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Conventions and Notation
• N = {1, 2, 3, . . . }, N0 = N ∪ {0} and N−1 = {−1, 0} ∪ N.

• d will be a fixed element of N.

• For x ∈ Rd or x ∈ Cd we write |x| for its euclidean norm
√∑d

i=1 |xi|2, |x|1 =∑d
i=1 |xi| and |x|∞ = maxi∈{1,...,d} |xi|.

• For α ∈ Nd0 we write |α| =
∑d
i=1 αi and Dα or ∂α for the operation on (smooth)

functions by

∂αf = ∂α1
1 . . . ∂αdd f,

where ∂i is the partial derivative with respect to the i-th coordinate.

• We write ‖ · ‖Lp for the norm on the Lp spaces. See Section A. As is common,
we will not distinguish between an element in Lp with (one of) the function(s) it
represents.

• For the inner product on L2 we write 〈·, ·〉L2 (as not to get confusion with the
notation 〈·, ·〉 for the pairing between distributions and test functions). So

〈f, g〉L2 =
∫
fg.
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1 Spaces of differentiable functions and distributions
Let Ω be a nonempty open subset of Rd. The underlying field F is either R or C. We
write Nx(Ω) or just Nx for the set of neighbourhoods of x in Ω.

Definition 1.1. For a function f : Ω→ F we define the support supp f to be the set

supp f = {x ∈ Ω : ∀V ∈ Nx ∃y ∈ V Jf(y) 6= 0K}. (1)

Or in words, it is the set of all x such that for all neighbourhoods V of x there exists
an element y in that neighbourhood such that f(y) 6= 0. Observe that we also have the
following equalities

supp f = {x ∈ Ω : f(x) 6= 0}
= Ω \ {U ⊂ Ω : U is open and f = 0 on U}. (2)

If F is a set of functions Ω → F, we write Fc for the subset of compactly supported
functions in F , i.e., Fc = {f ∈ F : supp f is compact}.

Definition 1.2. • We write C(Ω,F) or C(Ω) for the set of continuous functions
Ω→ F. We will also write C0(Ω) = C(Ω) and

‖ϕ‖C0 = sup
x∈Ω
|ϕ(x)| (ϕ ∈ C(Ω)),

observe that ‖ϕ‖C0 = ‖ϕ‖L∞ for ϕ ∈ C(Ω).

• For k ∈ N we write Ck(Ω,F) or Ck(Ω) for the k-times continuously differentiable
functions Ω→ F and ‖ · ‖ : Ck(Ω)→ [0,∞) for

‖f‖Ck =
∑

β:|β|≤k
‖∂βf‖L∞ (f ∈ Ck(Ω,F)). (3)

• We say that f : Ω→ F is k-times continuously differentiable if f |Ω ∈ Ck(Ω) and if
∂βf |Ω can be extended to a continuous function on Ω. We write Ck(Ω,F) or Ck(Ω)
for the set of such functions.

Definition 1.3. D(Ω) is defined to be the vector space C∞c (Ω). An element of D(Ω) is
called a testfunction.

A linear function u : D(Ω)→ F, is called a distribution if for all compact sets K ⊂ Ω,
there exist C > 0 and k ∈ N0 such that

|u(ϕ)| ≤ C‖ϕ‖Ck (ϕ ∈ D(Ω), suppϕ ⊂ K). (4)

If u is a distribution and k ∈ N0 is such that for all compact sets K there exists a C > 0
such that (4) holds, then u is said to be of order k.
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1.4. Observe that if u and v are distributions (on Ω) and λ, µ ∈ F, then w : D(Ω) → F
defined by w(ϕ) = λu(ϕ) + µv(ϕ) is a distribution.

Definition 1.5. We define D′(Ω) to be the vector space of distributions.

Before we consider the topologies we equip D and D′ with, let us give some examples
of distributions.

Example 1.6. Let f be a locally integrable function on Ω, also written f ∈ L1
loc(Ω).

Then uf : D(Ω)→ F defined by

uf (ϕ) =
∫

Ω
fϕ =

∫
Ω
f(x)ϕ(x) dx (5)

is a distribution and is of order 0.

Definition 1.7. A (positive) Radon measure µ on Ω is a σ-additive function (a measure)
on the Lebesgue measurable subsets of Ω (with values in [0,∞]) such that µ(K) <∞ for
all compact sets K ⊂ Ω.

Example 1.8. If F = R let µ be a Radon measure on Ω. Then uµ : D(Ω) → F defined
by

uµ(ϕ) =
∫

Ω
ϕ dµ (6)

is a distribution and is of order 0.
Observe that positive locally integrable functions give rise to Radon measures. But

not vice versa, as the following example illustrates.
One important example to highlight here is the Dirac-δ measure, for which we write

δ0 (or δx if we center it at x). It is defined on measurable sets A by

δ0(A) =
{

1 0 ∈ A,
0 0 /∈ A.

Therefore
∫
ϕ dδ0 = ϕ(0).

Exercise 1.1. Prove that every function in Lp(Ω) is locally integrable, where p is an
element of [1,∞].

This implies that all element of function spaces like Lp or Ck represent distributions.
But these examples only represent distributions of order 0, as the following theorem
states.

Theorem 1.9. A distribution u is of order 0 if and only if it is represented by the differ-
ence of two Radon measures, in the sense that there exist Radon measures µ1, µ2, µ3, µ4
such that u = uµ1 − uµ2 + i[uµ3 − uµ4 ] (see (6)).
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Remark 1.10. Consider d = 1 and F = R. Observe that uf with f(x) = sin(x) for x ∈ R
is of order zero and so there exists two Radon measures µ1, µ2 such that u = uµ1 − uµ2 .
Observe however that µ1 − µ2 is not a signed measure, that is, it is not a σ-additive
function on the Lebesgue measurable subsets of R into R as “its” value on R is ill-
defined. This means that the theorem in [7] is stated incorrectly (which states that every
distribution of zero order is represented by a signed (or complex) Radon measure).

You are asked to do the proof of Theorem 1.9 yourself in Exercise1.3. One might
want to use a partition of unity, which we will present in the following.

First we will prove some facts about the topology on Ω (inherited by Rd). Moreover,
we use this to prove Theorem 1.16, which shows that if uµ or uf is zero, then µ or
f is zero. In other words, the function that maps Radon measures into the space of
distributions µ 7→ uµ and the function L1

loc(Ω)→ D′(Ω) given by f 7→ uf are injective.
1.11 (Notation). For x ∈ Rd, r > 0 we write B(x, r) for the (Euclidean) ball in Rd
with center x and radius r:

B(x, r) = {y ∈ Rd : |x− y| ≤ r}.

Theorem 1.12. There exists an increasing sequence of compact sets (Kn)n∈N such that
Kn ⊂ K◦n+1 and Kn ⊂ Ω for all n ∈ N and

Ω =
⋃
n∈N

Kn.

Proof. Observe that if Ω = Rd, then we can take Kn to be the closure of the ball around
0 with radius n: B(0, n).

Let us first prove that Ω is the union of closed sets. Let f : Ω→ [0,∞] be such that
f(x) is the distance from x to Rd \ Ω, i.e.,

f(x) = inf{|x− y| : y ∈ Rd \ Ω} (x ∈ Ω).

Then f is a continuous function and therefore An = f−1[ 1
n ,∞) is a closed subset of Ω,

An ⊂ An+1 for all n ∈ N and Ω =
⋃
n∈NAn.

Now it is straightforward to check that Kn = An ∩B(0, n) satisfies the conditions.

The next lemma shows there exist many smooth functions.
Lemma 1.13. Let K be a compact subset of Rd and U be an open subset of Rd such that
K ⊂ U . There exists a C∞ function ϕ : Rd → [0,∞) such that ϕ is strictly positive on
K and is zero outside U .

Proof. By a covering argument it is sufficient to prove the lemma for K being the set
that consists one point. For this we consider the following function, ψε : Rd → [0,∞)
defined by

ψε(x) =

e
1

‖x‖2−ε2 if |x| < ε,

0 if |x| ≥ ε.

One can prove that this function is C∞ by using that limt→∞ p(t)e−t = 0.
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Before we turn to the partition of unity, we recall a definition and some theorems
from topology.

Definition 1.14. Let E be a topological space. A collection of subsets of E, U , is called
a covering of E if

⋃
U = E. It is called an open covering if each element in U is an open

set. If U and V are covers of E, then V is called a refinement of U or finer than U if for
each V ∈ V there exists a U ∈ U with V ⊂ U . A covering U is called locally finite if for
all x ∈ E there exists a neighbourhood V of x such that V intersects only finitely many
elements of U .

1.15 (Partition of unity). There exists a countable covering of Ω of open sets (Un)n∈N
which closure Un is a compact subset of Ω (by Theorem 1.12). We may and do assume
this covering is locally finite, which in particular implies that for all x ∈ X there exist
at most finitely many n such that x ∈ Un. Now we can find another cover (Vn)n∈N such
that V n ⊂ Un for all n ∈ N (and Ω =

⋃
n∈N Vn). As V n is compact, by Lemma 1.13

there exists a ψn ∈ C∞(Ω, [0,∞)) such that ψn > 0 on Vn and ψn = 0 outside Un. Let
us define Ψ =

∑
n∈N ψn, which is finite and strictly positive everywhere. Then we can

define χn := ψn
Ψ and we obtain

0 ≤ χn(x) ≤ 1 and
∑
n∈N

χn(x) = 1 (x ∈ Ω).

(χn)n∈N is called a partition of unity subordinate to the covering (Un)n∈N.

Exercise 1.2. Prove that for any compact set K ⊂ Ω there exists a testfunction χ
such that χ = 1 on K.

Theorem 1.16. If µ is a Radon measure on Ω, then for all open sets U ⊂ Ω

µ(U) = sup{µ(K) : K ⊂ U,K is compact}. (7)

Moreover,

µ(U) = sup{
∫
ϕ dµ : ϕ ∈ C∞c (Ω, [0, 1]), suppϕ ⊂ U}. (8)

Consequently, if
∫
ϕ dµ = 0 for all ϕ ∈ D(Ω), then µ = 0. Moreover, if f ∈ L1

loc(Ω) and∫
fϕ = 0 for all ϕ ∈ D(Ω), then f = 0 (in L1

loc).

Proof. (7) follows from Theorem 1.12. (8) follows by taking a partition of unity for
an open set U : there exist χn ∈ C∞(Ω, [0, 1]) such that

∑
n∈N χn(x) = 1U (x), then∫ ∑N

n=1 χn dµ ↑
∫
1Uµ = µ(U) as N ↑ ∞ by Levi’s monotone convergence theorem.

Exercise 1.3. Prove Theorem 1.9. One can follow the following steps.
(a) Show that for any testfunction χ the distribution χu is represented by a complex

Radon measure (which means µ = µ1 − µ2 + i[µ3 − µ4] for finite (postive) Radon
measures µ1, µ2, µ3, µ4) by using Riesz’ representation theorem (Theorem H.10).
You might also want to use the Hahn-Banach theorem (Theorem J.2).

7



(b) Use the partition of unity to prove Theorem 1.9.

Knowing about the existence of partitions of unity, we can prove that distributions
are determined by their “local behaviour”, in the sense of the following theorem.

Theorem 1.17. If u, v ∈ D′(Ω) are such that for all x ∈ Ω there exists an open neigh-
bourhood U of x such that u(ϕ) = v(ϕ) for all ϕ ∈ D(Ω) with suppϕ ⊂ U , then u = v.

Exercise 1.4. Prove Theorem 1.17.

Of course there are also distributions of higher order. You are asked to give examples,
after we define certain operations for distributions. First we make observations that hold
for operations on distributions represented by functions.

1.18 (Notation). For a function f : Ω → F and y ∈ Rd we define the functions f̌ :
−Ω→ F and Tyf : Ω + y → F by

f̌(x) = f(−x), Tyf(x) = f(x− y) (x ∈ Rd). (9)

1.19. Let f ∈ L1
loc(Ω). The following statement follow by applying the change of vari-

ables formulae and integration by parts. (For the notation uf see (5).)
(a) uf̌ is a distribution on −Ω and for ϕ ∈ D(−Ω)

uf̌ (ϕ) =
∫
−Ω

f(−x)ϕ(x) dx =
∫

Ω
f(x)ϕ(−x) dx = uf (ϕ̌) (10)

(b) uTyf is a distribution on Ω + y and for ϕ ∈ D(Ω + y)

uTyf (ϕ) =
∫

Ω+y
f(x− y)ϕ(x) dx =

∫
Ω
f(x)ϕ(x+ y) dx = uf (T−yϕ). (11)

(c) Suppose f ∈ Ck(Ω) for some k ∈ N. Let α ∈ Nd0 with |α| ≤ k. Then u∂α is a
distribution and for ϕ ∈ D(Ω)

u∂αf (ϕ) =
∫

Ω
∂αf(x)ϕ(x) dx = (−1)|α|

∫
Ω
f(x)∂αϕ(x) dx = (−1)|α|uf (∂αϕ).

(12)

(d) Let ψ ∈ C∞(Ω). Then uψf is a distribution and for ϕ ∈ D(Ω)

uψf (ϕ) =
∫

Ω
ψ(x)f(x)ϕ(x) dx = uf (ψϕ). (13)

(e) Let l : Rd → Rd be linear and bijective. Then f ◦ l is locally integrable and uf◦l is
a distribution on l−1(Ω) and for ϕ ∈ D(l−1(Ω))

uf◦l(ϕ) =
∫
l−1(Ω)

f ◦ l(x)ϕ(x) dx = 1
|det l|

∫
Ω
f(x)ϕ ◦ l−1(x) dx

= 1
|det l|uf (ϕ ◦ l−1). (14)
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Exercise 1.5. Let u ∈ D′(Ω). Check that if one defines w(ϕ) to be equal to the right-
hand side of (10) with “u” instead of “uf”, i.e., w(ϕ) = u(ϕ̌), that w is a distribution
(on −Ω). Do the same for (11), (12), (13) and (14).

The analogues operations for distributions generalise the previous relations.

Definition 1.20. Let y ∈ Rd, α ∈ Nd0, ψ ∈ E and l : Rd → Rd linear and bijective. For a
distribution u ∈ D′ we define
(a) ǔ ∈ D′(−Ω) by

ǔ(ϕ) = u(ϕ̌) (ϕ ∈ D(−Ω)),

(b) Tyu ∈ D′(Ω + y) by

Tyu(ϕ) = u(T−yϕ) (ϕ ∈ D(Ω + y)),

(c) ∂αu ∈ D′(Ω) by

∂αu(ϕ) = (−1)|α|u(∂αϕ) (ϕ ∈ D(Ω)),

(d) ψu ∈ D′(Ω) by

ψu(ϕ) = u(ψϕ) (ϕ ∈ D(Ω)),

(e) u ◦ l ∈ D′(l(Ω)) by

u ◦ l(ϕ) = 1
|det l|u(ϕ ◦ l−1) (ϕ ∈ D(l(Ω))).

1.21. Observe that all the above operations are “linear in u”.

Exercise 1.6. Construct distributions that are of order k, for any k ∈ N. Also con-
struct a distribution that is not of any finite order.

Exercise 1.7. Let d = 1 and let f : R→ R be the absolute value function: f(x) = |x|
for x ∈ R. Show that the derivative Duf can be represented by ug for some locally
integrable function g.

Exercise 1.8. In this exercise we consider dimension one and want to consider the
function x 7→ 1

x as a distribution. However, there is a problem of defining the integral
of testing it against a testfunction and integrating around zero. Therefore we define the
distribution differently.
(1) First prove that for all ϕ ∈ D(R) the limit

lim
ε↓0

∫
R\[−ε,ε]

ϕ(x)
x

dx
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exists and equals −
∫
R ϕ
′(x) log |x| dx. For this check that x 7→ log |x| is integrable around

zero and conclude that it is locally integrable.
(2) Prove that u : D → R defined by

u(ϕ) := lim
ε↓0

∫
R\[−ε,ε]

ϕ(x)
x

dx

is of order 1. Observe that by (1) u = −Duf , where f(x) = log |x|.

Remark 1.22. In Theorem 1.12 we basically used the Heine-Borel theorem, as the clos-
ure of a ball is closed and bounded and therefore compact by this theorem. For general
topological spaces, one has the following analogues to Theorem 1.12.

Theorem 1.23. [6, (12.6.1)] Let E be a separable, locally compact, metrizable space and
let B be a basis of open sets in E. If U is an open covering of E, then there exists a
countable locally finite open covering (Bn)n∈N of E that is finer than U and such that Bn
is compact and belong to B.

Theorem 1.24. [6, (12.6.2)] Let E be a metrizable space that possesses a countable
locally finite open covering (An)n∈N. Then there exists a countable open covering (Bn)n∈N
such that Bn ⊂ An for all n ∈ N.

2 Topologies on the spaces of testfunctions and distribu-
tions

In this section we introduce the topologies that we equip D(Ω) and D′(Ω) with.

2.1. One could equip D(Ω) with the locally convex topology generated by the seminorms
‖ · ‖Ck for k ∈ N0. With this topology the space D(Ω) is metrizable but not complete.
Therefore we consider a different topology on D(Ω).

Theorem 2.2. Every topological vector space with a topology generated by countably
many seminorms is metrizable.

Exercise 2.1. Prove that D(Ω) equipped with the locally convex topology generated
by the seminorm ‖ · ‖Ck is metrizable (i.e., prove (/look up a proof of) Theorem 2.2) but
not complete.

Definition 2.3. [27, Chapter IV] Let X and Y be vector spaces over F and 〈·, ·〉 :
X × Y → F be a bilinear form that satisfies the separation axioms:

〈x, y〉 = 0 for all y ∈ Y implies x = 0,
〈x, y〉 = 0 for all x ∈ X implies y = 0.

The weak topology σ(X ,Y) on X is the coarest topology on X such that all maps 〈·, y〉
with y ∈ Y are continuous. This topology is generated by the seminorms x 7→ |〈x, y〉| for
y ∈ Y. Similarly one defines the weak topology σ(Y,X ) on Y.
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Theorem 2.4. [27, Chapter IV, Theorem 1.2] The dual of the topological space (Y, σ(Y,X ))
is X . This means that if f : Y → F is continuous and linear, then there exists a unique
x ∈ X such that f(y) = 〈x, y〉.

Definition 2.5. We define 〈·, ·〉 : D′(Ω)×D(Ω)→ F by

〈u, ϕ〉 = u(ϕ) ((u, ϕ) ∈ D′(Ω)×D(Ω)). (15)

We equipD(Ω) with the weak topology σ(D(Ω),D′(Ω)) andD′(Ω) with the weak topology
σ(D(Ω)′,D(Ω)), also called the weak* topology.

2.6. As is usual in the literature of topological vector spaces, one writes X ′ for the
topological dual of X . Theorem 2.4 justifies our notation D′, in the sense that D′ is
indeed the topological dual of D.

Convergence of sequences in D can be described very explicitly.

Theorem 2.7. [7, Theorem on page 99] A sequence (ϕn)n∈N converges to a ϕ in D(Ω)
if and only if (a) and (b):
(a) There exists a compact set K ⊂ Ω such that the support of ϕn and ϕ lies within K

for all n ∈ N.
(b) ‖ϕn − ϕ‖Ck → 0 for all k ∈ N.

Exercise 2.2. Prove the “if” part of Theorem 2.7: that (a) and (b) imply ϕn → ϕ in
D(Ω).

Proof of the “only if” part of Theorem 2.7. Suppose that ϕn → 0 in D(Ω). We deduce
(a) and (b) by arguing by contradiction.

Suppose (a) is not satisfied. Then there exists a sequence (xk)k∈N such that no
subsequence converges in Ω, and a subsequence (ϕnk)k∈N such that ϕnk(xk) 6= 0 and
ϕnk(xj) = 0 for j > k. Now let us define a measure with support being equal to the
set of xk’s as follows. We let µ =

∑
i∈N aiδxi , where the ai’s are chosen such that∑k

i=1 aiϕk(xi) = 1; this can always be done inductively. By assumption on the sequence
(xk)k∈N, this measure is a Radon measure, as any compact set K ⊂ Ω contains only
finitely many xk’s. Therefore it defines a distribution. But

∫
ϕk dµ = 1 for all k, which

contradicts the hypothesis that ϕk → 0 in D(Ω).
In order to show (b) we show that the following statement holds:

If ψk → 0 in D(Ω), then (ψk)k∈N is uniformly bounded. (16)

In case (16) holds, then (∂αϕk)k∈N is uniformly bounded for any choice of α ∈ N0.
This implies that these sequences also are uniformly Lipschitz and thus equicontinuous.
Therefore, by applying the Arzela-Ascoli theorem (see Theorem G.1) it follows that those
sequences converge uniformly on any compact set. As there is a compact set that contains
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the support of all the functions, this implies that ‖∂αϕk‖L∞ → 0 for all α ∈ Nd0. This
implies (b).

To prove the statement (16) let us assume that ψk → 0 in D(Ω) and that ψk is not
uniformly bounded. Therefore, by possibly passing to a subsequence, we may assume
that ‖ψk‖L∞ > 3k for all k ∈ N. Then we can find a sequence (xk)k∈N in Ω such that

|ψk(xk)| = ‖ψk‖L∞ .

As ψk converges pointwise to zero, we may and do assume –by possibly passing to a
subsequence– that

∑k−1
i=1 ψk(xi) < 4−k. As we did before let us construct a Radon

measure. We let µ =
∑
i∈N 3−iδi. Then∫

ψk dµ =
k−1∑
i=1

3−iψk(xi) + 3−kψk(xk) +
∞∑

i=k+1
3−iψk(xi).

By the assumptions we have |
∫
ψk dµ| ≥ −4−k + 1− 3−1 ≥ 5

12 . Therefore
∫
ψk dµ does

not converge to zero, which contradicts our hypothesis.

As we have observed in 2.6, D′ is the topological dual of D. This means that a linear
function u : D(Ω)→ F is an element of D′(Ω) if and only if it is continuous, which means
that u(ϕι)→ u(ϕ) for any net (ϕι)ι∈I with ϕι → ϕ in D. The next theorem shows us that
it is equivalent to consider only convergent sequences/ to show sequential continuity.

Theorem 2.8. [7, Page 100] A linear function u : D(Ω) → F is a distribution if and
only if it is sequentially continuous, i.e., ϕn → ϕ implies u(ϕn)→ u(ϕ) for all sequences
(ϕn)n∈N and ϕ in D(Ω).

