
1 Topologies and notions of convergence
In this document I made a small overview (for myself) about the relations and
differences between topologies and notions of convergence. Example 1.9 is an
example where the topology is not defined by the convergence of sequences.
Example 1.14 illustrates that the topology generated by a notion of convergence
of sequences may have a convergent sequences than does not converge that
notion of convergence.

Let X be a set, let P(X) denote the power set of X, i.e., the set containing
all subsets of X.
Definition 1.1. T ⊂ P(X) is called a topology on X if

• ∅, X ∈ T ,
• A ∩B ∈ T if A,B ∈ T ,
• if U ⊂ T then

⋃
U ∈ T .

1.2. If F ⊂ P(X) is a set for which
• ∅, X ∈ F ,
• A ∪B ∈ F if A,B ∈ F ,
• if V ⊂ F then

⋂
V ∈ F ,

then T = {Ac : A ∈ F} is a topology on X.

Definition 1.3. A map C : P(X)→ P(X) is called a closure operator if
(a) C(∅) = ∅,
(b) A ⊂ C(A) for all A ∈ P(X),
(c) C(C(A)) = C(A) for all A ∈ P(X),
(d) C(A ∪B) = C(A) ∪ C(B) for all A,B ∈ P(X).

Theorem 1.4. [1, Theorem 1.8] Let C be a closure operator. Then T =
{C(A)c : A ∈ P(X)} is a topology on X and C(A) is the T -closure of A.

Proof. Let F = {C(A) : A ∈ P(X)}. Clearly ∅, X ∈ F and A ∪ B ∈ F if
A,B ∈ F . Let A ⊂ P(X). It suffices to show that

⋃
A∈A C(A) ∈ F (see

1.2). Note that (d) of Definition 1.3 implies that C(B) ⊂ C(A) if B ⊂ A,
A,B ∈ P(X). Let B :=

⋃
A∈A C(A). Then

C(B) ⊂ C(C(A)) = C(A) for all A ∈ A, (1)

i.e.,

C(B) ⊂
⋃
A∈A

C(A) = B. (2)

Thus C(B) = B and so B ∈ F .
Let B ⊂ X. Then the closure of B with respect to T , B, equals the intersec-

tion
⋂
{F : F ∈ F , B ⊂ F}. As C(B) ∈ F , B ⊂ C(B). As B ∈ F and B ⊂ B,

we have C(B) ⊂ C(B) = B and so B = C(B).
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Definitions 1.5. (a) Let A be a set and � be a relation on A. � is called
a preorder if a � a for all a ∈ A and if a � b and b � c imply a � c
for all a, b, c ∈ A. � is said to directed A if for all a, b ∈ A there exists a
c ∈ A with c � a and c � b. In this case A equipped with � is said to be
directed. If Ai are directed sets (with direction �i) for all i ∈ I, for some
set I, then we equip the product

∏
i∈I Ai with the relation � defined by

(ai)i∈I � (bi)i∈I ⇐⇒ ai �i bi for all i ∈ I. (3)

For convenience we write � for any direction.
(b) If A is a directed set and B ⊂ A is such that for all α ∈ A there exists a

β ∈ B with β � α, then B is called a cofinal subset of A.
(c) A net in X is a function on a directed set A into X, f : A → X, also

written as (fα)α∈A.
(d) A net (gβ)β∈B is called subnet of a net (fα)α∈A if there exists a function

φ : B→ A such that

• g = f ◦ φ, i.e., gβ = fφ(β) for all β ∈ B,
• for all α ∈ A there is a β ∈ B such that γ � β implies φ(γ) � α.

If (fα)α∈A is a net and B ⊂ A cofinal, then (fβ)β∈B is a subset of (fα)α∈A.

