WIAS Preprint No. 2708, (2020)

Runge--Kutta methods for rough differential equations


  • Redmann, Martin
    ORCID: 0000-0001-5182-9773
  • Riedel, Sebastian

2010 Mathematics Subject Classification

  • 60H10 60H35 65H30


  • B-series, rough paths, Runge-Kutta methods




We study Runge-Kutta methods for rough differential equations which can be used to calculate solutions to stochastic differential equations driven by processes that are rougher than a Brownian motion. We use a Taylor series representation (B-series) for both the numerical scheme and the solution of the rough differential equation in order to determine conditions that guarantee the desired order of the local error for the underlying Runge-Kutta method. Subsequently, we prove the order of the global error given the local rate. In addition, we simplify the numerical approximation by introducing a Runge-Kutta scheme that is based on the increments of the driver of the rough differential equation. This simplified method can be easily implemented and is computational cheap since it is derivative-free. We provide a full characterization of this implementable Runge-Kutta method meaning that we provide necessary and sufficient algebraic conditions for an optimal order of convergence in case that the driver, e.g., is a fractional Brownian motion with Hurst index 1/4 < H ≤ 1/2. We conclude this paper by conducting numerical experiments verifying the theoretical rate of convergence.

Download Documents