Exercise 2.3. Prove Theorem 2.8.

2.9 (D is not metrizable). Let us show that D(Ω) is not metrizable. We show that if
there is a metric on D(Ω), then it generates a different topology. Suppose d is a metric
on D(Ω), such that under the topology of d, D(Ω) is a topological vector space. We can
find a sequence of increasing compact sets (Kn)n∈N who’s union equals Ω. Let χn be a
test function that equals 1 on Kn for all n. We can and do choose λn ∈ R such that
d(λnχn, 0) ≤ 2−n. Then λnχn converges to 0 but (a) of Theorem 2.7 is not satisfied,
which means that λnχn converges in the topology generated by d but not in the weak
topology σ(D,D′).

Definition 2.10. Let X and Y be as in Definition 2.3. We say that X equipped with
the σ(X ,Y) topology is sequentially complete if for every sequence (xn)n∈N it holds that
if (〈xn, y〉)n∈N is a Cauchy sequence for all y ∈ Y, then there exists an x in X such that
xn → x in X .

2.11. In alignment with Definition 2.10, we call D′ weak* sequentially complete when it
is sequentially complete (with respect to the σ(D′,D) topology). This means that the
following holds: if (un)n∈N is a sequence such that (〈un, ϕ〉)n∈N is a Cauchy sequence,
then there exists a u such that un → u in D′.
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2.12. For the proof of the next theorem we introduce the following notation. For a
compact subset K of Ω we write DK(Ω) for the subset of D(Ω) of functions with support
in K. The topology on DK(Ω) is defined by the seminorms ‖ · ‖Ck . Moreover, DK(Ω) is
a complete metric space.

Theorem 2.13. D′(Ω) is weak* sequentially complete.

Proof. Suppose that (un)n∈N is a sequence such that (〈un, ϕ〉)n∈N is a Cauchy sequence
for all ϕ ∈ D(Ω). It will be clear what the limit should be: We define u : D(Ω)→ F such
that 〈u, ϕ〉 = limn→∞〈un, ϕ〉 for any ϕ ∈ D(Ω). Clearly u is linear, so let us show that
it is continuous. Let K ⊂ Ω be compact and DK(Ω) be as in 2.12. On this space define
the function |||·||| : DK(Ω)→ F by

|||ϕ||| := sup
k∈N
|uk(ϕ)|.

This defines a seminorm as it is the supremum of a family of seminorms. This function
is lower semicontinuous as it is the supremum of continuous functions. Therefore, the
set Sj := {f ∈ DK(Ω) : |||f ||| ≤ j} is closed and convex DK(Ω). As

⋃
j∈N Sj = DK(Ω), by

Baire’s Category theorem (Theorem I.1) there exists an M ∈ N such that SM contains
an open ball of DK(Ω). Let dK denote the metric on DK(Ω) and let us write BK(ψ, ε) for
the ball around ψ with radius ε > 0: {ϕ ∈ DK(Ω) : dK(ϕ,ψ) < ε). Suppose ψ ∈ DK(Ω)
and ε > 0 are such that the ball BK(ψ, ε) is contained in SM . As SM is symmetric
around zero, also BK(−ψ, ε) is contained in SM . As SM is convex, this implies that 0 is
in the interior of SM . Therefore we assume ψ = 0. This implies that for such ϕ ∈ DK(Ω)

dK(ϕ, 0) < ε =⇒ |un(ϕ)| ≤M for all n ∈ N.

Hence |u(ϕ)| ≤ M for ϕ ∈ BK(0, ε). This implies that u is continuous on DK(Ω). As
the topology on DK(Ω) is defined by the seminorms ‖ · ‖Ck this means that there exists
a C > 0 and a k ∈ N such that

|u(ϕ)| ≤ C‖ϕ‖Ck(Ω) (ϕ ∈ DK(Ω)).

This proves that u is a distribution.

2.14. We equip the space of locally integrable functions on Ω with the topology defined
by the seminorms ‖ · ‖L1,K with K ⊂ Ω being compact, where

‖ϕ‖L1,K := ‖ϕ1K‖L1 =
∫
K
|ϕ| (ϕ ∈ D(Ω)).

Similarly, Lploc(Ω) is equipped with the seminorms ‖ · ‖Lp,K with K ⊂ Ω being compact,
defined by ‖ϕ‖L1,K := ‖ϕ1K‖L1 .

Theorem 2.15. As a function Ck(Ω) → D′(Ω) or as a function L1
loc(Ω) → D′(Ω), the

map f 7→ uf is continuous and injective.
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Proof. The injectivity follows from Theorem 1.16. We leave the proof of the continuity
as an exercise (see Exercise 2.4).

Exercise 2.4. Prove the continuity of the functions in Theorem 2.15. Think about
a topology on the space of Radon measures such that the function that maps a Radon
measure µ to the distribution uµ is continuous.

2.16. [7, Page 98] Let ψ ∈ C∞(Ω) and α ∈ Nd0. Observe that the maps

D(Ω)→ D(Ω), ϕ 7→ ψ∂αϕ,

D′(Ω)→ D′(Ω), u 7→ ψ∂αu,

are continuous.

2.17 (Convention/Notation). As is common in literature, and convenient, is to view
elements of Ck(Ω) and L1

loc(Ω) as distributions. That is, not to distinguish f from uf .
However, we still prefer not to write “f(ϕ)” for “uf (ϕ)” so we will write “〈f, ϕ〉” instead.

The notation “〈·, ·〉” is also commonly used for inner products and this might cause
confusion. Indeed, say we take f, g ∈ D and as mentioned above, view f as the distri-
bution uf . Then 〈f, g〉 =

∫
fg which is not the same (at least not for general C-valued

functions) as
∫
fg, which is the inner product between f and g, for which we also write

〈f, g〉L2 .

2.18 (Restriction of a distribution to a smaller set). Suppose U is an open subset
of Ω. Then there exists a linear injection

ι : D(U)→ D(Ω),

where ι(ϕ)(x) = ϕ(x) for x ∈ U and ι(ϕ)(x) = 0 for x ∈ Ω \ U , and ϕ ∈ D(U). As
any compact set in U is a compact set in Ω it follows that ι is continuous. Let now
ρ : D′(Ω)→ D′(U) be defined by

〈ρ(u), ϕ〉 = 〈u, ι(ϕ)〉 (ϕ ∈ D(U)).

Then ρ is also linear and continuous. So D(U) can be continuously embedded in D(Ω)
and D′(Ω) can be continuously embedded in D′(U).

For this reason, we will view ρ(u) as the restriction of u to D(U). Therefore, when
v ∈ D′(U) we will say “u = v on U” instead of “ρ(u) = v”.

The following theorem is a kind of counterpart to Theorem 1.17.

Theorem 2.19. [8, Theorem 7.4] Let U be a collection of open subsets of Rd with
⋃
U =

Ω. Let uU be a distribution on U for all U ∈ U . Suppose that uU = uV on U ∩ V , in the
sense that uU (ϕ) = uV (ϕ) for all ϕ ∈ D(Rd) with suppϕ ⊂ U ∩ V . Then there exists a
unique distribution u on Ω such that u = uU on D(U) for all U ∈ U .
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Proof. By 2.18 we may assume that if U ∈ U and V is an open subset of U , that V ∈ U
(as we can take uV to be the “restriction” of uU to D(V )).

Let (Un)n∈N and (Vn)n∈N be locally finite covers of Ω as in 1.15: Un and Vn are open,
Vn ⊂ Un and Un is a compact subset of Ω for all n ∈ N. For all n we can therefore find
finitely many elements in U that are subsets of Un and cover Vn. In this way we can also
obtain a locally finite covering of Ω that consists of elements in U .

Therefore we may assume instead that Un is in U for all n ∈ N. Let (χn)n∈N be a
partition of unity subordinate to (Un)n∈N (like in 1.15). As (Un)n∈N is a locally finite
cover, this means for all ϕ ∈ D(Ω) that χnϕ is nonzero for finitely many n. Therefore we
can define u : D(Ω)→ F by

u(ϕ) =
∑
n∈N

uUn(χnϕ) (ϕ ∈ D(Ω)).

By Theorem 1.17 it follows that u = uU for all U ∈ U , and also the uniqueness follows
(and so the definition of u does not depend on the choice of partition of unity).

It is left to check that u is a distribution. That it is a linear function on D(Ω) is
straightforward to check. For the continuity we use Theorem 2.8 to restrict to sequential
continuity. By Theorem 2.7 we know that if ϕn → ϕ in D(Ω) that there exists a compact
set K that contains the support of all ϕn’s. Therefore, there are only finitely many k
such that uUk(χkϕn) is nonzero for some n. That is, there exists a L ∈ N such that
u(ϕn) =

∑L
k=1 uUk(χkϕn) for all n ∈ N. As for all k we have χkϕn → χkϕ, we have

uUk(χkϕn)→ uUk(χkϕ). From this we conclude the continuity of u.

Remark 2.20 (Regarding the literature on the topologies of D and D′).
In some books like for example [8], the topology on D and D′ are not regarded, but only
convergence of sequences. Now, after we have the knowledge that we can judge whether a
linear map D → F is a distribution by considering whether it is sequentially continuous,
we could say “we could forget about the other nets and consider only convergence of
sequences”. However, this is a posteriori knowledge. Moreover, the topology of D and
D′ is not determined by the convergence of sequences, in the sense that neither of those
spaces is first countable. This can be shown as their dimension is not countable, and by
using the Hahn-Banach theorem (Theorem J.2).

3 Convolutions
We still consider Ω to be an open subset of Rd and make some statements in terms of Ω.
But regarding the convolution, we will only consider Ω = Rd, as we will write.

Definition 3.1. Let f, g : Rd → F be measurable functions. If y 7→ f(x − y)g(y) is
integrable for all x ∈ Rd, then we define the function f ∗ g : Rd → R by

f ∗ g(x) =
∫
f(x− y)g(y) dy.
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f ∗ g is called the convolution of f with g. We will say “f ∗ g exists” instead of “y 7→
f(x− y)g(y) is integrable for all x ∈ Rd”.

If f and/or g are defined only on a region in Rd, then we will understand f ∗ g to
be the convolution of the extended functions that are equal to zero outside their domain
in the following sense. Suppose A and B are measurable subsets of Rd and f : A → F,
g : B → F, then

f ∗ g(x) =
∫
f(x− y)g(y) dy,

where

f(x) =
{
f(x) if x ∈ A,
0 if x /∈ A.

g(x) =
{
g(x) if x ∈ B,
0 if x /∈ B.

3.2 (Commutativity of the convolution). Observe that if y 7→ f(x−y)g(y) is integ-
rable for all x ∈ Rd, then also y 7→ g(x− y)f(y) is integrable and f ∗ g = g ∗ f . Because
of this commutativity we also call f ∗ g the convolution of f and g (instead of f with g).

3.3. Observe also that if both f and g are integrable, that f ∗ g is integrable and ‖f ∗
g‖L1 ≤ ‖f‖L1‖g‖L1 .

The following theorem will be used often later on. It generalises 3.3.
Theorem 3.4 (Young’s inequality). Let p, q, r ∈ [1,∞] be such that

1
p + 1

q = 1 + 1
r .

For f ∈ Lp(Rd), g ∈ Lq(Rd) we have f ∗ g ∈ Lr(Rd) and

‖f ∗ g‖Lr ≤ ‖f‖Lp‖g‖Lq .

Proof. If {p, q} = {1,∞} and r =∞, then the inequality follows directly. If p = q = r = 1
too, as we already mentioned in 3.3. So we may assume 1 < r <∞. Then

|f(x− y)g(y)| = (|f(x− y)|p|g(y)|q)
1
r |f(x− y)|1−

p
r |g(y)|1−

q
r .

So by applying the Generalized Hölder inequality (see Theorem A.4), with

p1 = r, p2 = p

1− p
r

, p3 = q

1− q
r

,

(or just the Hölder inequality when either p = r or q = r) we obtain

|f ∗ g(x)| ≤
(∫
|f(x− y)|p|g(y)|q dy

) 1
r

‖f‖1−
p
r

Lp ‖g‖
1− q

r
Lq ,

and so

‖f ∗ g‖Lr ≤
(∫ ∫

|f(x− y)|p|g(y)|q dy dx
) 1
r

‖f‖1−
p
r

Lp
‖g‖1−

q
r

Lq

≤ ‖f‖Lp‖g‖Lq .
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The following is a consequence of the Young’s inequality.

Corollary 3.5. Let p, q, r ∈ [1,∞] be such that

1
p

+ 1
q

+ 1
r

= 2.

For f ∈ Lp(Rd), g ∈ Lq(Rd) and h ∈ Lr(Rd) we have that (f ∗ g)ȟ is integrable and∫
(f ∗ g)ȟ =

∫
(f ∗ h)ǧ =

∫
(f ∗ h)̌ g =

∫
(f̌ ∗ ȟ)g, (17)

‖(f ∗ g)ȟ‖L1 ≤ ‖f‖Lp‖g‖Lq‖h‖Lr . (18)

Exercise 3.1. Prove Corollary 3.5.

Definition 3.6. We define the essential support of a measurable function f : Ω→ F by

ess supp f = Rd \
⋃
{U ⊂ Rd : U is open and f = 0 almost everywhere on U}.

The above definition is similar to the description of the support of a function as in
(2). Observe that also, similar to (1), the essential support is equal to those points
for which each neighbourhood of that point, the function f is not equal to zero almost
everywhere, which we describe differently by saying that the Lebesgue measure of the set
f−1(F \ {0}) ∩ V is positive:

ess supp f = {x ∈ Ω : ∀V ∈ NxJ
∫
1f−1(F\{0})∩V > 0K}.

As the essential support of f is equal to the one of g if f and g are “essentially the same”
in the sense that f = g almost everywhere, one can make sense of the essential support
for locally integrable functions (in the usual way by identifying an equivalence class with
an element in it).

Of course, for a continuous function f we have

supp f = ess sup f.

We recall the following facts about summation of closed sets, Lemma 3.7 and Ex-
ample 3.8.

Lemma 3.7. Let A,B ⊂ Rd and A be compact and B closed. Then A+B is closed.

Proof. Let (dn)n∈N be a sequence in A + B that converges to an element d in Rd. We
prove that d ∈ A+B. By definition, for each n there exist an ∈ A and bn ∈ B such that
dn = an + bn. As A is compact, (an)n∈N has a convergent subsequence. Let us assume
(an)n∈N itself converges in A to an element a. Then dn− an → d− a and as dn− an ∈ B
for all n and B is closed, d− a ∈ B, which implies d = a+ d− a ∈ A+B.
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The assumption that A is not only closed, but also bounded (which together is the
same as compact for subsets of Rd) is essential as the following example illustrates.

Example 3.8. Let A = N and B = {−m + 1
m : m ∈ N,m ≥ 2}. Then A + B is not

closed as 1
m is an element of A+B for all m ∈ 1 + N but 0 is not.

Theorem 3.9. For any two measurable functions f, g on Rd such that f ∗ g exists, we
have

supp f ∗ g ⊂ ess supp f + ess supp g.

Proof. Let x /∈ ess supp f + ess supp g, which means that there exists an open neighbour-
hood V of x such that V ∩ ess supp f + ess supp g = ∅. This means that for all z ∈ V we
have z − ess supp f ∩ ess supp g = ∅, which in turn implies

z − ess supp f ⊂
⋃
{U ⊂ Rd : U is open and g = 0 almost everywhere on U}.

Hence for all z ∈ V the function y 7→ f(y)g(z − y) is almost everywhere equal to zero
and thus f ∗ g(z) = 0. Therefore x is in the complement of supp f ∗ g (see (2)).

Remark 3.10. In case we view f and g as in Theorem 3.9 not as functions but as equi-
valence classes of functions (up to equivalence with respect to begin almost everywhere
equal) then we will also view f ∗g as such an equivalence class and also write ess supp f ∗g
instead of supp f ∗ g.

Example 3.11 (ess supp f + ess supp g ( supp f ∗ g = ess supp f + ess supp g).
We adapt Example 3.8 to obtain two measurable functions f and g which are not almost
everywhere equal to zero. We define the sets A,B ⊂ R by

A =
∞⋃
n=2

[
n, n+ 1

n

]
, B =

∞⋃
m=2

[
−m+ 1

m
,−m+ 2

m

]
.

We define f, g : R→ R by

f(x) = |x|−2
1A(x), g(x) = |x|−2

1B(x) (x ∈ R).

Then f and g are integrable functions and so f ∗ g exists (and is integrable). Moreover,
supp f = A, supp g = B,

A+B =
∞⋃

n,m=2

[
n−m+ 1

m
,n−m+ 2

m
+ 1
n

]
.

As in Example 3.8, the set A + B is not closed as 0 is not in A + B but 1
m is for all

m ∈ 1 + N. For each n,m ∈ 1 + N and z ∈ (n −m + 1
m , n −m + 2

m + 1
n) we can show

that f ∗ g(z) 6= 0, so that as the support of a function is closed, A+B ⊂ supp f ∗ g. And
thus in this case A+B ( supp f ∗ g = A+B
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3.12. (a) Let h ∈ L1
loc(Rd) and f and g be bounded measurable functions with compact

support. Then f ∗g exists and is bounded with compact support. Therefore (f ∗g)ȟ
is integrable and (17) holds.

(b) Observe that in the language of distributions, we can rewrite (17) as

〈f ∗ g, ȟ〉 = 〈f ∗ h, ǧ〉 = 〈(f ∗ h)̌, g〉 = 〈f̌ ∗ ȟ, g〉,

and with the inner product notation

〈f ∗ g, h〉L2 = 〈f̌ ∗ h, g〉L2 .

Now let us turn to the definition of the convolution of a distribution with a testfunc-
tion. The following observation shows how the definition of the convolution for functions
should be extended to distributions.

3.13. Let ϕ ∈ D(Rd) and let f ∈ L1
loc(Rd). For x ∈ Rd

f ∗ ϕ(x) =
∫
f(y)ϕ(x− y) dy =

∫
f(y)Txϕ̌(y) dy = uf (Txϕ̌).

This lets us naturally generalise the notion of convolution between distributions and
testfunctions:

Definition 3.14. Let u ∈ D′(Rd) and ϕ ∈ D(Rd). We define the convolution of u with
ϕ to be the function Rd → F defined by

u ∗ ϕ(x) = u(Txϕ̌) (x ∈ Rd).

3.15. Observe that for a distribution u and a testfunction ϕ the following identities hold.

(u ∗ ϕ)̌ = ǔ ∗ ϕ̌ u(ϕ) = u ∗ ϕ̌(0).

Now we turn to the differentiability of the convolution u ∗ ϕ.

3.16. As translation and differentiation commute for functions, the same is valid for
distributions: For u ∈ D′(Ω), y ∈ Rd, α ∈ Nd0 we have

Ty∂αu = ∂αTyu.

3.17 (Convergence of difference quotients in D and D′). Let ei be the basis vec-
tor in Rd in the i-th direction. We write “∂i” for “∂ei”. Let ϕ ∈ D(Ω) and i ∈ {1, . . . , d}.
Then (Thei − T0

h

)
ϕ(x) = ϕ(x− hei)− ϕ(x)

h
. (19)

Let us write ψh for the function on Rd for which ψh(x) equals (19) (for some h one might
have to interpret the right-hand side as the value of the extended ϕ on Rd being zero
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outside Ω). Observe that there exists a compact set that contains the support of ψh for
all h ∈ R such that 0 < |h| ≤ 1. We also have that ψh(x) → ∂iϕ(x) for all x ∈ Ω and
that the set {ψh : h ∈ R, 0 < |h| ≤ 1} is uniformly bounded by the mean value theorem
as for all such h and all x ∈ Ω we have that ψh(x) = ∂iϕ(x + θei) for some θ ∈ R with
|θ| ≤ 1. Similarly, the set{(Thei − T0

h

)
∂αϕ : h ∈ R, 0 < |h| ≤ 1

}
is uniformly bounded. Therefore, by an application of the Arzela-Ascoli theorem (see
Theorem G.1, we apply it in the same spirit as in the proof of Theorem 2.7) we deduce
that ψh → ∂iϕ in D(Ω) as h→ 0.

Consequently, we have for any u ∈ D′(Ω)(Thei − T0
h

)
u

h→0−−−→ ∂iu in D′(Ω).

Instead of the distribution u we could have taken a translation of u by x, Txu, and
conclude that x 7→ u(Txϕ) is differentiable for any ϕ ∈ D(Ω). Moreover, because of the
identity

u(Tx+heiϕ)− u(Txϕ)
h

=
[
T−x

(T−hei − T0
h

)
u
]
(ϕ)

= u (Tx
(Thei − T0

h

)
ϕ), (20)

we have ∂i(u ∗ ϕ) = u ∗ (∂iϕ). Of course, additionally one can continue and iterate the
above for derivatives. Then we obtain the following.

Lemma 3.18. For all distributions u and testfunctions ϕ the convolution u ∗ ϕ is an
element of C∞(Rd), moreover, for α ∈ Nd0

∂α(u ∗ ϕ) = u ∗ (∂αϕ) = (∂αu) ∗ ϕ. (21)

The statement of Theorem 3.9, which states that the support of the convolution of
two functions is included in the closure of the sum of the supports, extends to distribu-
tions (see Theorem 3.21). For this we need to extend the definition of the support to
distributions.

Definition 3.19. For a distribution u on Ω we define the support suppu to be the set
of x ∈ Ω such that for every neighbourhood U of x there exists a ϕ ∈ D(Ω) with support
in U and u(ϕ) 6= 0:

suppu = {x ∈ Ω : ∀U ∈ Nx ∃ϕ ∈ D(Ω) Jsuppϕ ⊂ U, u(ϕ) 6= 0K}.

Observe that

suppu = Ω \ {x ∈ Ω : ∃U ∈ Nx ∀ϕ ∈ D(Ω) Jsuppϕ ⊂ U ⇒ u(ϕ) = 0K}.
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3.20. For a continuous function f the support of f equals the support of uf , and for a
locally integrable function g the essential support of g equals the support of ug:

suppuf = supp f (f ∈ C(Ω)),
suppug = ess sup g (f ∈ L1

loc(Ω).

Observe moreover that for α ∈ Nd0 and ψ ∈ C∞(Ω)

supp ∂αu ⊂ suppu, suppψu ⊂ suppψ ∩ suppu.

Exercise 3.2. Show that if ϕ ∈ D(Ω), u ∈ D′(Ω) and suppϕ ⊂ Ω \ suppu, then
u(ϕ) = 0.