Definition 1.6. Let C be a set consisting of pairs (f, x) with f a net in X and
x ∈ X. We say that f C-converges to x, and write C − limα fα = x, to denote
that (f, x) ∈ C. C is called a convergence class for X if it satisfies the following
conditions
(a) If A is a directed set then the constant net (x)α∈A C-converges to x.
(b) If f is a net that C-converges to x, then so does every subnet of f .
(c) If f does not C-converge to x, then there exists a subnet of f such that

no subset of it C-converges to x.
(d) Let A be a directed set and Bα be directed for all α ∈ A. Let F =

A×
∏
α∈ABα and for (α, q) in F let R(α, q) = (α, q(α)). If

C− lim
α∈A

lim
β∈Bα

f(α, β) = x,

then f ◦R C-converges to x.

Theorem 1.7. [1, Theorem 2.9] Let C be a convergence class for X. For A ∈
P(X) let C(A) be the set of x ∈ X such that there exists a net f in X such that
f C-converges to x. Then C is a closure operator, and (f, x) ∈ C if and only if
f converges to x in the topology associated with C (see Theorem 1.4).

Remark 1.8. Actually, as we will see in the proof, (a), (b) and (d) of Defin-
ition 1.6 imply that C is a closure operator. (c) is crucial for the fact that
C-convergence of a net is the same as convergence in the topology associated
with C.

2



Proof of Theorem 1.7. It will be clear that C(∅) = ∅. By (a) of Definition 1.6 it
follows that A ⊂ C(A) for all A ∈ P(X). If x ∈ C(A), then by definition of C,
x ∈ C(A∪B) for all B ∈ P(X). Therefore C(A)∪C(B) ⊂ C(A∪B). If (fα)α∈A
is a net in A ∪ B that C-converges to x, then either AA = {α ∈ A : fα ∈ A},
or AB = {α ∈ A : fα ∈ B} is cofinal in A, providing a subset in either A or B
that C-converges by (b) of Definition 1.6. Whence C(A) ∪ C(B) = C(A ∪ B).
It rests us to show that C(C(A)) = C(A) for A ∈ P(X). Let (fα)α∈A be a
net in C(A) that C-converges to an x in C(C(A)). For all α ∈ A there is a
directed set Bα and a net (gα,β)β∈Bα

that C-converges to fα. By condition (d)
of Definition 1.6 there exists a net in A that C-converges to x, whence x ∈ C(A)
and C(C(A)) = C(A).

If (fα)α∈A does not converge to x with respect to the topology, then there
exists an open neighbourhood U of x and a cofinal B ⊂ A such that fβ ∈ U c
for all β ∈ B. As C(U c) = U c, (fβ)β∈B does not C-converge to x. By (b) of
Definition 1.6 (fα)α∈A does not converge to x.

Suppose that a net g converges to x with respect to the topology but which
does not C-converge to x. By (c) of Definition 1.6 there is a subnet of g, (fα)α∈A
such that no subnet of f C-converges to x. We construct such a subnet to obtain
a contradiction. For α ∈ A let

Mα = {β ∈ A : β � α}, (4)
Aα = {fβ : β ∈Mα}. (5)

As fα → x, x is an element of the closure of Aα, Aα for all α ∈ A. Therefore,
for all α ∈ A, there exists a directed set Bα and a net (zα,β)β∈Bα

in Mα such
that C− limβ∈Bα

f ◦ z(α, β) = x. By (d) of Definition 1.6 (in combination with
(a)), f ◦ z ◦ R C-converges to x. If α ∈ A and α1 � α then z ◦ R(α1, q) =
z(α1, q(α1)) ∈Mα1 and is therefore � α. Therefore f ◦ z ◦R is a subnet of f .

