(\boldsymbol{u}) = \frac{1}{2} (\nabla \boldsymbol{u} + (\nabla \boldsymbol{u})^{\top})$ ; *p* mean pressure, k = mean kinetic turbulence energy. The function  $\ell$  represents the mixing length of the fluid motion.

In 1945, L. Prandtl postulated eq. (3) as a model for the transport of the mean kinetic turbulence theory for the fully developed turbulent motion of an incompressible fluid.

In this talk we consider mixing lengths  $\ell$  which satisfy the conditions

$$\ell \in C(\overline{\Omega}), \quad \ell(x) > 0 \ \forall x \in \Omega, \quad \{x \in \partial\Omega; \ \ell(x) = 0\} \neq \emptyset.$$

We present an existence result for a weak solution to (1)-(3) under initial conditions in  $\Omega \times \{0\}$  and boundary conditions on  $\{x \in \partial\Omega; \ell(x) > 0\} \times [0, T[$ .