Theorem 3.21. Let u be a distribution and ϕ be a testfunction. Then suppu ∗ ϕ ⊂
suppu+ suppϕ.

Exercise 3.3. Prove Theorem 3.21.

3.22. Observe that Lemma 3.18 also implies that f∗g is infinitely differentiable if f ∈ L1
loc

and g ∈ C∞c (as f ∗ g = uf ∗ g). The same is true if not g is compactly supported, but
f is, in the sence that f ∈ L1 with compact support and g ∈ C∞. This will also be a
consequence of Lemma 6.3 in which we prove that if u is a distribution with compact
support and ϕ is smooth –but not necessarily compactly supported– that the convolution
exists and is a smooth function.

Observe that this, together with Theorem 3.9 implies that if ϕ,ψ are testfunctions,
then so is ϕ ∗ψ. As u ∗ϕ for a distribution u and testfunction ϕ is in C∞(Rd), it defines
in particular another distribution. Therefore one can take the convolution of u ∗ ϕ with
another testfunction ψ, and also take the convolution of u with the testfunction ϕ ∗ ψ.
Theorem 3.24 tells us these convolutions are equal. Before we prove an auxiliary lemma
that considers an approximation of ϕ ∗ ψ.

Lemma 3.23. Let ϕ,ψ ∈ D(Rd). For any ε > 0 we define Sε ∈ D(Rd) as follows. We
take finitely many disjoint measurable sets (Fi)i∈I that cover suppψ and are of diameter
at most ε (and so I is assumed to be a finite index set). For every i we choose a yi ∈ Fi
and define

Sε(x) =
∑
i∈I

(
∫
Fi

ψ)Tyiϕ(x).

Then Sε → ϕ ∗ ψ in D(Rd).

Proof. Observe that Sε, being a finite linear combination of testfunctions is indeed a
testfunction. Moreover, there exists a compact set K such that suppSε ⊂ K for all
ε > 0, namely K = suppψ+ suppϕ, Sε → ϕ ∗ψ pointwise, and Sε is uniformly bounded
by ‖ϕ‖L∞‖ψ‖L1 . Similarly, ∂αSε is of the same form but for “∂αϕ” instead of “ϕ”.
Therefore by an application of the Arzela-Ascoli theorem (see Theorem G.1) we obtain
that Sε → ϕ ∗ ψ in D(Rd).
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Exercise 3.4. Why is suppψ + suppϕ compact for two testfunctions ψ and ϕ?

Theorem 3.24. Let u be a distribution and ϕ,ψ be testfunctions. Then

(u ∗ ϕ) ∗ ψ = u ∗ (ϕ ∗ ψ). (22)

Proof. First observe that with Sε as in Lemma 3.23

u ∗ (ϕ ∗ ψ)(x) = u(Tx(ϕ ∗ ψ)̌) = lim
ε↓0

u(TxŠε)

This follows by applying Lemma 3.23 as follows

u(TxŠε) = u

(∑
i∈I

(
∫
Fi

ψ)Tx−yiϕ
)

=
∑
i∈I

(
∫
Fi

ψ)Tyiu(Txϕ)

=
∑
i∈I

(
∫
Fi

ψ)(u ∗ ϕ)(x− yi).

This in turn is an approximation for ψ ∗ (u ∗ϕ) by Lemma 3.23 and so by taking a limit
we obtain (22).

3.25. As a direct consequence of Theorem 3.24 we have for u ∈ D′(Rd) and ϕ,ψ ∈ D(Rd)

〈u ∗ ϕ,ψ〉 = (u ∗ ϕ) ∗ ψ̌(0) = u ∗ (ϕ ∗ ψ̌)(0) = 〈u, ϕ̌ ∗ ψ〉.

Compare this with 3.12 (a).

The next question that arises is: “Can one take a convolution between distributions?”.
The answer is not completely yes, in the sense that one can take a convolution if one of the
distributions has compact support (think about taking the convolution of the constant
function equal to 1 everywhere with itself). We will turn to distributions with compact
in the Section 5. But first we focus on the approximation of distributions by smooth
functions formed by mollification.

Exercise 3.5. Let y ∈ Rd and ϕ ∈ D(Rd). Calculate δy ∗ ϕ.

Exercise 3.6. For each of the following cases, find u ∈ D′(Rd) and ϕ ∈ D(Rd) such
that:
(a) u ∗ ϕ(x) = 0 for all x ∈ Rd,
(b) u ∗ ϕ(x) = 1 for all x ∈ Rd,
(c) u ∗ ϕ(x) = x for all x ∈ Rd,
(d) u ∗ ϕ(x) = sin(x) for all x ∈ Rd.

Exercise 3.7. Consider the distribution on R given by h = 1[0,∞), also called the
Heaviside function. For ϕ ∈ D(R) calculate h ∗ ϕ′, where ϕ′ denotes the derivative of ϕ.
Calculate the distributional derivative h′ of h. Show that (h ∗ ϕ)′ = h ∗ ϕ′ = h′ ∗ ϕ.
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4 Mollifiers
Now we turn to mollifiers and mollifications of locally integrable functions. To prove
their convergence, we recall Lebesgue’s differentiation theorem, which states that almost
all points in Rd are Lebesgue points for any locally integrable function f .

Theorem 4.1 (Lebesgue’s differentiation theorem). [17, Theorem 2.3.4] For all
f ∈ L1

loc(Rd) almost every point in Rd is a Lebesgue point, i.e., for almost all points
x,

ε−d
∫
B(x,ε)

|f(y)− f(x)| dy ε↓0−−→ 0. (23)

4.2 (Notation). For any closed set A ⊂ Rd we write Aε for those points in Rd that are
at most at ε distance from A, so that

Aε = A+B(0, ε) = {y ∈ Rd : inf
x∈A
|x− y| ≤ ε}.

For a f ∈ Lploc(Rd) and a compact set K ⊂ Rd we will also write ‖f‖Lp(K) for
‖f1K‖Lp .

Theorem 4.3. Let f ∈ Lploc(Rd) for some p ∈ [1,∞) and ψ ∈ Cc(Rd). For ε > 0 we
write ψε for the function defined by ψε(x) = ε−dψ(ε−1x). Then the following statements
hold.
(a) f ∗ ψε(x) ε↓0−−→ (

∫
ψ)f(x) for all Lebesgue points x ∈ Rd of f .

(b) If f is continuous on an open set U ⊂ Rd, then f ∗ ψε → (
∫
ψ)f uniformly on all

compact subset of U .
(c) If f ∗ ψε → (

∫
ψ)f in Lploc(Rd).

Proof. As
∫
ψε =

∫
ψ for all ε > 0, we have

f ∗ ψε(x)− (
∫
ψ)f(x) =

∫
ψε(x− y)

(
f(y)− f(x)

)
dy.

As we can find an ε such that suppψε ⊂ B(0, 1), we may without loss of generality
assume that suppψ ⊂ B(0, 1). Then

|f ∗ ψε(x)− (
∫
ψ)f(x)| ≤ ‖ψ‖L∞ε−d

∫
B(x,ε)

|f(y)− f(x)| dy. (24)

From this (a) follows. Suppose f is continuous on an open set U and K ⊂ U is compact.
Let δ > 0 be such that Kδ ⊂ U . As f is uniformly continuous on Kδ, the convergence in
(23) is valid uniformly for x ∈ K. Hence (b) also follows from (24).

Let us turn to the proof of (c). Let K ⊂ Rd be compact. We will show

‖f ∗ ψε − (∫ ψ)f‖Lp(K) → 0.
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But first we observe that for all h ∈ Lploc we have

|h ∗ ψε(x)| ≤
∫
|h(y)ψε(x− y)| dy ≤

∫
|(h1Kε)(y)ψε(x− y)| dy (x ∈ K),

so that with Young’s inequality and as ‖ψε‖L1 = ‖ψ‖L1

‖(h ∗ ψε)1K‖Lp ≤ ‖ψ‖L1‖h1Kε‖Lp = ‖ψ‖L1‖h‖Lp(Kε). (25)

Let δ > 0. Take a function g that is continuous on K1 and equals 0 outside K1 such that

‖f − g‖Lp(K1) < δ.

Then, as |f ∗ ψε − (∫ ψ)f | ≤ |f ∗ ψε − g ∗ ψε| + |g ∗ ψε − (
∫
ψ)g| + |(

∫
ψ)g − (

∫
ψ)f |, we

obtain for ε ∈ (0, 1) by using (25)

‖f ∗ ψε − (∫ ψ)f‖Lp(K) ≤ ‖(f − g) ∗ ψε‖Lp(K) + ‖g ∗ ψε − (∫ ψ)g‖Lp(K)

+ ‖ψ‖L1‖g − f‖Lp(K)

≤ 2δ‖ψ‖L1 + (
∫
1K)‖g ∗ ψε − (∫ ψ)g‖L∞(K).

As by (b) ‖g∗ψε−(∫ ψ)g‖L∞(K)
ε↓0−−→ 0 (take for example U = K◦1 , so that g is continuous

on U and K ⊂ U) this implies (c).

Definition 4.4. Let ψ be a testfunction such that suppψ ⊂ B(0, 1) and
∫
ψ = 1 (the

existence is guaranteed by Lemma 1.13). Such a function is called a mollifier. For ε > 0
we define ψε to be the function on Rd defined by

ψε(x) = ε−dψ(xε ) (x ∈ Rd).

Then suppψε ⊂ B(0, ε) and
∫
ψε = 1. For a distribution u we call uε defined by

uε := u ∗ ψε (26)

a mollification of u (with respect to ψ of order ε).

By Lemma 3.18 we know that uε is a smooth function. For a function f in Lploc we
also know that fε → f in Lploc, by Theorem 4.3. So in particular,∫

fεϕ→
∫
fϕ (ϕ ∈ D(Rd)),

which implies that fε → f in D′(Rd). This “extends” to any distribution, see the following
theorem. This theorem follows by Theorem 4.3.

Theorem 4.5. Let ψ be a mollifier and u a distribution. Then uε ∈ C∞(Rd),

suppuε ⊂ (suppu)ε,

and uε
ε↓0−−→ u in D′(Rd).
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Exercise 4.1. Prove Theorem 4.5.

By using the previous theorem, we can actually find uε ∈ C∞c (Rd) such that uε → u
for any u ∈ D′(Rd):

Theorem 4.6. D(Rd) is dense in D′(Rd).

Exercise 4.2. Prove Theorem 4.6.

Remark 4.7. By choosing a mollifier ψ (for example the one of Lemma 1.13) which is
supported on B(0, 1) we can define another mollifier ψ̃ that is supported in B(−1

2 ,
1
4) ∪

B(1
2 ,

1
4) as follows:

ψ̃ = 1
2(T− 1

2
ψ 1

4
+ T 1

2
ψ 1

4
).

As δ ∗ ψ̃ = ψ̃, which is zero around zero and thus the inclusion in Theorem 4.5 does not
need to be an inclusion.

5 Compactly supported distributions
Similar to the spaces D and D′ we introduce the space E that consists of all smooth
functions and its dual E ′. We will see that E ′ corresponds to the distributions with
compact support.

Definition 5.1. We define E(Ω) to be the set C∞(Ω) equipped with the topology gen-
erated by the seminorms ‖ · ‖Ck,K with K ⊂ Ω compact and k ∈ N0 given by

‖f‖Ck,K = ‖f |K‖Ck(K) =
∑

β∈Nd0:|β|≤k

sup
x∈K
|∂βf(x)|.

We write E ′(Ω) for the space of continuous linear functions u : E(Ω) → F. This means
(see for example [4, Theorem IV.3.1]) that u ∈ E ′(Ω) if and only if there exists a compact
set K, a k ∈ N0 and a C > 0 such that

|u(ϕ)| ≤ C‖ϕ‖Ck,K (ϕ ∈ E(Ω)). (27)

We equip E ′(Ω) with the weak* topology σ(E ′(Ω), E(Ω)).

5.2. Observe that if u ∈ E ′(Ω) and K ⊂ Ω is compact, k ∈ N0 and C > 0 are such that
(27) holds, then the following holds. If ϕ ∈ E(Ω) and suppϕ ∩ K = ∅ then u(ϕ) = 0.
Hence suppu ⊂ K and so an element of E ′(Ω) defines a distribution with compact
support. We will prove that a distribution with compact support can be extended to an
element of E ′(Ω) in 5.6.

Let us recall the Leibniz differentiation rule.
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5.3 (Leibniz’ rule). If k ∈ N0, f, g ∈ Ck(Ω) and α ∈ Nd0 with |α| ≤ k, then

∂α(fg) =
∑
β∈Nd0
β≤α

(
α

β

)
(∂βf)(∂α−βg), (28)

where β ≤ α means βi ≤ αi for all i ∈ {1, . . . , d} and with α! =
∏d
i=1 αi!,(

α

β

)
= α!

(α− β)!β! =
d∏
i=1

(
αi
βi

)
.

As a consequence, for x ∈ Ω

∑
α∈Nd0
|α|≤k

|∂α(fg)(x)| ≤
∑
α∈Nd0
|α|≤k

∑
β,γ∈Nd0
β+γ=α

(
α

β

)
|∂βf(x)||∂γg(x)|

≤
( ∑
α∈Nd0
|α|≤k

∑
β∈Nd0
β≤α

(
α

β

)) ∑
β∈Nd0
|β|≤k

∑
γ∈Nd0
|γ|≤k

|∂βf(x)||∂γg(x)|. (29)

Hence for C =
∑
α∈Nd0:|α|≤k

∑
β≤α

(α
β

)
‖fg‖Ck ≤ C‖f‖Ck‖g‖Ck (f, g ∈ Ck(Ω)). (30)

5.4. Recall 2.16. Now with Leibniz’ rule and with the topology on E(Ω) we conclude for
example also that the map E(Ω)×D(Ω)→ D(Ω) given by (ψ,ϕ) 7→ ψ∂αϕ is continuous
for all α ∈ Nd0.

5.5. Observe that (28) extends to the product of a distribution with a smooth function.
That is, if u ∈ D(Ω) and ψ ∈ C∞(Ω), then

∂α(ψu) =
∑
β∈Nd0
β≤α

(
α

β

)
(∂βψ)(∂α−βu),

5.6. Let u be a distribution on Ω with compact support K. We have already seen in
Exercise 3.2 that if ϕ ∈ D(Ω) and suppϕ ⊂ Ω \K, then u(ϕ) = 0. Let ε > 0 be such
that Kε ⊂ Ω and let χ ∈ D(Ω) be equal to 1 on Kε (see 1.15). As supp(ϕ − χϕ) ⊂
Ω \K◦ε ⊂ Ω \K, we have u(ϕ) = u(χϕ). Let K0 = suppχ. As u is a distribution, there
exist C1 > 0 and k ∈ N0 such that |u(ϕ)| ≤ C1‖ϕ‖Ck for all ϕ ∈ D(Ω) with suppϕ ⊂ K0.
This implies for all ϕ ∈ D(Ω)

|u(ϕ)| = |u(χϕ)| ≤ C1‖χϕ‖Ck .

26



By Leibniz’ rule we therefore have with C ′ = C1C‖χ‖Ck , where C > 0 is such that (30)
holds,

|u(ϕ)| ≤ C ′‖ϕ‖Ck,K0 (ϕ ∈ D(Ω)). (31)

Therefore u extends to an element of E ′(Ω) (for example by defining the extension v by
v(ϕ) = u(χϕ) for ϕ ∈ E). This will be used to prove Theorem 5.7.

Exercise 5.1. Show that if u ∈ E ′(Ω) and u 6= 0, that there exists a ϕ ∈ D(Ω) such
that u(ϕ) 6= 0.

Theorem 5.7. The inclusion map D(Ω) → E(Ω) is sequentially continuous; D(Ω) is
dense in E(Ω); and, the map ι : E ′(Ω) → D′(Ω) defined by ι(u) = u|D(Ω) is continuous
and injective and its image is the set of compactly supported distributions.

Proof. That D(Ω) → E(Ω) is sequentially continuous follows from Theorem 2.7. The
statement about ι follows from 5.2 and 5.6. We show that D(Ω) is dense in E(Ω). Let
ψ ∈ E(Ω) and let (χn)n∈N be a partition of unity. Let K ⊂ Ω be compact and k ∈ N.
By the properties of a partition of unity, there exists an n such that

∑n
m=1 χm = 1 on

Kδ for some δ > 0 such that Kδ ⊂ Ω (this you might have even proved in Exercise 1.2).
Therefore ∥∥∥∥∥ψ −

n∑
m=1

χmψ

∥∥∥∥∥
Ck,K

= 0.

Hence
∑n
m=1 χmψ → ψ in E .

In 5.6 the inequality (31) holds for K0 which is larger than K. The next exercise
proves that it might be that (31) does not hold for K0 = suppu.

Exercise 5.2. [8, Exercise 8.3] Let (xn)n∈N be a sequence of distinct elements and x
be in R such that xn → x.
(a) Show that there exists a sequence (an)n∈N in (0,∞) such that∑

n∈N
an =∞,

∑
n∈N

an|xn − x| <∞.

(b) Prove that u defined by

u(ϕ) =
∑
n∈N

an(ϕ(xn)− ϕ(x)) (ϕ ∈ D)

defines a distribution of order ≤ 1. Prove that the support of u is the compact set
{xn : n ∈ N} ∪ {x}.
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(c) Show that for all n ∈ N there exists a ϕn ∈ D such that ϕn = 1 on a neighbourhood
of xi for all i ∈ {1, . . . , n} and ϕn = 0 on a neighbourhood of xj for all j > n and
ϕn = 0 on a neighbourhood of x. Prove that for all k ∈ N

‖ϕn‖Ck,suppu = 1, u(ϕn) =
n∑
i=1

ai.

(d) Conclude that for K = suppu, (27) does not hold for any k ∈ N.

The following example illustrates that these maps are not homeomorphisms on their
image.

Example 5.8. Let Ω = R.

• Let φ be an element of D such that
∫
φ = 1. Define φn = Tnφ, i.e., φn(x) = φ(x−n)

for x ∈ R. Then φn → 0 in E . As for all compact sets K there exists an N such that
suppφn∩K = ∅ for all n ≥ N . However, for u the distribution corresponding to the
Lebesgue measure, or equivalently to the constant function 1, we have u(φn) = 1
for all n, whence (φn)n∈N does not converge in D.

• δn is an element of D′ and of E ′ for all n ∈ N. We have δn → 0 in D′ but not in E ′,
as we have δn(1) = 1 for all n.

5.9. So E ′ does not have the same topology as ι(E ′). However, (E ′, σ(E ′,D)) is homeo-
morphic to ι(E ′).

So the relative topology of D as a subspace of E is different from the topology on D,
namely σ(D,D′).

5.10. (31) also implies that every distribution with compact support is of finite order.
We will show in Theorem 5.13 that if the derivatives of a testfunction up to that order are
zero on the support of the distribution, that the distribution evaluated in the testfunction
equals zero.

5.11. Let ϕ be a testfunction on Ω and a ∈ Ω. Suppose that ∂αϕ(a) = 0 for all α ∈ Nd0
with |α| ≤ k. Let ε > 0 be such that B(a, ε) ⊂ Ω. By Taylor’s formula (see Theorem C.7)
we know that ϕ equals a function ψ (use (169) with l = k + 1) and that there exists a
C > 0 (namely C =

∑
α∈Nd0:|α|=k+1 ‖∂αϕ‖∞) such that

|ψ(x)| ≤ C|x− a|k+1 ≤ Cεk+1 (x ∈ B(a, ε)).

By a repetition of the above argument for the derivatives of ϕ, we obtain a C > 0 such
that for all α ∈ Nd0 with |α| ≤ k

|∂αϕ(x)| ≤ Cεk+1−|α| (x ∈ B(a, ε)).
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5.12. In 5.6 we have already used that for any compact set K ⊂ Ω and ε > 0 such that
Kε ⊂ Ω, we can find a χ ∈ D(Ω) that equals 1 on Kε by using 1.15.

As we have the tools of mollifiers, we can construct such a χ in such a way that the
support is within K3ε. Moreover, we can construct them for any closed set as follows.

Let F be a closed set. For ε > 0 let χε = 1F2ε ∗ ψε for a positive mollifier ψ. Then
suppχε ⊂ F3ε and χε = 1 on Fε.

Theorem 5.13. [7, Theorem on p.102] Let u ∈ D′(Ω) be a distribution of order k.
Suppose that ϕ is a testfunction for which

∂αϕ = 0 on suppu for all α ∈ N0 with |α| ≤ k.

Then u(ϕ) = 0.

Proof. For convenience we assume Ω = Rd for this proof. Instead one can interpret all
the sets and functions appearing to be the restrictions to Ω. Let F = suppu. For ε > 0
let χε = 1F2ε ∗ψε for a positive mollifier ψ as in 5.6, so that suppχε ⊂ F3ε and χε = 1 on
Fε. Hence, as we have seen in 5.6, u(ϕ) = u(χεϕ) and supp(χεϕ) ⊂ F3ε and χεϕ = 0 on
F . Let K = suppϕ and let C > 0 and k ∈ N0 be such that (4) holds, which implies that

|u(ϕ)| = |u(χεϕ)| ≤ C‖χεϕ‖Ck (ε > 0).

We show that ‖χεϕ‖Ck
ε↓0−−→ 0. By Young’s inequality we have

‖χε‖L∞ ≤ ‖1F2ε‖L∞‖ψε‖L1 = ‖ψ‖L1 = 1,

and moreover, with C1 =
∑
α∈Nd0:|α|≤k ‖∂αψ‖L1 , because ψε(x) = ε−dψ(xε ),

‖∂αχε‖L∞ ≤ ‖1F2ε‖L∞‖∂αψε‖L1 ≤ C1ε
−|α|.

By 5.11 there exists a C2 > 0 such that for all x ∈ F3ε and α ∈ Nd0 with |α| ≤ k

|∂αϕ(x)| ≤ C2ε
k+1−|α|.

Therefore by Leibniz’ rule 5.3 we obtain for all α ∈ Nd0 with |α| ≤ k and x ∈ F4ε

|∂α(χεϕ)(x)| ≤
∑
β∈Nd0
β≤α

(
α

β

)
|∂βχε(x)||∂α−βϕ(x)|

≤
∑
β∈Nd0
β≤α

(
α

β

)
C1ε

−|β|C2ε
k+1−|α−β| ≤ C1C2

( ∑
β∈Nd0
β≤α

(
α

β

))
ε.