There exist several notions of convergence of sequences. As one would have
a class C of pairs (f, x) with f sequences in X and x ∈ X, then (d) of Definition
1.6 can not be satisfied. As (d) is used in the proof of Theorem 1.7 to prove that
C(C(A)) = C(A), it may be that C(C(A)) is strictly larger than C(A) if (d)
fails to hold. This is illustrated in, for example, Rudin [3, Chapter 3 Exercise 9].
This example, but so the following examples, illustrate that topologies might
not be determined by the notion of convergence of sequences. Moreover, as we
illustrate in Example 1.14 there might be notion of convergence of sequences and
a sequence that does not converge in the sense of this notion of convergence,
but which does converge in the sense of the topology generated by this notion
of convergence.
Example 1.9. Let X be an uncountable set equipped with the topology de-
termined by

A is closed ⇐⇒ A is countable or A = X. (6)

Let (xn)n∈N be a sequence that converges to an x in X. Then

U := (X \ {xn : n ∈ N}) ∪ {x} (7)
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is an open neighbourhood of y. As there exists an N ∈ N such that xn ∈ U for
n ≥ N , this implies that xn = y for n ≥ N . This implies that

{x ∈ X : x is a limit of a sequence in A} = A (8)

for all A ⊂ X. Therefore the topology is not determined by the notion of
convergence of sequences.

For the example we want to provide, we introduce the notion of a Banach
lattice. `1 is an example of a Banach lattice, and is the example we consider.

Definition 1.10. An ordered vector space is a vector space E over R equipped
with an ordering ≤ such that

x ≤ y =⇒ λx ≤ λy (x, y ∈ E, λ ≥ 0),
x ≤ y =⇒ x+ z ≤ y + z (x, y, z ∈ E).

A Banach space E equipped with an ordering ≤ is called a Banach lattice, if
it is an ordered vector space, if the supremum of x and y, x ∨ y exists for all
x, y ∈ E (the supremum of x and y is the element h such that h ≥ x and h ≥ y,
such that for all j with j ≥ x and j ≥ y it holds that j ≥ h), and if

‖x‖ = ‖ |x| ‖ (x ∈ E).

where |x| = x ∨ (−x).

Definition 1.11. Let E be a Banach lattice. A sequence (xn)n∈N in E is said
to converge relatively uniformly to an x in E, written xn

u−→ x, if there exists a
a ∈ E and a sequence of skalars (εn)n∈N in (0,∞) such that

|xn − x| ≤ εna (n ∈ N),
εn → 0.

Theorem 1.12. [4, Theorem 105.15] Let E be a Banach lattice. Let T be the
topology generated by the (relatively) uniform convergence. Then T is the norm
topology.

Proof. Let A ⊂ E. If A is norm closed and x1, x2, · · · ∈ A and xn
u−→ x, then

xn → x in norm and so x ∈ A, i.e., A is T -closed.
Suppose A is closed with respect to T . Let x1, x2, · · · ∈ A be such that

xn → x in norm. We prove that x ∈ A. We may as well assume that x1, x2, . . .
are such that

∑
n∈N ‖xn − x‖ <∞.

Let us prove that xn
u−→ x (which is [2, Theorem 3.9]), so that x ∈ A.

Let (εn)n∈N in (0,∞) be such that εn → 0 and∑
n∈N

ε−1
n ‖xn − x‖ <∞.
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As
∑
n∈N ‖ε−1

n |xn − x| ‖ =
∑
n∈N ε

−1
n ‖xn − x‖ < ∞, a =

∑
n∈N ε

−1
n |xn − x|

exist in E and

|xn − x| ≤ εna,

i.e., xn
u−→ x.

Theorem 1.13. [4, Theorem 105.15] Let E be a Banach lattice. Let T be the
topology generated by the (relatively) uniform convergence. Then T is the norm
topology.

Proof. Let A ⊂ E. If A is norm closed and x1, x2, · · · ∈ A and xn
u−→ x, then

xn → x in norm and so x ∈ A, i.e., A is T -closed.
Suppose A is closed with respect to T . Let x1, x2, · · · ∈ A be such that

xn → x in norm. We prove that x ∈ A. We may as well assume that x1, x2, . . .
are such that

∑
n∈N ‖xn − x‖ <∞. Then xn

u−→ x by [2, Theorem 3.9], whence
x ∈ A.

Example 1.14. Consider the Banach lattice E = `1 and the sequence (xn)n∈N
in E given by

xn = 1
nen, (9)

where en = 1{n}. Then xn → 0 in norm, but not uniformly.
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