Therefore ‖χεϕ‖Ck
ε↓0−−→ 0 and thus u(ϕ) = 0.
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Corollary 5.14. [7, Corollary on p.103] If u is a distribution supported by {x}, then
u =

∑
α∈Nd0:|α|≤k cα∂

αδx for some k ∈ N0 and cα ∈ R.
Moreover, cα = 〈ι−1(u),xα〉, where x : x 7→ x (and thus xα : x 7→ xα) and with ι as

in Theorem 5.7.

Proof. By taking a translation of the distribution, we may as well assume that x = 0.
Let ε > 0 be such that B(0, ε) ⊂ Ω. By Taylor’s formula (see Theorem C.7) ϕ = P + ψ
on B(0, ε), for a polynomial P of order k given by

P (y) =
∑
α∈Nd0
|α|≤k

1
α!∂

αϕ(0)yα,

and ψ satisfying ∂αψ(0) = 0 for all α ∈ Nd0 with |α| ≤ k. Let χ be a testfunction that
equals 1 on B(0, ε2) and has support within B(0, ε). Then u(ϕ) = u(χϕ) = u(Pχ) by the
previous theorem. And thus,

u(ϕ) = u(Pχ) =
∑
α∈Nd0
|α|≤k

1
α!∂

αϕ(0)u(xαχ).

Theorem 5.15. E ′(Ω) is weak* sequentially complete.

Proof. One can follow the lines in the argument as in the proof Theorem 2.13 as follows:
With d being the metric on E , one replaces “DK” and “dK” by “E” and “d” and follows
the same lines.

5.16 (E is metrizable but E ′ is not). Theorem 1.12 implies that the topology of E(Ω)
is generated by a countable number seminorms, so that E(Ω) is metrizable, see for ex-
ample [4, Proposition IV.2.1].
E ′(Ω) is not metrizable, as we will show. We show that any metric on E ′(Ω) generates

a different topology. Suppose d is a metric on E ′(Ω), such that under the topology
generated by d the space is a topological vector space. We mimic the idea in 2.9. Let
(xn)n∈N be a sequence in Ω such that no subsequence of it converges in Ω, i.e., for each
compact set K there are finitely many elements of the sequence in K. For all n ∈ N
let λn > 0 be such that d(λnδxn , 0) < 1

n . Then λnδxn → 0. But there exists a smooth
function ψ ∈ E such that ψ(n) = 1

λn
(use the partition of unity 1.15), so that λnδxn(ψ)

does not converge to 0. This means that λnδxn does not converge to 0 in E ′(Ω).

6 Convolutions of distributions
In this section we consider only Ω = Rd and write ‘E ’ and ‘D’ instead of ‘E(Rd)’ and
‘D(Rd)’.
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6.1. In Section 3 we have defined the convolution between distributions and testfunc-
tions. For u ∈ D′ and ϕ ∈ D we have seen that the convolution u∗ϕ is a smooth function,
or say an element of E , and its support is included in the sum suppu+suppϕ. As suppϕ
is compact, the sum is compact as soon as u has compact support. And so u ∗ ϕ is an
element of D if u has compact support. Let us formally define the convolution between
an element of E ′ and an element of E .

Definition 6.2. Let u ∈ E ′ and ϕ ∈ E . We define the convolution of u with ϕ to be the
function Rd → F defined by

u ∗ ϕ(x) = u(Txϕ̌) (x ∈ Rd).

The arguments of 3.17 extend to u ∈ E ′ and ϕ ∈ E (as the topology of E allows us to
consider compact sets only), and we obtain the following.

Lemma 6.3. For all u ∈ E ′ and ϕ ∈ E we have u ∗ ϕ ∈ E and for for α ∈ Nd0

∂α(u ∗ ϕ) = u ∗ (∂αϕ) = (∂αu) ∗ ϕ. (32)

So by Lemma 3.18 and Lemma 6.3 we have u ∗ ϕ ∈ E if either u ∈ D′ and ϕ ∈ D or
u ∈ E ′ and ϕ ∈ E . By Theorem 3.21 we have u ∗ ϕ ∈ D if u ∈ E ′ and ϕ ∈ E . We can
show that convolution with a distribution is sequentially continuous:

Lemma 6.4. Let u ∈ D′ and v ∈ E ′.
(a) The function D → E given by ϕ 7→ u ∗ ϕ is sequentially continuous.
(b) The function D → D given by ϕ 7→ v ∗ ϕ is sequentially continuous.
(c) The function E → E given by ψ 7→ v ∗ ψ is continuous.

Proof. (a) and (b) are left as an exercise, see Exercise 6.1. Let us only mention that (b)
follows from (c) by Theorem 2.7.

Let K be a compact set, C > 0 and k ∈ N be such that

|v(ψ)| ≤ C‖ψ‖Ck,K (ψ ∈ E).

Let M be an arbitrary compact subset of Rd and let m ∈ N. It is sufficient to show that
there exists a compact set L, an l ∈ N and a C ′ > 0 such that

‖v ∗ ψ‖Cm,M ≤ C ′‖ψ‖Cl,L (ψ ∈ E).

We have by Lemma 6.3, with E =
∑
β∈Nd0:|β|≤m

‖v ∗ ψ‖Cm,M =
∑

β∈Nd0:|β|≤m

sup
x∈M
|∂β(v ∗ ϕ)(x)| =

∑
β∈Nd0:|β|≤m

sup
x∈M
|v(Tx∂βϕ̌)|

≤ C
∑

β∈Nd0:|β|≤m

sup
x∈M
‖Tx∂βϕ̌)‖Ck,K = CE sup

x∈M
‖Tx∂βϕ‖Ck+m,K

= CE‖∂βϕ̌)‖Ck+m,K+M ,
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We choose L = K + M , l = k + m and C ′ = CE. L is compact as K ×M is compact
in Rd × Rd, as addition is a continuous function Rd × Rd → Rd and as the image of a
compact set under a continuous function is compact.

6.5. Lemma 6.4 allows us to compose the convolution with u and the convolution with v
and obtain a sequentially continuous linear map D → E defined by u ∗ (v ∗ϕ). Moreover,
for

(u, ϕ) ∈ (D′ ×D) ∪ (E ′ × E) ∪ (E ′ ×D)

and a ∈ Rd we have

Ta(u ∗ ϕ) = (Tau) ∗ ϕ = u ∗ (Taϕ).

In particular, this means that the map ϕ 7→ u ∗ ϕ commutes with translation.
Therefore also the above mentioned composition, the map ϕ 7→ u ∗ (v ∗ ϕ) commutes

with translation. Theorem 6.6 tells us that there exists a unique distribution w such that
w ∗ ϕ = u ∗ (v ∗ ϕ).

We will show that with the definition of u ∗ v in Definition 6.9 we have w = u ∗ v.

Exercise 6.1. Prove Lemma 6.4 (a) and (b).

Theorem 6.6. [7, Theorem on page 121] Let A be a linear map D → E which com-
mutes with translation, i.e., Ta(Aϕ) − A(Taϕ) for all a ∈ Rd, and which is sequentially
continuous, then there exists a unique distribution u such that Aϕ = u ∗ϕ for all ϕ ∈ D.

Theorem 6.7. [7, Corollary on page 122] Every linear map E → E which is sequentially
continuous and commutes with translation is of the form Aϕ = u ∗ ϕ for some uniquely
determined distribution u with compact support.

6.8. Remember (17) in Corollary 3.5, which tells us that for integrable f and g and a
testfunction ϕ we have (by viewing f ∗ g as a distribution and 〈u, v〉 =

∫
uv)

〈g ∗ f, h〉 = 〈f ∗ g, h〉 = 〈g, f̌ ∗ h〉.

This shows that the definition of u ∗ v as given below extends this relation.

Definition 6.9. For u ∈ D′ and v ∈ E ′ we define u ∗ v to be the distribution given by

u ∗ v(ϕ) = u(v̌ ∗ ϕ) (ϕ ∈ D).

Moreover, we define v ∗ u to be the distribution

v ∗ u(ϕ) = v(ǔ ∗ ϕ) (ϕ ∈ D).

6.10. Observe that for (u, v) ∈ (D′ × E ′) ∪ (E ′ ×D′), ϕ ∈ D and x ∈ Rd we have

(u ∗ v) ∗ ϕ(x) = u ∗ v(Txϕ̌) = u(v̌ ∗ Txϕ̌) = u(Tx(v ∗ ϕ)̌) = u ∗ (v ∗ ϕ)(x).
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We will now show that u ∗ v = v ∗ u. As

u ∗ v(ϕ) = (u ∗ v) ∗ ϕ̌(0) = u ∗ (v ∗ ϕ̌)(0),

it is a consequence of the identity (34) in Theorem 6.12. We will need to extend the
associativity in Theorem 3.24 first.
Theorem 6.11. Let v ∈ E ′, ϕ ∈ D and η ∈ E. Then

v ∗ (ϕ ∗ η) = (v ∗ ϕ) ∗ η = (v ∗ η) ∗ ϕ (33)

Proof. If η ∈ D, then this follows directly from Theorem 3.24. By Lemma 6.4 the func-
tions E 7→ E given by η 7→ v ∗ (ϕ ∗ η), η 7→ (v ∗ ϕ) ∗ η and (v ∗ η) ∗ ϕ are sequentially
continuous (for the last, observe that the inclusion D → E ′ is sequentially continuous).
Therefore, as D is dense in E (see Theorem 5.7), we obtain (33) as a consequence The-
orem 6.11 by a limiting argument.

Theorem 6.12. Let u ∈ D′, v ∈ E ′ and ϕ ∈ D. Then

u ∗ (v ∗ ϕ) = v ∗ (u ∗ ϕ). (34)

Consequently, u ∗ v = v ∗ u.

Proof. Let also ψ ∈ D. Then by Theorem 3.24, Theorem 6.11 and by the commutativity
of convolution of functions (see 3.2)

(u ∗ (v ∗ ϕ)) ∗ ψ = u ∗ ((v ∗ ϕ) ∗ ψ) = u ∗ (ψ ∗ (v ∗ ϕ)) = (u ∗ ψ) ∗ (v ∗ ϕ)
= (v ∗ ϕ) ∗ (u ∗ ψ) = v ∗ (ϕ ∗ (u ∗ ψ)) = v ∗ ((u ∗ ψ) ∗ ϕ)
= v ∗ (u ∗ (ψ ∗ ϕ)) = v ∗ (u ∗ (ϕ ∗ ψ)) = v ∗ ((u ∗ ϕ) ∗ ψ)
= v ∗ ((u ∗ ϕ) ∗ ψ) = (v ∗ (u ∗ ϕ)) ∗ ψ.

By taking ψ a mollifier, from the above identity by a limiting argument one obtains (34)
(using Theorem 4.5).

6.13. We will from now on write ϕ∗u for the function u∗ϕ for u ∈ D′(Rd) and ϕ ∈ D(Rd).

Theorem 6.14. For u ∈ D′ and v ∈ E ′

suppu ∗ v ⊂ suppu+ supp v.

Proof. Let x ∈ suppu ∗ v. For all ε > 0 there exists a ϕ ∈ D supported in B(x, ε) such
that u ∗ v(ϕ) 6= 0, i.e., u(v̌ ∗ϕ) 6= 0. Therefore suppu∩ (supp v̌ ∗ϕ) 6= ∅. Let y be in this
intersection. By Theorem 3.21 we know that there exists a z ∈ supp v and w ∈ suppϕ
such that y = −z+w. Then w = y+z ∈ suppu+supp v and |x−w| < ε. As we can find
such w for each ε and suppu+ supp v is closed, we conclude that x ∈ suppu+ supp v.

Remark 6.15. One can also define the convolution of two distributions, where instead
of assuming that one of the two has compact support the map Σ : Rd × Rd → Rd,
Σ(x, y) = x+ y is proper on suppu× supp v, meaning that Σ−1(K) ∩ suppu× supp v is
a compact subset of Rd × Rd for all compact sets K ⊂ Rd. The details can be found for
example in [8, Section 11].
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7 Fundamental solutions of PDEs
Definition 7.1. We call an map P : D′(Ω)→ D′(Ω) a linear partial differential operator
in Rd with constant coefficients if there exists an m ∈ N and cα ∈ F for α ∈ Nd0 with
|α| ≤ m such that

P =
∑
α∈Nd0
|α|≤m

cα∂
α.

Often, the following notation is also used. When we take p : Rd → F the polynomial

p(x) =
∑
α∈Nd0
|α|≤m

cαx
α,

then it is common to write ‘p(∂)’ for ‘P ’, so that one interpret p(∂) as the formal poly-
nomial evaluated in ∂. One also uses ‘D’ instead of ‘∂’ in literature, so that one writes
‘p(D)’ for ‘P ’.

One says a distribution E is called a fundamental solution of P if PE = δ (the Dirac
measure at zero).

Fundamental solutions can help to find distributional solutions to partial differential
equations of the form Pu = v as the following theorem illustrates.

Theorem 7.2. [8, Theorem 12.2] Let P be a linear partial differential operator with
constant coefficients and E a fundamental solution of P . For all v ∈ E ′(Rd) we have

P (E ∗ v) = v = E ∗ (Pv).

Proof. This follows by the fact that ∂α(E ∗ v) = (∂αE) ∗ v = E ∗ (∂αv).

7.3. Observe that if E is a fundamental solution of a linear partial differential operator
with constant coefficients P , and if u ∈ D′(Rd) satisfies Pu = 0, then E + u is also a
fundamental solution of P .

Let us consider the example where we consider P to be the Laplacian ∆ (which equals∑d
i=1 ∂

2
i ).

Example 7.4. Let E be the function on Rd (for d ≥ 2) defined by E(0) = 0 and

E(x) =


1

(2−d)Vd |x|
2−d d 6= 2,

1
2π log |x| d = 2,

(35)

where Vd is the n− 1 dimensional volume of the sphere {x ∈ Rd : |x| = 1} (observe that
2π = V2). Then E is the fundamental solution of ∆ (see Exercise 7.1).
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Exercise 7.1. (a) [8, Problem 4.5] For i ∈ {1, . . . , d} let vi be the function on Rd
defined by vi(0) = 0 and

vi(x) = xi
|x|d

(x ∈ Rd \ {0}).

Prove that vi is locally integrable on Rd and that in D′

d∑
i=1

∂ivi = Vdδ,

where Vd is the d− 1 dimensional volume of the sphere {x ∈ Rd : |x| = 1}. (Hint:
Observe that 〈∂ivi, ϕ〉 = − limε↓0

∫
Rd\B(0,ε) vi∂iϕ and apply integration by parts

(see Theorem E.1).)
(b) [8, Problem 4.6] Prove that E as in (35) is locally integrable on Rd and that E is

the fundamental solution of ∆, i.e., ∆E = δ (first you might want to prove that
∂iE = cvi for some c ∈ R).

7.5. With E being the fundamental solution to ∆ as defined in (35), we conclude that
for v ∈ E ′(Rd) we have a solution to the Poisson equation

∆u = v,

given by E ∗ v.

Definition 7.6. A function f ∈ C2(Ω) is called harmonic, or an harmonic function if
∆f = 0. A distribution u ∈ D′(Ω) is called harmonic if ∆u = 0.

Exercise 7.2. For F = C and d ≥ 2, check that for all k ∈ N0 the polynomial x 7→
(x1 + ix2)k is harmonic.

For d = 1, observe that for f ∈ C2(Ω), ∆f = 0 if and only if f(x) = a+ bx for some
a, b ∈ F.

As is mentioned in 7.3 for any harmonic distribution u we have that E + u is a
fundamental solution of ∆. We will prove that any harmonic distribution is actually
(represented by) a harmonic function in C∞(Rd). This statement is called Weyl’s the-
orem. We prove a generalisation, for which we introduce the singular support, which
indicates “where a distribution is smooth”.

Definition 7.7 (Singular support). For a distribution u in D′(Ω) we define the singu-
lar support as those points at which there exists no neighbourhood of that point on which
the distribution is (represented by) a smooth function, for which we write sing suppu, so
that

sing suppu = {x ∈ Ω : ∀U ∈ Nx Ju|U /∈ C∞(U)K}
= Ω \ {x ∈ Ω : ∃U ∈ Nx Ju|U ∈ C∞(U)K},

where u|U is written for the element D′(U) given by ρ(u), with ρ as in 2.18.
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Observe that sing suppu ⊂ suppu, which basically means that “where u equals zero
it is smooth”. The singular support satisfies the same rule as the support does for
convolutions:

Lemma 7.8. [8, Theorem 11.16] Let u ∈ D′(Rd) and v ∈ E ′(Rd). Then

sing suppu ∗ v ⊂ sing suppu+ sing supp v. (36)

Proof. Let us write A for sing suppu and B for sing supp v. Let δ > 0 (be such that
Bδ ⊂ Ω) and χ ∈ D(Ω) be such that χ is equal to 1 on A δ

2
and 0 outside Aδ (see 5.12).

Then u2 := (1 − χA)u is (represented by) a smooth function and so u = u1 + u2 for
u1 = χAu, and suppu1 ⊂ Aδ. Similarly, we can write v = v1 + v2, where supp v1 ⊂ Bδ
and v2 is (represented by) a smooth function. Then

u ∗ v = u1 ∗ v1 + u1 ∗ v2 + u2 ∗ v1 + u2 ∗ v2.

The last three terms are smooth (by Lemma 3.18 and Lemma 6.3), and the support of
u1 ∗ v1 is included in Aδ + Bδ (Theorem 6.14), which in turn is included in (A + B)2δ.
Therefore

sing suppu ∗ v ⊂ (A+B)δ.

As δ is chosen arbitrarily and the set A+B is closed (see Lemma 3.7), we have
⋂
δ>0(A+

B)δ = A+B and conclude (36).

We will now consider a generalisation of fundamental solutions, in the sense that we
consider distributions that are “a fundamental solution modulo a smooth function”.

Definition 7.9. Let P be a linear partial differential operator with constant coefficients.
A distribution E is called a parametrix of P if there exists a ψ ∈ E(Rd) such that
PE = δ + ψ.

Theorem 7.10. [8, Theorem 12.4] Let P be a linear partial differential operator with
constant coefficients. Suppose E is a parametrix of P with sing suppE = {0}. Then for
all open Ω ⊂ Rd

sing suppu = sing suppPu (u ∈ D′(Ω)). (37)

Proof. Similar to 3.20 we have sing suppPu ⊂ sing suppu, which basically means that
‘Pu is smooth where u is’.

First suppose that u has compact support, so that we may assume u ∈ E ′(Ω). Let
ψ ∈ E(Rd) be such that PE = δ + ψ. Then

E ∗ (Pu) = (PE) ∗ u = (δ + ψ) ∗ u = u+ ψ ∗ u.

Therefore sing suppu = sing suppE ∗ (Pu) as ψ ∗ u ∈ E(Rd) by Lemma 6.3. Therefore,
by Lemma 7.8

sing suppu ⊂ sing suppE + sing suppPu = sing suppPu,
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as sing suppE = {0}.
Let x ∈ Ω \ sing suppPu. Let χ ∈ D(Ω) be equal to 1 on an open neighbourhood U

of x. Then P (χu) = Pu on U (by which we mean that the restrictions to D(U) as in 2.18
are the same). Therefore x ∈ Ω \ sing suppP (χu). As χu has compact support we have
sing suppP (χu) = sing supp(χu) and so χu is smooth on a neighbourhood of x, and so
is u as χu = u on U . So x ∈ Ω \ sing suppu from which we conclude (37).

7.11. Let P and E are as in Theorem 7.10. This theorem tells us that the solution u to
Pu = v for a v ∈ E ′(Rd) is smooth where v is, in the sense that if U is open and v|D(U)
is smooth, then u|U is smooth. Therefore, in particular we obtain Weyl’s theorem as a
consequence.

Theorem 7.12 (Weyl’s Theorem). [7, Page 127]
Every harmonic distribution is (represented by) a smooth harmonic function.

Example 7.13. For t > 0 we define the function ht : Rd → R by

ht(x) = (4πt)−
d
2 e−

1
4t |x|

2 (x ∈ Rd). (38)

Then (see Exerise 7.3) it solves the heat equation on (0,∞)× Rd:

∂tht(x) = ∆xht(x) ((t, x) ∈ (0,∞)× Rd), (39)

where ∆x denotes the Laplacian acting on the x variable(s) only, i.e., ∆x =
∑d
i=1 ∂

2
xi .

Exercise 7.3. Show that (39) is satisfied for ht as in (38).

7.14. Observe that ∫
Rd
ht(x) dx =

(∫
R

(4πt)−
1
2 e−

1
4t s

2 ds
)d

= 1,

which follows by the fact that ∫
R
e−x

2 dx =
√
π.

This can be proved using polar coordinates:(∫
R
e−x

2 dx
)2

=
∫
R

∫
R
e−(x2+y2) dx dy = 2π

∫ ∞
0

re−r
2 dr

= 2π
∫ ∞

0

1
2e
−s ds = π.

From this we can show that

〈ht, ϕ〉
t↓0−−→ ϕ(0) (ϕ ∈ Cb(Rd)). (40)
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Indeed,

〈ht, ϕ〉 − ϕ(0) =
∫
Rd
ht(x)(ϕ(x)− ϕ(0)) dx.

By a substitution y = x√
t
we have∫

Rd
ht(x)(ϕ(x)− ϕ(0)) dx =

∫
Rd
h1(y)(ϕ(

√
ty)− ϕ(0)) dy.

So that by the Lebesgue dominated convergence theorem we indeed obtain (40).

Exercise 7.4. Calculate the limit in D′(Rd) of ∂tht as t ↓ 0.

Example 7.15. Define E : Rd+1 → R by

E(t, x) =
{
ht(x) (t, x) ∈ (0,∞)× Rd,
0 (t, x) ∈ (−∞, 0]× Rd.

Then (see Exercise 7.5) E is a fundamental solution of ∂t − ∆x (one also says, E is a
fundamental solution of the heat equation).

Definition 7.16. The gamma function is the function Γ : (0,∞)→ (0,∞) given by

Γ(s) =
∫ ∞

0
ts−1e−t dt (s ∈ (0,∞)).

It is sometimes also defined on the complex plane for those numbers for which the real
part is strictly positive. By partial integration it follows that Γ(s+1) = sΓ(s). Therefore
Γ(n) = (n− 1)!. Moreover, Γ(1

2) =
√
π.

Exercise 7.5. (a) Calculate
∫∞
0 ht(x) dt for x 6= 0 (in terms of the gamma function).

(b) Show that limt↓0
∫
Rd ht(x)ϕ(t, x) dx = ϕ(0) for any ϕ ∈ D(Rd+1).

(c) Show that E is locally integrable.
(d) Calculate sing suppE.
(e) Calculate supp(∂t −∆x)E.
(f) Estimate the order of (∂t −∆x)E.
(g) Show that E is a fundamental solution of ∂t −∆x (Hint: Observe that
〈(∂t −∆)E,ϕ〉 = limT↑∞,s↓0−

∫ T
s

∫
Rd ht(x)(∂t + ∆x)ϕ(t, x) dx dt and apply integ-

ration by parts.)
(h) Conclude that if v ∈ E ′(Rd+1) is smooth on an open set U , then so is the solution

u of (∂t −∆)u = v.

Remark 7.17. In [8, Section 12] one finds references for the proof of the statement that
every linear partial differential operator with constant coefficients, of which at least one
coefficient is nonzero, has a fundamental solution.
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8 Sobolev spaces
In Theorem 2.15 we have seen that L1

loc is continuously embedded in D′. This implies
that Lp is continuously embedded in D′, as Lp is continuously embedded in L1

loc: This
follows by Hölder’s inequality, which implies that for all p, q ∈ [1,∞] such that 1

p + 1
q = 1

one has ‖f‖L1,K ≤ ‖f‖Lp‖1K‖Lq for f ∈ Lp and any compact set K.
In this section we will consider Sobolev spaces as subspaces of D′. These spaces

are subsets of Lp for which not only the function itself, but also its derivatives (in the
distributional sense) up to a certain order are all included in Lp.

Definition 8.1. Let p ∈ [1,∞] and k ∈ N0. We define the Sobolev space of order k and
integrability p, denoted W k,p(Ω), by

W k,p(Ω) = {u ∈ D′(Ω) : ∂βu ∈ Lp(Ω) for all β ∈ Nd0 with |β| ≤ k}.

In some literature, for example in [9], the definition of a Sobolev space looks a bit
different and does not use the language of distributions. In that case, the ∂β is interpreted
as the weak derivative and “u ∈ D′(Ω)” is replaced by “u ∈ Lp(Ω)” and the part “∂β ∈
Lp(Ω)” instead reads somehow like “∂βu exists (as a weak derivative) and is in Lp(Ω)”.
Let us give the definition of such weak derivatives.

Definition 8.2. Let u, v ∈ L1
loc(Ω) and α ∈ Nd0. v is called the α-th weak partial deriv-

ative of u if v = ∂αu in the distributional sense, i.e., if∫
vϕ =

∫
u · (−1)|α|∂αϕ (ϕ ∈ C∞c (Ω)).

Lemma 8.3. Let u ∈ L1
loc(Ω). If u has an α-th weak partial derivative, then it is unique.

Proof. This is a consequence of Theorem 1.16.

Exercise 8.1. Consider Ω = (0, 2), u, v ∈ L1
loc(Ω) given by

u(x) =
{
x x ∈ (0, 1],
1 x ∈ (1, 2),

v(x) =
{
x x ∈ (0, 1],
2 x ∈ (1, 2).

(a) Show that u has a weak derivative that is in Lp, so that u ∈ W 1,p(Ω) for all
p ∈ [1,∞].

(b) Show that v has no weak derivative, but calculate its distributional derivative.
(c) Give an example of an element u ∈ W 1,p(0, 2) such that the function v defined on

R by v(x) = u(x) for x ∈ (0, 2) and v(x) = 0 for other x, is not in W 1,p(R).

Definition 8.4. We equip the Sobolev space W k,p(Ω) for p ∈ [1,∞) with the norm

‖u‖Wk,p =
( ∑
β∈Nd0,|β|≤k

‖∂βu‖pLp
) 1
p
,
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and for p =∞ with the norm

‖u‖Wk,∞ = max
β∈Nd0,|β|≤k

‖∂βu‖L∞ .

Exercise 8.2. Verify that ‖ · ‖Wk,p indeed defines a norm on W k,p(Ω).

Definition 8.5. Let X be a normed space and ‖ · ‖1, ‖ · ‖2 : X → [0,∞) be norms on X.
They are said to be equivalent if they define the same topology.

Two norms ‖ · ‖1, ‖ · ‖2 are equivalent if and only if (see for example [4, Proposition
III.1.5]) there exists c, C > 0 such that

c‖f‖1 ≤ ‖f‖2 ≤ C‖f‖1 (f ∈ X).

8.6. As any two norms on Rd (as it is a finite dimensional normed space, see [4, The-
orem III.3.1]) are equivalent (observe that x 7→

∑d
i=1 |xi|, x 7→ (

∑d
i=1 |xi|p)

1
p and x 7→

maxdi=1 |xi| are norms on Rd), the following functions are norms that are equivalent to
‖ · ‖Wk,p for any k ∈ N0 and p ∈ [1,∞]

u 7→ max
β∈Nd0,|β|≤k

‖∂βu‖Lp , u 7→
∑

β∈Nd0,|β|≤k

‖∂βu‖Lp .

The order of the Sobolev space determines the ‘regularity’ in the same way that the
k of Ck does; as also here taking a derivative ∂α decreases the order by |α|:

Theorem 8.7. [9, p.247, Theorem 1(i),(iii)] Let u ∈W k,p(Ω). Then
(a) ∂αu ∈W k−|α|,p for all α ∈ Nd0 with |α| ≤ k and ∂β(∂αu) = ∂α+βu for all α, β ∈ Nd0

with |α|+ |β| ≤ k.
(b) If U is an open subset of Ω, then u|U ∈W k,p(U).

Proof. We leave this for the reader to verify.

Observe that W 0,p(Ω) = Lp(Ω), so that the Sobolev space of 0-th order is a Banach
space. This extends to any order:

Theorem 8.8. [9, p.249, Theorem 2] For all p ∈ [1,∞] and k ∈ N0, W k,p(Ω) is a
Banach space.

Proof. Suppose that (un)n∈N is a Cauchy sequence in W k,p(Ω). Then (∂αun)n∈N is a
Cauchy sequence in Lp(Ω) for all α ∈ Nd0 with |α| ≤ k. As Lp(Ω) is a Banach space,
there exist u(α) ∈ Lp(Ω) such that ∂αun → u(α) in Lp for all such α.

Let us write u for u(0). We are finished by showing that ∂αu = u(α) for all such α, as
this implies un → u in W k,p(Ω). This follows by testing against a testfunction ϕ, using;
if fn → f in Lp, then

∫
fnϕ→

∫
fϕ (which follows by Hölder’s inequality):

〈∂αu, ϕ〉 =
∫
u · (−1)|α|∂αϕ = lim

n→∞

∫
un · (−1)|α|∂αϕ = lim

n→∞

∫
∂αun · ϕ = 〈u(α), ϕ〉.

As this holds for all ϕ ∈ C∞c (Ω), we have ∂αu = u(α) (by Theorem 1.16).
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Definition 8.9. Let k ∈ N0 and p ∈ [1,∞].
(a) We write W k,p

0 (Ω) for the closure of C∞c (Ω) in W k,p(Ω).
(b) We write Hk(Ω) = W k,2(Ω), ‖ · ‖Hk = ‖ · ‖Wk,2 and Hk

0 (Ω) = W k,2
0 (Ω).

Remark 8.10. One interprets W k,p
0 (Ω) as the subspace of W k,p(Ω) of elements that

vanish at the boundary of Ω, in symbols; u = 0 on ∂Ω.

Similar to Theorem 8.8, in which we showed that W k,p is a Banach space by using
that Lp is a Banach space, one can show that Hk is a Hilbert space because L2 is:
Theorem 8.11. Let k ∈ N0. 〈·, ·〉Hk : Hk(Ω)×Hk(Ω)→ F defined by

〈u, v〉Hk =
∑

α∈Nd0:|α|≤k

〈∂αu, ∂αv〉L2 ,

is an inner product on Hk(Ω), so that Hk(Ω) (and Hk
0 (Ω)) equipped with this inner

product is a Hilbert space.

Proof. We leave it for the reader to check that 〈·, ·〉Hk defines an inner product. The rest
follows from Theorem 8.8 and because 〈u, u〉Hk = ‖u‖2

Hk for u ∈ Hk(Ω).

There is a lot of theory on Sobolev spaces, which we will not treat here. Sobolev spaces
play a central role in the theory of partial differential equations, and we still want to show
one application of the theory. One classical reference for PDE theory, which contains a
whole section on Sobolev spaces is [9] (see Section 5). There are different estimates that
are useful, of which we present one important example; the Poincaré inequality.
Theorem 8.12. [18, Theorem 12.17] Let Ω be a bounded open subset of Rd. There for
all p ∈ [1,∞) exists a C > 0 such that

‖u‖Lp ≤ C‖∇u‖Lp (u ∈W 1,p
0 (Ω)).

8.13. Consider the context of Theorem 8.12. As for functions f : Rd → Rd we interpret
‖f‖Lp = (

∫
|f |p)

1
p , with |f | being the composition of the euclidean norm with the function

f , we have

‖∇u‖Lp = (
∫
|∇u|p)

1
p = (

∫
(
d∑
i=1
|∂iu|2)

p
2 )

1
p .

Observe that for p = 2

‖∇u‖L2 = (
∫
|∇u|p)

1
p = (

∫ d∑
i=1
|∂iu|2)

1
2 .

But view of 8.6, for all p ∈ [1,∞] there exists a M > 0 such that

‖∇u‖Lp ≤M(
∫ d∑

i=1
|∂iu|p)

1
p .

In this way one can reformulate Theorem 8.12 for the desired form of the norm on the
right-hand side.
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9 Solutions of elliptic PDEs in Sobolev spaces
In this section we will show the existence of solutions to elliptic equations. The notion
of solution will be defined in the language of Sobolev spaces. Let F = R and Ω be a
bounded open subset of Rd. We will consider the following Dirichlet boundary problem{

Lu = f on Ω,
u = 0 on ∂Ω,

(41)

where f : Ω→ R is given, ∂Ω denotes the boundary of Ω and L is the following second-
order partial differential operator (with variable coefficients), with ai,j , bi, c : Ω→ F,

Lu(x) = −
d∑

i,j=1
∂i(aij(x)∂ju)(x) +

d∑
i=1

bi(x)∂iu(x) + c(x)u(x) (x ∈ Ω). (42)

This problem is called a Dirichlet boundary problem because of the condition that u = 0
on ∂U ; this zero-boundary condition is called a Dirichlet boundary condition. As the
operator L is defined by (42), one says that the PDE Lu = f is in divergence form.
Observe that with b̃i = bi −

∑d
j=1 ∂jaij we have Lu = L̃u, with

L̃u(x) = −
d∑

i,j=1
aij(x)∂iju(x) +

d∑
i=1

b̃i(x)∂iu(x) + c(x)u(x) (x ∈ Ω).

The PDE L̃u = f is said to be of nondivergence form.

9.1 (Assumption). We will assume the following symmetry for the operator L, namely
that aij = aji for all i and j. Moreover, we assume that ai,j , bi and c are in L∞(Ω) for
all i and j, f ∈ L2(Ω) and that the operator is assumed to be elliptic.

Definition 9.2. The partial differential operator L is called elliptic if there exists a θ > 0
such that

d∑
i,j=1

aij(x)yiyj ≥ θ|y|2 (x ∈ Ω, y ∈ Rd). (43)

Observe that −∆ is an elliptic operator.
We will consider a bilinear form associated to L. This bilinear form arises by integ-

ration by parts, or by the interpretation of Lu as a distribution, the bilinear form equals
the function (u, v) 7→ 〈Lu, v〉. Namely:

Definition 9.3. (a) We define the bilinear form associated to L by B : H1
0 (Ω) ×

H1
0 (Ω)→ R by

B(u, v) =
∫

Ω

d∑
i,j=1

aij(∂iu)(∂iv) +
d∑
i=1

bi(∂iu)v + cuv.
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(b) A u ∈ H1
0 (Ω) is called a weak solution to the Dirichlet boundary problem (41) if

B(u, v) = 〈f, v〉L2 (v ∈ H1
0 (Ω)).

Remark 9.4. As one sees, the Dirichlet boundary condition of (41) has been put on the
space in which one considers the solution to be, namely in H1

0 (Ω), for which already had
the interpretation that u = 0 on ∂Ω for u ∈ H1

0 (Ω) as is mentioned in Remark 8.10.

We can use tools from functional analysis to prove that under certain conditions
there exists a weak solution of the Dirichlet boundary problem (41). Let us first recall
the Riesz-Fréchet theorem.

Theorem 9.5 (Riesz-Fréchet). [5, Theorem 13.15] Let H be a Hilbert space over F
with inner product 〈·, ·〉. If f : H → F is a bounded linear functional, then there exists a
unique a ∈ H such that

f(x) = 〈a, x〉 (x ∈ H).

Theorem 9.6 (Lax-Milgram). [9, 6.2.1, Theorem 1] Let H be a Hilbert space over R,
with inner product 〈·, ·〉 and norm ‖ · ‖. Let B : H ×H → R be a bilinear map. Suppose
there exist c, C > 0 such that

|B(u, v)| ≤ C‖u‖‖v‖ (u, v ∈ H), (44)
c‖u‖2 ≤ B(u, u) (u ∈ H). (45)

Let g : H → R be a bounded linear functional. Then there exists a unique u ∈ H such
that

B(u, v) = g(v) (v ∈ H).

Proof. If B(u, v) = B(v, u), then B defines another inner product on H and so the
theorem follows directly by the Riesz-Fréchet theorem.

As for u ∈ H the map v 7→ B(u, v) is a bounded linear functional, the Riesz-Fréchet
theorem implies that there exists an element in H, for which we write A(u), such that

B(u, v) = 〈A(u), v〉 (v ∈ H).

We will show that A is a bounded linear bijection (it is actually even a homeomorphism).
By a straightforward calculation one checks that A is linear. Moreover,

‖Au‖2 = 〈Au,Au〉 = B(u,Au) ≤ C‖u‖‖Au‖ (u ∈ H).

Therefore ‖Au‖ ≤ C‖u‖ for u ∈ H, so that A is bounded.
Let us first show that A is injective and its range is closed in H. This follows from

(45), as

c‖u‖2 ≤ B(u, u) = 〈Au, u〉 ≤ ‖Au‖‖u‖.

43



Now, let us prove that A(H), the range of A, equals H. As A(H) is closed we have
A(H) + A(H)⊥ = H (where A(H)⊥ are those elements that are orthogonal to A(H)),
so it is sufficient to show that A(H)⊥ = {0}. Let w ∈ A(H)⊥. Then 0 = 〈Aw,w〉 =
B(w,w) ≥ c‖w‖2. So w = 0.

By Riesz-Fréchet theorem, there exists a unique w ∈ H such that g(v) = 〈w, v〉 for
all v ∈ H. Therefore, with u = A−1w, we have B(u, v) = 〈w, v〉 = g(v) for all v ∈ H.

Let us verify the assumptions of the Lax-Milgram theorem forB as in Definition 9.3 (a).

Theorem 9.7. Let B be as in Definition 9.3 (a) under Assumption 9.1. There exists a
γ ≥ 0 and c, C > 0 such that

|B(u, v)| ≤ C‖u‖H1‖v‖H1 (u, v ∈ H1
0 (Ω)), (46)

c‖u‖2H1 ≤ B(u, u) + γ‖u‖2L2 (u ∈ H1
0 (Ω)). (47)

Proof. (46) we obtain as for u, v ∈ H1
0 (Ω)

|B(u, v)| ≤
d∑

i,j=1
‖aij‖L∞

∫
Ω
|∂iu||∂jv|+

d∑
i=1
‖bi‖L∞

∫
Ω
|∂iu||v|+ ‖c‖L∞

∫
Ω
|∂iu||∂jv|

≤

 d∑
i,j=1
‖aij‖L∞ +

d∑
i=1
‖bi‖L∞ + ‖c‖L∞

 ‖u‖H1‖v‖H1 .

On the other hand, for θ > 0 as in (43) we have

θ
d∑
i=1

∫
Ω
|∂iu|2 ≤

∫
Ω

d∑
i,j=1

aij(∂iu)(∂ju)

= B(u, u)−
∫

Ω

d∑
i=1

biu∂iu−
∫

Ω
cu2

≤ B(u, u) +
d∑
i=1
‖bi‖L∞

∫
Ω
|∂iu||u|+ ‖c‖L∞

∫
Ω
u2.

As ab ≤ εa2 + 1
4εb

2 for any a, b ∈ R and ε > 0 we have∫
Ω
|∂iu||u| ≤ ε

∫
Ω
|∂iu|2 + 1

4ε

∫
Ω
|u|2.

Now take ε small enough such that ε‖bi‖L∞ ≤ θ
2 . Then by the Poincaré inequality (see

Theorem 8.12 (and 8.13)) we have β‖u‖2H1 ≤
∑2
i=1

∫
Ω |∂iu|2 and thus

β
θ

2‖u‖
2
H1 ≤

θ

2

d∑
i=1

∫
Ω
|∂iu|2 ≤ B(u, u) + (‖c‖L∞ + 1

4ε)
∫

Ω
u2.
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Now we can prove that under certain conditions (41) has a weak solution.

Theorem 9.8. [9, 6.2.2 Theorem 3] There exists a γ ≥ 0 such that for all β ≥ γ and
f ∈ L2(Ω) there exists a unique weak solution u ∈ H1

0 (Ω) of the Dirichlet boundary
problem {

Lu+ βu = f on Ω,
u = 0 on ∂Ω.

(48)

Proof. We apply the Lax-Milgram theorem to Bβ, the bilinear operator corresponding
to the elliptic operator Lβ given by Lβu = Lu+ βu:

Bβ(u, v) = B(u, v) + β〈u, v〉L2 (u, v ∈ H1
0 (Ω)).

Observe that for f ∈ L2(Ω) the map g : H1
0 (Ω)→ R given by g(v) = 〈f, v〉L2 is bounded

and linear, because ‖v‖2L2 ≤ ‖v‖2H1 . So the Lax-Milgram theorem implies the existence
of a u ∈ H1

0 (Ω) such that Bβ(u, v) = 〈f, v〉L2 for all v ∈ H1
0 (Ω), which means that u is a

weak solution to (48).

There are more theorems on weak solutions of elliptic Dirichlet boundary problems,
see [9, Section 6.2] (for example see the Fredholm alternative). Also, one can show that
the solutions have a certain regularity that depends on the regularity of the coefficients
ai,j , bi, c, see [9, Section 6.3].

Exercise 9.1. Show that one can choose γ = 0 in Theorem 9.7 and Theorem 9.8 in
case bi = 0 for all i and c = 0.

10 The Schwartz space and tempered distributions
We introduce the Schwartz space in this section, which is the space of smooth functions
that quite rapidly decay at infinity. This space is suitable for the Fourier transform,
as the Fourier transform maps the Schwarz into itself (let us mention that in E there
are functions which do not have a Fourier transform as for this a function needs to be
integrable, and on the other hand, the only smooth function with compact support that
has a Fourier transform with a compact support is the zero function). We will turn to
that later and first discuss here the topological properties of the Schwartz space and its
dual, the space of tempered distributions. As our underlying space we consider Rd (only).
For this reason we can leave out the part “(Rd)” in the notation of function spaces or
spaces of distributions.

Definition 10.1. The Schwartz space S (or S(Rd)) is the space of functions ϕ ∈ C∞
such that ‖ϕ‖k,S <∞ for all k ∈ N0, where ‖ · ‖k,S is defined by

‖ϕ‖k,S :=
∑

α:|α|≤k
sup
x∈Rd

(1 + |x|)k|∂αϕ(x)| (ϕ ∈ C∞). (49)
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‖ϕ‖k,S < ∞ is a seminorm on S for all k ∈ N0. A function in the Schwartz space will
also be called a Schwartz function. The space S is equipped with the topology generated
by the seminorms ‖ · ‖k,S .

We write S ′ (or S ′(Rd)) for space of continuous linear maps S → C. This means that
u ∈ S ′ if and only if u is linear and there exists a k ∈ N0 and a C > 0 such that

|u(ϕ)| ≤ C‖ϕ‖k,S (ϕ ∈ S).

An element of S ′(Rd) will also be called a tempered distribution.
S ′ is equipped with the σ(S ′,S) topology.

Observe that a smooth function ϕ is in the Schwartz space if the function and all its
derivatives are decaying faster than any polynomial.

Exercise 10.1. Let ϕ ∈ C∞. Show that ϕ ∈ S if and only if lim|x|→∞ P (x)ϕ(x) = 0
for all polynomials P .

10.2. There are different choices of seminorms that one can take, which generate the
same topology. The seminorm as in (50) is the same as in [2]. In [7] instead the following
seminorms are used

ϕ 7→
∑

α:|α|≤k
sup
x∈Rd

|(1 + |x|2)k∂αϕ(x)| (50)

is used. Basically because of the following inequality, the topologies generated are equi-
valent.

1 + |x|2 ≤ (1 + |x|)2 ≤ 2(1 + |x|2) (x ∈ Rd).

Exercise 10.2. Convince yourself of the statement in 10.2.

It will be clear that all compactly supported smooth functions are Schwartz functions.
We will give a central example of a Schwartz function that is not compactly supported.

Definition 10.3. A function f : Rd → R is called a Gaussian function if there exist
a, b ∈ R, a > 0, y ∈ Rd such that

f(x) = be−a|x−y|
2
.

Example 10.4. An example of a C∞ function without compact support that is a Schwartz
function, is a Gaussian function. Indeed, for f as in Definition 10.3 for α ∈ Nd0 with
|α| = k one has |∂αf(x)| ≤ |b|(2a)k|x − y|ke−a|x−y|2 , so that because (1 + |x + y|)k ≤
(1 + |y|)k(1 + |x|)k,

‖f‖k,S ≤ |b|(2a(1 + |y|))k sup
x∈Rd

(1 + |x|)2ke−a|x|
2
<∞. (51)
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10.5 (Notation). For λ ∈ R we write lλ : Rd → Rd for the linear function that multiplies
the vector by the scalar λ. It is of course bijective in case λ 6= 0. For a function f : Rd → F
we will also write “lλf” for the composition f ◦ lλ, which is the function x 7→ f(λx). For
a distribution u we also write “lλu” instead of “u ◦ lλ”.

10.6 (Some norm estimates and convergence facts).
(a)

‖ϕ‖Ck ≤ ‖ϕ‖k,S (ϕ ∈ S).

(b) Let K ⊂ Rd be compact and M = supx∈K |x|, k ∈ N. Then

‖ϕ‖k,S ≤ (1 +M)k‖ϕ‖Ck (ϕ ∈ D, suppϕ ⊂ K).

(c) By 5.3 for all k ∈ N0 there exists a C > 0 such that

‖fϕ‖k,S ≤ C‖f‖Ck‖ϕ‖k,S (f ∈ Ck, ϕ ∈ S).

(d) For any function χ in Ck we have ∂α(lλχ)(x) = λ|α|(∂αχ)(λx) one has ‖lλχ‖Ck ≤
‖χ‖Ck for λ ∈ [−1, 1]. Hence

‖(lλχ)f‖k,S ≤ ‖χ‖Ck‖f‖k,S (f ∈ S, χ ∈ Ck, λ ∈ [−1, 1]).

(e) Let χ ∈ D have values in [0, 1], χ = 1 on the unit ball. Then (see Exercise 10.3)

• (lλχ)f → f in Lp as λ ↓ 0, for f ∈ Lp.
• (lλχ)f → f in S as λ ↓ 0, for f ∈ S.

(f) Let (χn)n∈N be a partition of unity, i.e., χn ∈ C∞c (Rd, [0, 1]) and
∑
n∈N ηn(x) = 1

for all x ∈ Rd. Suppose that supN∈N ‖
∑N
n=1 χn‖Ck <∞ for all k ∈ N0. Similar to

(e) (see Exercise 10.3) we have

• (
∑N
n=1 χn)f → f in Lp as N →∞, for f ∈ Lp.

• (
∑N
n=1 χn)f → f in S as N →∞, for f ∈ S.

Exercise 10.3. Prove 10.6(e) and (f). Hint: Observe that

sup
x∈Rd:|x|> 1

λ

(1 + |x|)k|g(x)| ≤ sup
x∈Rd

(1 + |x|)k+1

1 + 1
λ

|g(x)|.

Bonus: In (f), is the condition that supN∈N ‖
∑N
n=1 χn‖Ck <∞ for all k ∈ N0 necessary?
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10.7 (Multiplication). For all k ∈ N there exists a C > 0 such that (for example by
10.6)

‖fg‖k,S ≤ C‖f‖k,S‖g‖k,S (f, g ∈ S),

so that multiplication of functions as a map S × S → S is continuous.
Because of this, if u ∈ S ′ and f ∈ S, then fu is a tempered distribution, defined by

〈fu, ϕ〉 = 〈u, fϕ〉.

Before we turn to the topological properties of S, let us recall the following definition.

Definition 10.8. For k ∈ N0 ∪ {∞} we write Ckb for the subset of Ck that consists
of those functions that are bounded and for which their derivatives up to order k are
bounded, which means f ∈ Ckb if and only if f ∈ Ck and ∂αf ∈ Cb for all α ∈ Nd0 with
|α| ≤ k.

10.9. Observe/remember that Ckb is complete under the norm ‖ · ‖Ck for k ∈ N0.
Moreover, observe that S ⊂ Ckb for all k ∈ N0 and

‖f‖Ck
b
≤ ‖f‖k,S .

Theorem 10.10. The space S (equipped with the seminorms ‖ · ‖k,S) is a complete sep-
arable metrizable space and D is dense in S.

Proof. As S is equipped with a countable number of seminorms, it metrizable, see for
example [4, Proposition IV.2.1]. The completeness follows easily from the fact that S is
continuously embedded in the complete space Ckb for all k, see 10.9. That D is dense in
S follows from 10.6(e). Let us prove the separability. For this, let ψ be a mollifier. We
know that ϕ ∗ψε → ϕ in ‖ · ‖Ck -norm for all k ∈ N0 and ϕ ∈ D by Theorem 4.3 (b) (and
Lemma 3.18). Because the support of ϕ ∗ ψε is included a compact set for all ε ∈ (0, 1),
the convergence ϕ ∗ ψε → ϕ also holds in S, i.e., with respect to the seminorms ‖ · ‖k,S .
Hence D = {ϕ ∗ ψε : ε ∈ (0, 1) ∩ Q, ϕ ∈ D} is dense in S (but not yet countable). By
Lemma 3.23 we know that for each ε and ϕ there exist a sequence of Riemann type sums
that converge to ϕ ∗ ψε, in other words, there exists a sequence (ρk)k∈N in

R =
{ n∑
i=1

aiTyiψε : n ∈ N, a1, . . . , an ∈ Q, y1, . . . , yn ∈ Qd, ε ∈ (0, 1) ∩Q
}

such that ρk
k→∞−−−→ ϕ ∗ ψε in S. Hence R is dense in D (in the topology of S) and D is

dense in S, so that the countable set R is dense in S.

10.11. By 10.6(b) every tempered distribution restricted to D defines a distribution.
Observe also that for all k ∈ N0 and compact set K ⊂ Rd

‖ϕ‖Ck,K ≤ ‖ϕ‖k,S (ϕ ∈ S).

Therefore every u ∈ E ′ restricted to S defines a tempered distribution.
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Theorem 10.12. The following inclusion maps are continuous

D → (S, σ(S,S ′)), (S, σ(S,S ′))→ (E , σ(E , E ′)), S → E ,

The inclusion map D → S is sequentially continuous.
The map ι : S ′ → D′ defined by ι(u) = u|D is continuous and injective.
The map ι : E ′ → S ′ defined by ι(u) = u|S is continuous and injective.

Proof. For the sequential continuity use Theorem 2.7. For the other continuity, see 10.11.
That the ι maps are injective follows as D is dense in S; similarly D and thus S is dense
in E .

In Example 10.15 we show that none of the embeddings in Theorem 10.12 is a homeo-
morphism on its image. But first we state two elementary facts on integrability of
x 7→ (1 + |x|)α and integrability of k 7→ (1 + |k|)α, from which we conclude integrability
properties of Schwartz functions.

Lemma 10.13. The functions Rd → R, x 7→ (1+|x|)α and x 7→ (1+|x|2)
α
2 are integrable

if and only if α < −d.

Proof. As 1+ |x|2 ≤ (1+ |x|)2 ≤ 2(1+ |x|2), is it sufficient to only consider x 7→ (1+ |x|)α.
Integrating the function onB(0, 1) always gives a finite integral. It will be clear that α < 0
is required. By changing to spherical coordinates and observing that (2r)α ≤ (1+r)α ≤ rα
for α < 0 and r ≥ 1, we see that (1 + |x|)α is integrable if and only if

∫∞
1 rd−1+α dr is

finite. The latter is of course the case if and only if α < −d.

Lemma 10.14. The functions Zd → R, k 7→ (1+|k|)α and k 7→ (1+|k|2)
α
2 are summable

if and only if α < −d.

Proof. We consider the function k 7→ (1 + |k|2)
α
2 only (this is sufficient by the inequality

1 + |k|2 ≤ (1 + |k|)2 ≤ 2(1 + |k|2)). We write bxc = (bx1c, . . . , bxdc) for x ∈ Rd where
bx1c is the largest integer that is smaller or equal to x1. Then

∑
k∈Zd(1 + |k|2)

α
2 =∫

Rd(1 + |bxc|2)
α
2 dx. Note that |x− bxc| ≤

√
d. Therefore, if |x| ≥ 2

√
d we have

1
2 |x| ≤ |x| −

√
d ≤ |bxc| ≤ |x|+

√
d ≤ 3

2 |x|.

Hence, 1
4(1 + |x|2) ≤ (1 + |bxc|2) ≤ 9

4(1 + |x|2) for those x and so the statement follows
by Lemma 10.13.

Exercise 10.4. Prove that
∑
n∈N nδn ∈ S ′(R). Moreover, if p : R→ F is a polynomial,

show that
∑
n∈N p(n)δn is a tempered distribution. What about p(x) = ex?

Example 10.15. We consider only one dimension, i.e., d = 1 for convenience.
(a) As in Example 5.8 let φn = 1

nTnφ for n ∈ N, where φ ∈ D with
∫
φ = 1 and φ(0) = 1.

Then φn → 0 in E , but (φn)n∈N does not converge in S: Indeed, u =
∑
n∈N nδn is

a tempered distribution (see Exercise 10.4) and u(φn) = 1 for all n.
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(b) Let fn(x) = e−n(1+x2). By Example 10.4 limn→∞ ‖fn‖k,S = 0 for all k ∈ N0. Let
φ ∈ D be nonzero and define ψn = fnTnφ. Observe that ψn ∈ D. By 10.6(c),
‖ψn‖k,S ≤ ‖φ‖Ck‖fn‖k,S → 0 as n → ∞ for all k ∈ N0. Hence ψn → 0 in S.
However, ψn does not converge in D by Theorem 2.7.

(c) δn → 0 in S ′ but not in E ′.
(d) Consider the element of S ′ given by anδn, where an = en

2 . Then anδn → 0 in D′
but not in S ′ (and not in E ′), as for ϕ(x) = e−x

2 we have anδn(ϕ) = 1 for all n.

Remark 10.16. Observe that even if we equip D with the topology generated by the
seminorms (‖ · ‖Ck)k∈N0 it is not continuously embedded in S. This follows from Ex-
ample 10.15 (a) as also ‖φn‖Ck → 0 for all k ∈ N0.

Theorem 10.17. [7, Page 137] The space S ′ is weak* sequentially complete.

Proof. The proof is very similar to the proof of Theorem 2.13 and uses the fact that S is
a metric space: One replaces “DK(Ω)” and “dK” by “S” and “d”, where d is the metric
on S.

10.18 (S′ is not metrizable). [7, Page 137] only mentions this, no arguments.

Lemma 10.19. Let p ∈ [1,∞). For all k ∈ N such that pk > d we have (1+ |x|)−k ∈ Lp
and

‖ · ‖Lp ≤ ‖(1 + |x|)−k‖Lp‖ · ‖k,S .

Hence S is continuously embedded in Lp. Moreover, S is dense in Lp. As

‖ · ‖L∞ = ‖ · ‖0,S ,

S is also continuously embedded in L∞.

Proof. Let f ∈ S and p ∈ [1,∞) (note that ‖ · ‖L∞ ≤ ‖ · ‖0,S). By definition of ‖ · ‖k,S we
have

|f(x)| ≤ ‖f‖k,S(1 + |x|)−k (x ∈ Rd),

whence by picking k large enough such that pk > d, by Lemma 10.13 it follows that
‖f‖Lp ≤ C‖f‖k,S with C being the ‖ · ‖Lp-norm of x 7→ (1 + |x|)−k. The denseness
follows by Lemma A.13.

10.20. Observe that L1
loc is not a subset of S ′ as for example the function e|x|

2 is not
in S ′(R) (see Exercise 10.5). However, Lp is a subset of S ′ for all p ∈ [1,∞] and is
continuously embedded, see Theorem 10.21.

Exercise 10.5. Verify that x 7→ e|x|
2 is not in S ′.
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We present the analogue statement to Theorem 2.15 in Theorem 10.21, but first
introduce the following notation.

Theorem 10.21. Let p ∈ [1,∞]. We have Lp ⊂ S ′, moreover the function Lp → S ′,
f 7→ uf is continuous and injective.

Proof. The injectivity follows from the injectivity of Lp → D′ and as D is dense in S.
Let f ∈ Lp(Rd). Then by Hölder’s inequality, with q ∈ [1,∞] such that 1

p + 1
q = 1,

|uf (ϕ)| =
∣∣∣∣∫

Rd
fϕ

∣∣∣∣ ≤ ‖f‖Lp‖ϕ‖Lq ≤ C‖f‖Lp‖ϕ‖k,S ,
where k ∈ N0 and C > 0 are as in Lemma 10.19.

Definition 10.22. A function f : Rd → F is said to be of at most polynomial growth if
there there exists a C > 0 and a k ∈ N0 such that

|f(x)| ≤ C(1 + |x|)k (x ∈ Rd). (52)

We write C∞p for the set of C∞ functions f such that for all α ∈ Nd0, the function ∂αf
that are of at most polynomial growth.

Exercise 10.6. Show that (52) holds if and only if there exists a polynomial p : R→ R
such that |f(x)| ≤ p(|x|).

10.23. Observe that f ∈ C∞p if and only if for all m ∈ N0 there exists an k ∈ N0 such
that

qk(f) :=
∑
α∈Nd0
|α|≤m

sup
x∈Rd

(1 + |x|)−k|∂αf(x)| <∞. (53)

Let k,m ∈ N0. By Leibniz formula 5.3, for example (29), there exists a C > 0 such that
for all f ∈ C∞p and ϕ ∈ S∑

α∈Nd0
|α|≤m

sup
x∈Rd

(1 + |x|)m|∂α(fϕ)(x)|

≤ C
( ∑
α∈Nd0
|α|≤m

sup
x∈Rd

(1 + |x|)−k|∂αf(x)|
)( ∑

β∈Nd0
|β|≤m

sup
x∈Rd

(1 + |x|)m+k|∂βϕ)(x)|
)
,

for all f ∈ C∞p with qk(f) <∞ and ϕ ∈ S,

‖fϕ‖m,S ≤ Cqk(f)‖ϕ‖m+k,S . (54)
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Therefore

f ∈ C∞p , ϕ ∈ S =⇒ fϕ ∈ S, (55)
f ∈ C∞p , u ∈ S ′ =⇒ fu ∈ S ′. (56)

Moreover, if fn ∈ C∞p for all n ∈ N and f ∈ C∞p and qk(fn − f) n→∞−−−→ 0 for some k ∈ N,
then

fnϕ
n→∞−−−→ fϕ in S (ϕ ∈ S),

fnu
n→∞−−−→ fu in S ′ (u ∈ S ′).

10.24. Coming back to 10.20: There are more functions that are representing tempered
distributions than those in Lp spaces. For example, by (56), as 1 ∈ S ′, we have

C∞p ⊂ S ′.

Moreover, locally integrable functions that are of at most polynomial growth are rep-
resenting tempered distribution (as we have seen in Exercise 10.5, exponential growth is
“too fast”).

Exercise 10.7. Verify 10.24.

10.25 (Summary of embeddings). If X and Y are two topological spaces, we write
X ↪→ Y for “X is continuously embedded in Y ”, i.e., X ⊂ Y and the inclusion map
X → Y is continuous.

S ↪→ Lp ↪→ S ′ Lemma 10.19 and Theorem 10.21
D = (D, σ(D,D′)) ↪→ (S, σ(S,S ′)) ↪→ (E , σ(E , E ′)) Theorems 5.7 and 10.12

D ↪→ S (sequentially) Theorem 10.12
S ↪→ E Theorem 10.12

E ′ ↪→ S ′ ↪→ D′ Theorem 10.12

11 Fourier Transforms
Still we consider as our underlying space Rd and leave out the notation “(Rd)” in funtion
spaces or spaces of distributions. We also allow F to be either R or C, and leave out
the notation “F” of the function spaces unless it matters. Let us first introduce some
auxiliary lemmas.

Lemma 11.1. Let f ∈ L1. Then for all a ∈ Rd

lim
x→a
‖Taf − Txf‖L1 = 0.
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Proof. If f is the indicator function of a rectangle in Rd (see Definition A.12), then it
is easy to see that the above limit holds. Therefore it follows that for any finite linear
combination of such indicator functions, the above limit holds. As the linear span of
indicator functions of rectangles is dense in L1, see Lemma A.13, by a 3ε argument one
can finish the proof.

Lemma 11.2 (Lemma of Riemann-Lebesgue). Let g ∈ L1(R). Then∣∣∣∣∫
R
g(x)e−2πiax dx

∣∣∣∣ ≤ 1
2‖g − T 1

2a
g‖L1 (a ∈ R, a 6= 0).

Proof. Let a ∈ R, a 6= 0. As eπi = −1 we have∫
R
g(x)e−2πiax dx =

∫
R
g(x− 1

2a)e−2πia(x− 1
2a ) dx = −

∫
R
T 1

2a
g(x)e−2πiax dx.

Therefore ∫
R
g(x)e−2πiax dx = 1

2

∫
R

[g(x)− T 1
2a
g(x)]e−2πiax dx,

so that the desired inequality follows.

Definition 11.3 (Fourier transform of a function). Let f ∈ L1. The Fourier trans-
form of f , f̂ : Rd → C is given by

f̂(ξ) =
∫
Rd
e−2πi〈x,ξ〉f(x) dx, (57)

where 〈x, ξ〉 is the inner product on Rd (the notation 〈·, ·〉 is of course also used as the
pairing between distributions, but we assume there will be no confusing arising).

In case g ∈ L1 equals f almost everywhere, then f̂ = ĝ. This allows us to define the
Fourier transform of an element of L1 as the Fourier transform of one of its representatives
in L1 and will use the formula (57) also for f ∈ L1.

Exercise 11.1 (Voorbeeld 15.8). [23] Calculate the Fourier transform of the func-
tion f : R→ R given by f(x) = max(1− |x|, 0).

Exercise 11.2. Let f ∈ L1(Rd) (for some d ∈ N). Show that if |ξn| → ∞, then
f̂(ξn)→ 0.

11.4 (Notation). Let g : Rd → F be a function. Suppose there exists an L ∈ F such
that for all ε > 0 there exists an M > 0 such that |g(x) − L| < ε for all x ∈ Rd with
|x| > M . Then we will write “lim|x|→∞ g(x)” for “L”.

Theorem 11.5. If f ∈ L1, then f̂ ∈ Cb(Rd,C), lim|ξ|→∞ f̂(ξ) = 0 and

‖f̂‖L∞ ≤ ‖f‖L1 .
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Proof. For the convergence we refer to Exercise 11.2. The countinuity follows by Le-
besgue’s dominated convergence theorem. The bound on the norm is easy.

Definition 11.6 (Fourier transform as a function). We write F for the linear func-
tion L1 → Cb(Rd,C), f 7→ f̂ and call this map the Fourier transform.

Theorem 11.7. [23, Stelling 13.4] [30, Chapter 5 Proposition 1.8] [7, Page 142]
Let f, g ∈ L1. Then fĝ and f̂g are integrable and∫

fĝ =
∫
f̂g. (58)

Proof. The integrability follows by Theorem 11.5. The identity follows by Fubini’s the-
orem.

Exercise 11.3. Check that (58) holds.

11.8 (Notation). We will use the bold symbols ξ and x to denote the identity maps
on Rd, which means ξ : ξ 7→ ξ and x : x 7→ x.

By substitution rules for integration we obtain the following.

Theorem 11.9. (a) Let f ∈ L1 and y ∈ Rd. Then

F(Tyf) = e−2πi〈ξ,y〉f̂ , Tyf̂ = F(e2πi〈x,y〉f). (59)

(b) Let l : Rd → Rd be linear and bijective. Then

F(f ◦ l) = 1
|det l| f̂ ◦ l∗,

where l∗ is the transpose of l−1, which means that 〈l−1y, ξ〉 = 〈y, l∗(ξ)〉 for all
x, ξ ∈ Rd.
In particular, for λ ∈ R \ {0} (for the notation see 10.5)

F(lλf) = |λ|−dl 1
λ
f̂ .

Or, differently written F(f(λx)) = |λ|−df̂( ξλ).

Exercise 11.4. Verify the statements of Theorem 11.9.

Theorem 11.10. [23, Stelling 13.5] Let g ∈ L1(R).
(a) If xg ∈ L1(R), then ĝ is continuously differentiable and

ĝ′ = F(−2πixg). (60)
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(b) If g is the indefinite integral of a function h ∈ L1(R) (which means that for any
a, b ∈ R with a < b, g(b)− g(a) =

∫ b
a h), then ĥ = 2πiξĝ.

In particular, if g is continuously differentiable and g′ ∈ L1(R), then F(g′) = 2πiξĝ.

Proof. (a) Let a, b ∈ R, a < b. Then, by Theorem 11.7∫ b

a
F(−2πixg) =

∫
R
F(−2πixg)1[a,b]

=
∫
R
−2πixg(x)F(1[a,b])(x) dx

=
∫
R
−2πixg(x)e

−2πibx − e−2πiax

−2πix dx

=
∫
R
g(x)(e−2πibx − e−2πiax) dx = ĝ(b)− ĝ(a).

As the Fourier transform of an integrable function is continuous, we conclude that ĝ is
continuously differentiable with derivative given by (60).

(b) For ξ ∈ R we have by applying integration by parts

ĥ(ξ)− 2πiξĝ(ξ) = lim
N→∞

∫ N

−N
h(x)e−2πiξx + g(x)(−2πiξ)e−2πiξx dx

= lim
N→∞

(g(N)e−2πiNξ − g(−N)e2πiNξ).

Therefore it suffices to show that lim|x|→∞ g(x) = 0. As g is the indefinite integral
of h, which means for example that g(y) = g(0) +

∫ y
0 h(x) dx, both limy→∞ g(y) and

limy→−∞ g(y) exist. By the integrability of g, these limits need to be equal to zero.

11.11 (Note to Theorem 11.10 (b)). If g ∈ L1(R) is not an indefinite integral of an
integrable function, but almost everywhere differentiable and its derivative is equal (there
where it exists) to an integrable function h, then ĝ might not be equal to (2πiξ)ĥ, e.g.,
take g = 1[a,b]. Indeed, g is almost everywhere differentiable with derivative 0 but its
Fourier transform is given by

F(1[a,b])(ξ) =
{
e−2πibξ−e−2πiaξ

−2πiξ ξ 6= 0,
b− a ξ = 0.

11.12. Let us compute the Fourier transform of a Gaussian function in one dimension,
with the help of Theorem 11.10.

Let g : R→ R be the Gaussian function given by g(x) = e−x
2 . By Theorem 11.10

d

dξ
ĝ(ξ) = F(−2πixe−x2)(ξ) = πiF

(
D e−x

2) (ξ) = −2π2ξĝ(ξ). (61)

As ĝ(0) =
∫
R e
−x2 dx =

√
π (see 7.14) we have ĝ(ξ) =

√
πe−π

2ξ2 , as this is the unique
solution to the ordinary differential equation (61).
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We can so to say ‘apply’ Theorem 11.10 to any of the directions in Rd, to obtain the
following.

Theorem 11.13. Let k ∈ N0.
(a) If xβf ∈ L1 for all β ∈ Nd0 with |β| ≤ k, then f̂ ∈ Ck and

∂β f̂ = F((−2πix)βf) (β ∈ Nd0, |β| ≤ k).

(b) If f ∈ L1 ∩ Ck and ∂βf ∈ L1 for all β ∈ Nd0 with |β| ≤ k, then ξβ f̂ is continuous
and bounded and

(2πiξ)β f̂ = F(∂βf).

Exercise 11.5. Verify that Theorem 11.13 follows from Theorem 11.10.

11.14. Observe that if (b) holds for all k, which means that f ∈ L1 ∩C∞ and ∂βf ∈ L1

for all β ∈ Nd0, then ξβ f̂ is not only continuous and bounded but also integrable for all
β ∈ Nd0: This follows from Lemma 10.13 as also (1+ |ξ|)d+1ξβ f̂ is bounded for all β ∈ Nd0.

As we have also seen that Schwartz functions are integrable, and also their derivatives
as they are again Schwartz functions, Theorem 11.13 implies that f̂ is a Schwartz function
if f is a Schwartz function. The Fourier transform actually forms a bijection on the
Schwartz functions, which follows from the inversion theorem, Theorem 11.16.

First we turn to Fourier transform of Gaussian functions.

Theorem 11.15. Let a > 0, y ∈ Rd and f : Rd → R be the Gaussian function f(x) =
e−a|x−y|

2, then f ∈ L1 and

f̂(ξ) =
(
π

a

) d
2
e−

π2|ξ|2
a e−2πi〈y,ξ〉. (62)

Exercise 11.6. Prove Theorem 11.15.

Theorem 11.16. The Fourier transform F forms a linear homeomorphism S(Rd,C)→
S(Rd,C) with

f(x) = F(f̂)(−x) =
∫
Rd
f̂(ξ)e2πi〈x,ξ〉 dξ (x ∈ Rd). (63)

Proof. Let us first prove that F is bijective by proving (63). Let f ∈ S and x ∈ Rd. Let
g = T−xf . Then ĝ = f̂ e2πi〈x,ξ〉 by Theorem 11.9. Therefore, it is sufficient to show (63)
for x = 0, which means it is sufficient to show

f(0) =
∫
Rd
f̂(ξ) dξ.
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Let ht be as in Example 7.13, i.e.,

ht(x) = (4πt)−
d
2 e−

1
4t |x|

2 (x ∈ Rd).

Observe that by Theorem 11.15 we have ĝt = ht for (take a = tπ2t)

gt(x) = e−4π2t|x|2 (x ∈ Rd).

By Theorem 11.7 ∫
Rd
f(x)ht(x) dx =

∫
Rd
f̂(ξ)gt(ξ) dξ.

As f is continuous and bounded, the left-hand side converges to f(0) as t ↓ 0 by (40).
As f̂ is an element of S it is integrable, therefore by Lebesgue’s dominated convergence
theorem we have that the right-hand side converges to

∫
Rd f̂(ξ) dξ as t ↓ 0, because

gt(ξ) ↑ 1 as t ↓ 0 for all ξ ∈ Rd.
Let m = d+ 1. As C :=

∫
Rd(1 + |x|)−m dx is finite by Lemma 10.13, we have

‖f̂‖L∞ ≤ ‖f‖L1 =
∫
Rd

(1 + |x|)m(1 + |x|)−m|f(x)| dx ≤ C‖f‖m,S (f ∈ S). (64)

Let k ∈ N0. By Theorem 11.13 for k ∈ N0 and α ∈ Nd0 with |α| ≤ k.

(1 + |ξ|2)
k
2 ∂αf̂ = F

((
1− ∆

4π2

) k
2
(
(2πix)αf

))
.

Now if fn
n→∞−−−→ 0 in S, then (2πix)αfn

n→∞−−−→ 0 in S for all α ∈ Nd0. Hence for all α ∈ Nd0∥∥∥∥∥(1− ∆
4π2

) k
2
(
(2πix)αfn

)∥∥∥∥∥
m,S

n→∞−−−→ 0,

Therefore by (64) ∑
α∈Nd0
|α|≤k

sup
x∈Rd

(1 + |ξ|2)
k
2 |∂αf̂n(ξ)| n→∞−−−→ 0,

and thus ‖f̂n‖k,S
n→∞−−−→ 0 (remember 10.2).

11.17. With theˇnotation at hand we could instead of (63) also write

F(f̂)(−x) = ˆ̂
f(−x) =

ˇ̂̂
f(x) = F(f̂ )̌ (x).

Actually,ˇcommutes with the Fourier transform by Theorem 11.9, i.e.,

ˇ̂
f = ˆ̌

f (f ∈ L1).

Be aware however, that in some literature the symbol ˇ is used as a symbol for the
Fourier inverse.
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Actually, the previous theorem extends in the following way, in the sense that the
Fourier transform is a bijection on a larger space.

Theorem 11.18. [23, Stelling 15.9] Suppose that f is integrable and that f̂ is too (so
both f and f̂ are in L1). Then

f(x) = F(f̂)(−x) =
∫
Rd
f̂(ξ)e2πi〈x,ξ〉 dξ for almost all x ∈ Rd. (65)

Consequently, F also forms a bijection on {f ∈ L1 : f̂ ∈ L1}.

Proof. For all ϕ ∈ S we have by Theorem 11.7 and Theorem 11.16.∫
Rd
F(f̂)ϕ =

∫
Rd
f̂ ϕ̂ =

∫
Rd
fF(ϕ̂) =

∫
Rd
fϕ̌ =

∫
Rd
f̌ϕ.

Therefore, by Theorem 1.16, we have F(f̂) = f̌ almost everywhere.

11.19. Observe that by Theorem 11.5 the set {f ∈ L1 : f̂ ∈ L1} is included in Cb (where
Cb is viewed as subset of L∞).

11.20. With f being the complex conjugate of f , observe that for f ∈ L1(Rd)

f̂ =
ˇ̂
f.

Therefore, as a consequence of Theorem 11.7 we have

〈f, ĝ〉L2 = 〈f̂ , ǧ〉L2 . (66)

By the above observation and the Fourier inversion formula, we obtain the following
identity, which is due to Parseval and Plancherel.

Theorem 11.21. [23, Stelling 19.7] [Parseval, Plancherel] F extends to an isometric
isomorphism from L2 into L2, so that in particular

‖f̂‖L2 = ‖f‖L2 (f ∈ L2). (67)

Proof. As Cc is dense in L2 (see Lemma A.13) and a subset of L1 it is sufficient to show
(67) for f ∈ Cc. Let f ∈ Cc. By Theorem 11.7 (see also 11.20) we have

‖f‖2L2 = 〈f, f〉L2 = 〈f̌ ,F(f̂)〉L2 = 〈f̂ , f̂〉L2 = ‖f̂‖2L2 .

11.22. For f ∈ L1 and ϕ ∈ S we have by Theorem 11.7∫
fϕ̂ =

∫
f̂ϕ.

So that with the notation of Example 1.6, we have

uf̂ (ϕ) = uf (ϕ̂).

This relation lies at the basis for the definition of the Fourier transform of a tempered
distribution, see the next definition.
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11.23. Before we define the Fourier transform, let us first mention the following. As the
Fourier transform of a real valued function is complex valued function (and in general not
a real valued function), we have to be able to evaluate a tempered distribution in functions
in S(Rd,C). If u ∈ S ′(Rd,R), then u naturally extends to a tempered distribution in
S ′(Rd,C) as follows. Every function ϕ ∈ S(Rd,C) can be decomposed in a real <ϕ and
imaginary part =ϕ in S(Rd,R), so that ϕ = <ϕ+ i=ϕ. Therefore we can extend u to an
element u in S ′(Rd,C) by defining

u(ϕ) = u(<ϕ) + iu(=ϕ).

Then u ∈ S ′(Rd,C). We will from here on also write “u” for “u”.

Definition 11.24. Let u be a tempered distribution. We define the Fourier transform
of u, û by

û(ϕ) = u(ϕ̂) (ϕ ∈ S).

We will also write F for the map S ′ → S ′.

Example 11.25. The function 1 represents a Schwarz distribution, and so does δ0. We
calculate their Fourier transforms. For ϕ ∈ S we have

〈δ̂0, ϕ〉 = δ0(ϕ̂) = ϕ̂(0) =
∫
ϕ = 〈1, ϕ〉,

〈1̂, ϕ〉 =
∫
ϕ̂ = ϕ(0) = 〈δ0, ϕ〉,

where we used the inversion formula in the second line. Hence

δ̂0 = 1, 1̂ = δ0.

The following theorem is a consequence of Theorem 11.9, Theorem 11.13 and The-
orem 11.16.

Theorem 11.26. The Fourier transform F : u 7→ û forms a linear homeomorphism
S ′(Rd,C)→ S ′(Rd,C). Moreover,

u = F(û)̌ (u ∈ S ′(Rd,C)),

and for u ∈ S ′, β ∈ Nd0, y ∈ Rd, l : Rd → Rd a linear bijection and λ ∈ R,

F(∂βu) = (2πiξ)βû, ∂βû = F((−2πix)βu), (68)
F(Tyu) = e−2πi〈ξ,y〉û, Tyû = F(e2πi〈x,y〉u), (69)

F(u ◦ l) = 1
| det l| û ◦ l∗, F(lλu) = 1

|λ|d
l 1
λ
û, (70)

where l∗ is the transpose of l−1 as in Theorem 11.9 and similar to 10.5 “lλu” is written
for “u ◦ lλ”.
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12 Convolution of tempered distributions
We first introduced the Fourier transform, as we will use this to prove statements about
convolutions. The following theorem shows the key relation of the Fourier transform with
convolution that we will use.

Theorem 12.1. Let f, g ∈ L1. Then f ∗ g ∈ L1 and

F(f ∗ g) = f̂ ĝ.

Proof. By Young’s inequality, Theorem 3.4 we have f ∗ g ∈ L1. Therefore, by Fubini’s
theorem, we have for ξ ∈ Rd,

F(f ∗ g)(ξ) =
∫
Rd
f ∗ g(x)e−2πi〈x,ξ〉 dx

=
∫
Rd

∫
Rd
f(y)g(x− y) dye−2πi〈x,ξ〉 dx

=
∫
Rd
f(y)

∫
Rd
g(x− y)e−2πi〈x,ξ〉 dx dy

=
∫
Rd
f(y)F(Tyg)(ξ) dy

=
∫
Rd
f(y)ĝ(ξ)e−2πi〈y,ξ〉 dy = f̂(ξ)ĝ(ξ),

where we used Theorem 11.9.

As a direct consequence, by Theorem 11.16 and as multiplication is a continuous
operation on S (see 10.7):

Lemma 12.2. Let ϕ,ψ ∈ S. Then

F(ϕ ∗ ψ) = ϕ̂ψ̂, F(ϕψ) = ϕ̂ ∗ ψ̂. (71)

Consequently, ϕ ∗ ψ ∈ S and the function S × S → S, (f, g) 7→ f ∗ g is continuous.

Definition 12.3. Let u ∈ S ′ and ϕ ∈ S. We define the convolution of u with ϕ to be
the function Rd → F defined by

u ∗ ϕ(x) = u(Txϕ̌) (x ∈ Rd).

Similar to Lemma 3.18 and Lemma 6.3 we have that the convolution between a
Schwartz function and a tempered distribution is smooth, as we will see in Theorem 12.5.
However, it need not be a Schwartz function as will be clear from the following exercise.

Exercise 12.1. Compute the convolution of the tempered distribution 1 with the
Schwartz function e−|x|2 .

Let us consider the convergence of difference quotients as we did in 3.17.

60



12.4 (Convergence of difference quotients in S and S′). Observe that for f ∈ S,
j ∈ {1, . . . , d} and h ∈ R \ {0}

F
((T−hej − T0

h

)
f
)

= e2πi〈hej ,ξ〉 − 1
h

f̂ .

Therefore we have the following convergence in S(T−hej − T0

h

)
f

h→0−−−→ ∂jf, (72)

if and only if the following convergence holds in S, where ξj = 〈ξ, ej〉(
e2πihξj − 1

h

)
f̂

h→0−−−→ 2πiξj f̂ . (73)

We simplify the notation for the moment “by substituting t = 2πξj”. For h ∈ R \ {0} let
us write gh for the function R→ C given by

gh(t) = eiht − 1
h

− it (t ∈ R).

Then

dn

dtn gh(t) =
{

i(eiht − 1) n = 1,
inhn−1eiht n ≥ 2.

As eiht − 1 = it
∫ h

0 e
irt dr,

gh(t) = eiht − 1
h

− it = it
∫ h
0 e

irt − 1 dr
h

= (it)2
∫ h

0
∫ r

0 e
iut du dr
h

,

and therefore we obtain

∣∣∣∣ dn

dtn gh(t)
∣∣∣∣ ≤


|h||t|2 n = 0,
|h||t| n = 1,
|h|n−1 n ≥ 2.

From this we obtain for k ∈ N0 and h ∈ R with |h| ≤ 1, that for all α ∈ Nd0 with |α| ≤ k∣∣∣∣∣∂α
(
e2πihξj − 1

h
− 2πiξj

)∣∣∣∣∣ ≤ (2π)k|h|(1 + |ξ|)2,

and thus by Leibniz rule 5.3∥∥∥∥∥
(
e2πihξj − 1

h
− 2πiξj

)
f̂

∥∥∥∥∥
k,S
≤ (2π)k|h|‖f̂‖k+2,S .
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So that (73) and (72) hold.
Consequently, we have for any u ∈ S ′(Thei − T0

h

)
u

h→0−−−→ ∂iu in S ′.

As in 3.17, the identity (20) is also valid for u ∈ S ′ and ϕ ∈ S. Therefore ∂j(u ∗ ϕ) =
u ∗ ∂jϕ.

So the convolution between a tempered distribution and a Schwartz function is
smooth. Moreover, it is of at most polynomial growth:

Theorem 12.5. [7, Theorem on page 151] [24, Theorem II.7.10] Let u ∈ S ′ and ϕ ∈ S.
Then u ∗ ϕ is smooth and of at most polynomial growth, that is u ∗ ϕ ∈ C∞p . For all
α ∈ Nd0

∂α(u ∗ ϕ) = u ∗ (∂αϕ) = (∂αu) ∗ ϕ. (74)

Moreover, the map S 7→ E, ϕ 7→ u ∗ ϕ is continuous.

Proof. That the convolution is smooth is proven in 12.4. The fact that u∗ϕ is of at most
polynomial growth basically follows by the inequality (1 + |x + y|) ≤ (1 + |x|)(1 + |y|)
and together with the continuity this is left as an exercise.

Exercise 12.2. Finish the proof of Theorem 12.5.

So convolution with a tempered distribution is a continuous operation and it com-
mutes with translation. Like in Theorem 6.6 and Theorem 6.7 also each such operation
is a convolution:

Theorem 12.6. [7, Theorem on page 151] Let A be a linear map S(Rd)→ E(Rd) which
commutes with translation, i.e., Th(Aϕ) − A(Thϕ), and which is continuous, then there
exists a unique tempered distribution u ∈ S ′ such that Aϕ = u ∗ ϕ for all ϕ ∈ D(Rd).

Theorem 12.7. [7, Theorem on page 151] Let u ∈ S ′ and ϕ ∈ S. Then in S ′

F(u ∗ ϕ) = ϕ̂û, F(ϕu) = ϕ̂ ∗ û.

Proof. As u∗ϕ is of at most polynomial growth, it is a tempered distribution (see 10.24).
As ϕ̂ is a Schwartz function, also ϕ̂û is tempered.

First let us consider ϕ ∈ D. By 3.25 and using that ϕ̌ = ˆ̂ϕ, for ψ ∈ S with ψ̂ ∈ D

〈F(u ∗ ϕ), ψ〉 = 〈u ∗ ϕ, ψ̂〉 = 〈u, ϕ̌ ∗ ψ̂〉 = 〈u, ˆ̂ϕ ∗ ψ̂〉
= 〈u,F(ϕ̂ψ)〉 = 〈û, ϕ̂ψ〉 = 〈ϕ̂û, ψ〉.

As D is dense in S and the Fourier transformation is continuous, also {ψ ∈ S : ψ̂ ∈ D} is
dense in S and therefore from the above we obtain that F(u ∗ϕ) = ϕ̂û for all u ∈ S ′ and
ϕ ∈ S. Again by the density of D in S and by continuity of the Fourier transform and
the map ϕ 7→ u ∗ ϕ, we conclude that F(u ∗ ϕ) = ϕ̂û also for ϕ ∈ S. The other identity
then follows by the first (Exercise 12.3).
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Exercise 12.3. Prove that the identity F(ϕu) = ϕ̂ ∗ û holds for all u ∈ S ′ and ϕ ∈ S
by using that F(u ∗ ϕ) = ϕ̂û holds for all u ∈ S ′ and ϕ ∈ S.

Like in Theorem 3.24 we have the following associativity rule.

Theorem 12.8. [7, Theorem on page 151] If u ∈ S ′ and ϕ,ψ ∈ S then

u ∗ (ϕ ∗ ψ) = (u ∗ ϕ) ∗ ψ. (75)

Proof. By Theorem 12.7 and Lemma 12.2 we have

F(u ∗ (ϕ ∗ ψ)) = F(ϕ ∗ ψ)û = ϕ̂ψ̂û,

F((u ∗ ϕ) ∗ ψ) = ψ̂F(u ∗ ϕ) = ψ̂ϕ̂û.

As the Fourier transform is injective on S ′ (by Theorem 11.26), we have (75).

Remark 12.9. One other way to prove Theorem 12.8 is by extending Theorem 3.24 by
a limiting argument: the identity (75) holds in case ϕ and ψ are testfunctions, and every
Schwartz function can be approximated in the topology of S by testfunctions, see for
example 10.6 (e).

As a tempered distribution is a distribution, we can convolve it with a distribution
with compact support in the sense of Definition 6.9. Remember that every compactly sup-
ported distribution is a tempered distribution (so that its Fourier transform is defined).

We will show that such convolution is a tempered distribution for which the Fourier
transform equals the product of the Fourier transform of each of the distributions. But
first, we will show that the Fourier transform of a compactly supported distribution is a
smooth function.

Lemma 12.10. Let v ∈ E ′. Then v̂ ∈ C∞p .

Proof. Let χ ∈ C∞c be equal to 1 on (supp v)δ for some δ > 0, so that v = χv. Then

v̂ = F(χv) = χ̂ ∗ v̂.

As χ is a Schwartz function, so is χ̂. Therefore v̂ ∈ C∞p by Theorem 12.5.

As a direct consequence:

Lemma 12.11. Let f ∈ S ′, then

supp f̂ is compact =⇒ f ∈ C∞p . (76)

Regarding Lemma 12.10, we can actually characterize the Fourier transforms of com-
pactly supported distributions explicitly. For this we recall the notion of analytic function
or holomorphic function.
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Definition 12.12. We say that a function f : Cd → C is entire or call it an entire
function if it is holomorphic everywhere in Cd, by which we mean that for all i ∈ {1, . . . , d}
and x ∈ Cd the following limit exists

lim
h→0

f(x+ hei)− f(x)
h

.

The proof of the following theorem requires a little work, the proof can be found in
Rudin’s book on Functional Analysis for example.

Theorem 12.13 (Paley-Wiener). [24, Theorem 7.23]
(a) If v ∈ E ′, R > 0, supp v ⊂ B(0, R), v has order k and

f(z) = 〈v, e−2πi〈z,·〉〉 (z ∈ Cd), (77)

then f is entire, f |Rd = v̂ and there exists a C > 0 such that

|f(z)| ≤ C(1 + |z|)keR|=z| (z ∈ Cd). (78)

(b) Conversely, if f is an entire function on Cd which satisfies (78) for some k ∈ N0
and C > 0, then there exists a v ∈ E ′ with support in B(0, R) such that (77) holds.

(77) is also called the Fourier-Laplace transform of v. More on this topic see for
example [10, Section 10].

Theorem 12.14. If v ∈ E ′ and v̂ has compact support, then v = 0.

Proof. We know that v̂ is entire, which implies that it is analytic, meaning that for each
point z0 ∈ Cd there exist (aα)α∈Nd0 such that

∑
α∈Nd0

aα(z− z0)α is convergent and equals
v̂(z) for all z ∈ Cd. Therefore, if it is zero on an open set, it is equal to zero everywhere
(as the coefficients aα are determined by derivatives by Taylor ’s theorem).

12.15. Observe that as the Fourier transform of a Gaussian function is again a Gaussian
function, and therefore its support is the whole Rd, we conclude from the Paley-Wiener
theorem that Gaussian functions cannot be extended to entire functions on Cd that
satisfies (78). Indeed, if we consider the Gaussian function f : Rd → R given by f(x) =
e−|x|

2 for x ∈ Rd, then it is the restriction to Rd of the function g : Cd → C given by

g(x) =
∞∑
n=0

(−x · x)n

n! (x ∈ Cd).

For a ∈ R we have g(ia) = ea
2 from which we see that (78) is not satisfied.

In Definition 6.9 we defined the convolution between distributions u and v, of which
at least one has compact support, by

u ∗ v(ϕ) = u(v̌ ∗ ϕ) (ϕ ∈ D).

This extends to convolution between a tempered distribution and a distribution of com-
pact support, see Definition 12.17. Let us first check that the map ϕ 7→ u(v̌ ∗ϕ) is indeed
a tempered distribution.
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12.16. As v̂ is a smooth function of at most polynomial growth for a distribution v with
compact support, and multiplication with such functions is a continuous operation on
the Schwartz space (see 10.23), the function ϕ 7→ v̂ϕ̂ is continuous as function S → S.
Therefore, as v∗ϕ = F−1(v̂ϕ̂), the function S → S given by convolving with v, ϕ 7→ v∗ϕ
is continuous. Therefore, if u ∈ S ′, the function S → F given by ϕ 7→ u(v̌∗ϕ) is continuous
and therefore is a tempered distribution.

For the definition of v ∗u, we have already showed in Theorem 12.5 that ϕ 7→ u ∗ϕ is
continuous as function S → E . Therefore ϕ 7→ v(ǔ ∗ ϕ) defines a tempered distribution
as well.

Definition 12.17. For u ∈ S ′ and v ∈ E ′ we define u∗v to be the tempered distribution
given by

u ∗ v(ϕ) = u(v̌ ∗ ϕ) (ϕ ∈ S).

Moreover, we define v ∗ u to be the tempered distribution

v ∗ u(ϕ) = v(ǔ ∗ ϕ) (ϕ ∈ S).

12.18. As in 6.10, if u and v are tempered distributions of which at least one has compact
support and if ϕ is a Schwartz function, then

(u ∗ v) ∗ ϕ = u ∗ (v ∗ ϕ).

This follows by 6.10 asD is dense in S and as the convolution with a tempered distribution
is a continuous operation on S.

Theorem 12.19. Let u ∈ S ′ and v ∈ E ′. Then u ∗ v = v ∗ u and

F(u ∗ v) = v̂û.

Proof. That u ∗ v = v ∗ u follows by Theorem 6.12 because D is dense in S.
For ϕ ∈ S we have

〈F(u ∗ v), ϕ〉 = 〈u ∗ v, ϕ̂〉 = u ∗ v ∗ ˇ̂ϕ(0) = 〈u, (v ∗ ˇ̂ϕ)̌ 〉.

Now v ∗ ˇ̂ϕ = F−1(F(v ∗ ˇ̂ϕ)) = F−1(v̂ϕ)) = [F(v̂ϕ))]̌ , therefore

〈u, (v ∗ ˇ̂ϕ)̌ 〉 = 〈u,F(v̂ϕ)〉 = 〈û, v̂ϕ〉 = 〈v̂û, ϕ〉.
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13 Fourier multipliers
We will now turn to the definition of a Fourier multiplier. The idea is that we multiply
on the level of the Fourier transform. Formally, if σ is a function and u a tempered
distribution we will define σ(D)u by F−1(σû). We will consider different conditions for
which this formula makes sense.

Definition 13.1 (Fourier multiplier). For σ ∈ C∞p we define σ(D) : S ′ → S ′ by

σ(D)u = F−1(σû) (u ∈ S ′),

and call the function or operation σ(D) a Fourier multiplier.

Example 13.2. By Theorem 11.26 we have ∂βu = σ(D)u for σ = (2πiξ)β and Tyu =
σ(D)u for σ = e−2πi〈ξ,y〉, i.e.,

∂βu = (2πiξ)β(D)u, Tyu = e−2πi〈ξ,y〉(D)u (β ∈ Nd0, y ∈ Rd). (79)

By the commutativity of multiplication, we obtain that also Fourier multipliers com-
mute. Moreover, if F−1(σ) is compactly supported, then the Fourier multiplier of σ equal
convolution with F−1(σ):

Lemma 13.3. Let σ, τ ∈ C∞p . Then

τ(D)σ(D)u = (στ)(D)u = σ(D)τ(D)u (u ∈ S ′).

Consequently, Fourier multiplier commute with partial differential operators with constant
coefficients and with translations. Moreover,

σ(D)(lλu) = [(σ ◦ lλ)(D)u] ◦ lλ (u ∈ S ′, λ > 0). (80)

If σ ∈ S or if σ ∈ C∞p is such that σ̂ ∈ E ′, or equivalently, if σ can be extended to an
entire function on Cd, then

σ(D)u = F−1(σû) = F−1(σ) ∗ u (u ∈ S ′).

Exercise 13.1. Prove (80).

We extend the notation of a Fourier multiplier in case σ is only smooth on set that
contains the support of û.

Exercise 13.2. Let ψ be a mollifier function and F be a closed set. Show that ψε ∗1F
is a smooth function and that all derivatives are bounded, i.e., ψε ∗ 1F ∈ C∞b .

13.4. Let F be a closed set in Rd and suppose that σ : Rd → F is smooth and of at
most polynomial growth on F3δ for some δ > 0 (the latter means that σ1U is of at most
polynomial growth).
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Let χ, ψ ∈ C∞p be smooth functions Rd → [0, 1] that equal 1 on Fδ and 0 outside F2δ
(that such functions exist follows for example by 5.12, see for the properties Exercise 13.2).
Then σχ and σψ are in C∞p .

Suppose that u ∈ D′ and suppu ⊂ F . Then we know that σχu = σψu by Exercise 3.2.
Therefore we can define the multiplication of u with σ to be equal to σχu, as this is
independent of the choice of χ.

We use this to define the Fourier multiplier of σ by being the Fourier multiplier of
σχ:

Definition 13.5. Let F ⊂ Rd be closed and σ : Rd → F be smooth on F ◦3δ for some
δ > 0. Let χ be a smooth function that equals 1 on Fδ and equals 0 outside F2δ. We
define the Fourier multiplier

σ(D) : {u ∈ S ′ : supp û ⊂ F} → {u ∈ S ′ : supp û ⊂ F}, σ(D)u := F−1(σχû),

so that σ(D)u = (σχ)(D)u for all u ∈ S ′ with supp û ⊂ F .
If σ instead is a smooth function that is only defined on F ◦3δ, we can define the Fourier

multiplier in an analogues way as it does not matter how σ is defined outside F ◦3δ.

We will show that the so-called Bessel potentials are examples of Fourier multipliers
in 13.8. Moreover, we show that the fractional Laplacian is an example of a Fourier
multiplier in the sense of Definition 13.5, in 13.9.

But first we give some other examples of Fourier multipliers, or that can be interpreted
as Fourier multipliers.

13.6 (*Other Fourier multipliers). There are some other operations that we could
consider to be Fourier multipliers.
(a) Let u ∈ S ′ and v ∈ E ′. We have seen that v̂ ∈ C∞p and therefore v̂u and thus
F−1(v̂u) defines a tempered distribution (as we always wrote multiplication of
distributions u by functions f as fu, we write v̂u and not uv̂). We could also write
u(D) for the function E ′ → S ′ given by u(D)v = F−1(v̂u). Observe that as F−1(u)
is a tempered distribution, by Theorem 12.19 we have

F−1(v̂u) = F−1(u) ∗ v. (81)

Example. Observe that convolution is a special case of such Fourier multiplier as
u ∗ v = F−1(ûv̂) = v(D)û.

(b) Consider u ∈ Lp and σ ∈ L1 with σ̂ ∈ L1. By Young’s inequality we know that the
convolution of an L1 function with a Lp function is again an Lp function, so that
F−1(σ)∗u ∈ Lp. As u also represents a tempered distribution, û is also a tempered
distribution. We can also argue that taking the convolution with F−1(σ) can be
seen as a Fourier multiplier. However, a priori the multiplication of σ with û is not
defined as a (tempered) distribution, as σ need not be smooth. However, let us
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argue that the identity still makes sense in this case. By Corollary 3.5, equation
(17) and Theorem 12.1

〈F−1(σ) ∗ u, ϕ〉 = 〈u,F(σ) ∗ ϕ〉 = 〈u,F(σF−1(ϕ))〉.

Therefore we could also define

σ(D) : Lp → Lp, σ(D)u := F−1(σ) ∗ u.

13.7. Observe that the Fourier multiplier definition in 13.6 (a) does not allow –in general–
for composition of Fourier multipliers, as u(D)v may not be compactly supported. For
example, if w would be also tempered, the composition of Fourier multipliers w(D)u(D)v
would equal be F−1(v̂uw), but then one would need to make sense of uw.

13.8 (Bessel potentials). Let us consider the following partial differential equation for
a given g ∈ S ′:

(1−∆)u = g.

We can write (1−∆) as a Fourier multiplier (by for example (79)), namely (1−∆) = σ(D),
for

σ(ξ) = (1 + 4π2|ξ|2) (ξ ∈ Rd).

As this function is strictly positive, we can divide by it: We define τ : Rd → R by

τ(ξ) = (1 + 4π2|ξ|2)−1 (ξ ∈ Rd).

It is not too difficult to show that τ ∈ C∞p . As τσ = 1,

u = F−1(τσû) = τ(D)σ(D)u = τ(D)(1−∆)u = τ(D)g.

So we could view τ(D) as the inverse of the operator (1−∆).
With the use of the Fourier multiplier, one defines the operator (1−∆)s for s ∈ R by

(1−∆)su = σs(D)u, (82)

where σs(ξ) = (σ(ξ))s for ξ ∈ Rd (observe that with this notation σ−s = τ s). Even
though for s < d the function τ s is not integrable on Rd, the Fourier inverse of it as
a tempered distribution is represented by a function that is smooth on Rd \ {0}. The
function (on Rd \ {0}) F−1(τ s) is also called a Bessel potential. For more on Bessel
potentials we refer to [31, Section 7.7], [9, Section 4.3] and [12, Section 6.1.2]. In the
last reference, not the function F−1(τ s) but the operator (1 − ∆)−s is called a Bessel
potential. We come back to Bessel potentials in 13.13 and 13.15.
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13.9 (Fractional Laplacian). As σ and τ in 13.8 are in C∞p , the Fourier multipliers
σ(D) and τ(D) are defined on the whole of S ′. Let us give an example of a Fourier
multiplier in the sense of Definition 13.5. For s ∈ R the function σs : Rd \ {0} → R given
by

σs(ξ) = |2πξ|2s, (ξ ∈ Rd \ {0})

is in C∞p (Rd \ {0}). For k ∈ N that the operator ∆k equals the Fourier multiplier σ2k(D)
(where σ2k can actually be viewed as a smooth function on the whole of Rd). Let s ∈ R.
We define the fractional Laplacian for u ∈ S ′ with supp û ⊂ Rd \ B(0, δ) for some δ > 0
by

(−∆)su = σs(D)u.

In the rest of this section we get back to Sobolev spaces and describe them in terms
of Fourier transforms and Fourier multipliers.

13.10 (Sobolev spaces described by their Fourier transforms). In Theorem 8.11
we have seen that Hk, being the Sobolev space given by

Hk = W k,2 = {u ∈ D′ : ∂βu ∈ L2(Ω) for all β ∈ Nd0 with |β| ≤ k}.

is a Hilbert space with norm

‖u‖Hk =
( ∑
α∈Nd0:|α|≤k

‖∂αu‖2L2

) 1
2 (u, v ∈ Hk).

It turns out that Hk be described using Fourier transforms (see Exercise 13.3) , as follows

Hk = {u ∈ S ′ : (1 + |ξ|)kû ∈ L2}, (83)

moreover, the norm is equivalent to u 7→ ‖(1 + |ξ|)kû‖L2 , which means there exists a
C > 1 such that

1
C
‖u‖Hk ≤ ‖(1 + |ξ|)kû‖L2 ≤ C‖u‖Hk (u ∈ Hk). (84)

To prove (83) the Multinomial theorem might be beneficial.

Theorem 13.11 (Multinomial theorem). For x = (x1, . . . , xd) ∈ Fd and k ∈ N

(x1 + · · ·+ xd)k =
∑

α∈Nd0:|α|=k

(
k

α

)
xα, (85)

where with α! = α1!α2! · · ·αd!,(
k

α

)
= k!
α! = k!

α1!α2! · · ·αd!
.
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Proof. This follows by induction on the induction. For d = 1 the formula is trivial for all
k ∈ N. For d = 2 it is the usual binomial formula. Suppose (85) holds for a fixed d ∈ N
and for any k ∈ N. Then for y = x1 + · · ·+ xd and z = (x1, . . . , xd) we have

(y + xd+1)k =
∑

m∈N0:m≤k

(
k

m

)
ymxk−md+1

=
∑

m∈N0:m≤k

(
k

m

) ∑
α∈Nd0:|α|=k

(
m

α

)
zαxk−md+1 ,

as for β = (α1, . . . , αd, k −m) we have |β| = k and(
k

m

)(
m

α

)
= k!

(k −m)!m!
m!

α1! · · ·αd!
=
(
k

β

)
,

it follows that (85) is valid also for for d+ 1.

Exercise 13.3. Show that (83) holds and show the existence of a C > 1 such that (84)
holds.

The above equivalence of norms lets us extend the notation of Hk spaces to non-
integer values of k, as follows.

Definition 13.12. For s ∈ R \ N0 we define the fractional Sobolev space Hs by

Hs = {u ∈ S ′ : (1 + |ξ|)sû ∈ L2}, (86)

and define a norm on Hs by

‖u‖Hs = ‖(1 + |ξ|)sû‖L2 (u ∈ Hs).

13.13. As

1√
2

(1 + |ξ|) ≤ (1 + |ξ|2)
1
2 ≤ (1 + |ξ|) (ξ ∈ Rd),

also the norms u 7→ ‖(1 + |ξ|)sû‖L2 and u 7→ ‖(1 + |ξ|2)
s
2 û‖L2 are equivalent. Therefore,

by by Plancherels equality and by the definition of (1−∆)s as in (82) we have that ‖·‖Hs

is equivalent to u 7→ ‖(1−∆)
s
2u‖L2 .

Example 13.14. We have already seen that δ̂ = 1. As (1 + |ξ|)s is in L2 if and only if
2s < −d by Lemma 10.13, it follows that δ ∈ Hs if and only if s < −d

2 .

13.15 (Bessel potential spaces). We have only considered a generalisation for the
Sobolev space W k,p for p = 2 but for any p one can actually define fractional Sobolev
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spaces, or also called Bessel potential spaces. In [32, Section 1.2] for example, is shown
that (with the definition of (1−∆)

k
2 by (82))

W k,p = {f ∈ S ′ : (1−∆)
k
2 f ∈ Lp}, (87)

and that ‖ · ‖Wk,p is equivalent to

f 7→ ‖(1−∆)
k
2 f‖Lp . (88)

Similar to Definition 13.12 one defines the fractional Sobolev space Hs
p for s ∈ R by

replacing “k” in (87) by “s”:

Hs
p = {u ∈ S ′ : (1−∆)

s
2u ∈ Lp}, (89)

and define a norm on Hs
p by

‖u‖Hs
p

= ‖(1−∆)
s
2u‖Lp (u ∈ S ′).

Then Hk
p = W k,p and by Plancherel’s identity it follows that Hs

2 = Hs.

14 Bernstein and the Hörmander-Mikhlin inequalities
In this section we consider Fourier multipliers of tempered distributions of which their
Fourier transform has compact support, either in a ball or annulus. By Lemma 12.11 we
know that these tempered distributions are C∞p functions. We will prove the Bernstein
inequality and the Hörmander–Mikhlin inequality. In the next section we will define
Besov spaces by the Littlewood–Paley decomposition. In 10.6 (f) we have seen that
a tempered distribution u can be written as the sum over χnu, where χn is a certain
partition of unity. The Littlewood–Paley decomposition happens on the level of Fourier
transform, one decomposes a tempered distribution u to be the sum over χn(D)u for
a certain partition of unity χn of which each function is either supported in a ball or
annulus.

Definition 14.1 (Annulus). An annulus in Rd is a set of the form {x ∈ Rd : r ≤ |x| ≤
s}, for s, r ∈ R with 0 < r < s. We will write

A(r, s) = {x ∈ Rd : r ≤ |x| ≤ s},

and A◦(r, s) for its interior {x ∈ Rd : r < |x| < s}.

Before we turn to the Bernstein inequality, we prove how a tempered distribution
with Fourier support in an annulus can be described as a convolution of a function with
the k-th order derivatives of u.

Lemma 14.2. Let A be an annulus and B be a ball around the origin in Rd. Let χ ∈ C∞c
be equal to 1 on Bδ for some δ > 0. Let φ ∈ C∞c be supported in an annulus and be equal
to 1 on Aδ for some δ > 0. Let k ∈ N0.
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(a) If u is a tempered distribution with supp û ⊂ B, then for all α ∈ Nd0

∂αu = hα ∗ u,

where hα = ∂αF−1(χ).
(b) If u is a tempered distribution with supp û ⊂ A, then

u =
∑

α∈Nd0:|α|=k

gα ∗ ∂αu,

where

gα =
(
k

α

)
F−1

(
(−2πiξ)α|2πξ|−2kφ

)
.

(c) There exists a C > 0 such that for all r ∈ [1,∞]

‖hα‖Lr , ‖gα‖Lr ≤ Ck+1 (α ∈ Nd0, |α| = k).

Proof. (a) follows from the fact that û = χû.
For (b), as û is supported on an annulus, we can divide (and multiply) by |2πξ|2k.

By the multinormial theorem (see Theorem 13.11, take xi = |ξi|2 = (−iξi)(iξi)):

|2πξ|2k =
∑

α∈Nd0 : |α|=k

(
k

α

)
(−2πiξ)α(2πiξ)α (ξ ∈ Rd). (90)

With this we have by Lemma 13.3 and as (2πiξ)α(D) = ∂α,

u = 1(D)u =

∑α∈Nd0:|α|=k
(k
α

)
(−2πiξ)α(2πiξ)α

|2πξ|2k

 (D)u

=

∑α∈Nd0:|α|=k
(k
α

)
(−2πiξ)α

|2πξ|2k

 (D) ∂αu.

(c) By Corollary A.10, with C1 = 1 + ‖(1 + |x|2)−d‖L1 (which if finite by Lemma
10.13), we have for all f ∈ S

‖f‖Lr ≤ ‖f‖L1 + ‖f‖L∞ ≤ C1‖(1 + |x|2)df‖L∞ .

Let α ∈ Nd0, |α| = k. We first consider the bound for hα. As ‖f̂‖L∞ ≤ ‖f‖L1 , by (68) we
have

‖(1 + |x|2)dhα‖L∞ ≤ ‖(1−∆)d(2πiξ)αχ‖L1 .
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By the Multinomial theorem (Theorem 13.11) we have

(1−∆)d =
∑

β∈Nd+1
0 :|β|=d

(
d

β

)
d∏
i=1

(−∂2
i )βi .

As
∑
β∈Nd+1

0 :|β|=d
(d
β

)
≤ (d+ 1)d, for C2 being the Lebesgue measure of the support of χ,

‖(1−∆)d(2πiξ)αχ‖L1 ≤ C2(d+ 1)d‖(2πiξ)αχ‖C2d

and by Leibniz formula 5.3 there exists a C3 > 0 (only depending on d) such that

‖(2πiξ)αχ‖C2d ≤ C3‖(2πiξ)α‖C2d(suppχ)‖χ‖C2d .

As |α| = k, by applying Leibniz formula k times, for C4 > 0 given by

C4 = dmax
i=1
‖2πiξi‖C2d(suppχ),

we have

‖(2πiξ)α‖C2d(suppχ) ≤ Ck3Ck4 .

Therefore by choosing C > 0 large enough (for example C = C1 +C2(d+ 1)d +C3 +C4)
we obtain the bound for hα.

For gα the factor
(k
α

)
can be bounded by dk. The rest is very similar to hα: by

following the lines above with χ = |2πξ|−2kφ, we have

‖gα‖Lr ≤ dkCk+1‖|2πξ|−2kφ‖C2d .

By applying Leibniz formula again on the last term k times, we get another factor Mk

for M = ‖|2πξ|−2‖C2d(suppφ).

Now we will use the descriptions of u and ∂αu by the convolutions in Lemma 14.2
together with the Young’s inequality in Theorem 14.3.

Exercise 14.1. Show that for f ∈ Lp and λ > 0

‖lλf‖Lp = λ
− d
p ‖f‖Lp , (91)

where lλf(x) = f(λx) (as in 10.5).

Theorem 14.3 (Bernstein inequality). [2, Lemma 2.1] Let A be an annulus and B
be a ball around the origin in Rd. There exists a C > 0 such that for all k ∈ N and
p, q ∈ [1,∞] with q ≥ p and any u ∈ Lp we have for all λ > 0

supp û ⊂ λB =⇒ max
α∈Nd0:|α|=k

‖∂αu‖Lq ≤ Ck+1λk+d( 1
p
− 1
q

)‖u‖Lp , (92)

supp û ⊂ λA =⇒ C−k−1λk‖u‖Lp ≤ max
α∈Nd0:|α|=k

‖∂αu‖Lp ≤ Ck+1λk‖u‖Lp . (93)
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Proof. First we argue that we may restrict to the case λ = 1. Let C denote either A or
B. If supp û ⊂ λC, then supp v̂ ⊂ C for v = l 1

λ
u as v̂ = λdlλû. For the norms we have for

α ∈ Nd0 with |α| = k

‖v‖Lp = λ
d
p ‖u‖Lp , ‖∂αv‖Lq = λ−k‖l 1

λ
(∂αu)‖Lq = λ

−k+ d
q ‖∂αu‖Lq .

Hence, we may indeed assume λ = 1.
• Assume that supp û ⊂ B and hα be as in Lemma 14.2 (a), so that ∂αu = hα ∗ u.

Let r ∈ [1,∞] be such that 1
q + 1 = 1

r + 1
p . By Young’s inequality (Theorem 3.4) and

Lemma 14.2 (c) there exists a C > 0 such that

‖∂αu‖Lq ≤ ‖hα‖Lr‖u‖Lp ≤ Ck+1‖u‖Lp .

• The upper bound in (93) follows immediately from (92). Let gα be as in Lemma 14.2 (b).
By Young’s inequality

‖u‖Lp ≤
∑

α∈Nd0:|α|=k

‖gα‖L1‖∂αu‖Lp ≤
(

max
α∈Nd0:|α|=k

‖∂αu‖Lp
)( ∑

α∈Nd0:|α|=k

‖gα‖L1

)
.

So that the lower bound follows by Lemma 14.2 (c).

Exercise 14.2. Let u ∈ Ckb (see Definition 10.8) for some k ∈ N. Let ρ ∈ C∞c be
supported in an annulus A, so that ρλ := l 1

λ
ρ is supported in λA. Show that there exists

a C > 0 such that

‖ρλ(D)u‖L∞ ≤ Ck+1λ−k‖u‖Ck .

14.4 (Towards Besov spaces). As we see from Exercise 14.2, if a function has bounded
derivatives of a certain order, this implies a decay on the L∞ norm of the Fourier multi-
plier of a function ρλ that is supported in λA as λ→∞.

One could also say that by multiplying the Fourier transform û by ρλ, one takes the
frequencies of order λ. The bound then gives a control of the frequencies of this order.
In the theory of Besov spaces, this control on the frequencies is the behind describing the
regularity of a distribution. We will get back to this later. Observe that this agrees with
the fractional Sobolev space Hs introduced in Definition 13.12, in which we also obtain
the regularity s by describing a control on the frequencies of the distributions.

We will now turn to a lemma that describes the effect of certain Fourier multipliers
on Lp norms distributions with support in annuli or balls (Lemma 14.8). This will later
be used to describe the increase of decrease of regularity with respect to certain Fourier
multipliers.

Let us still first introduce some notation and auxiliary facts:
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14.5. Let us write l∗λ = λ−dl 1
λ
for λ > 0. The ∗ notation agrees with the fact that l∗λ is

the adjoint of lλ as an operator on L2, i.e.,

〈lλf, g〉L2 = 〈f, l∗λg〉L2 (f, g ∈ L2).

By Theorem 11.26 we know that for a distribution u ∈ S ′,

F(lλu) = l∗λû F(l∗λu) = lλû. (94)

Observe that by (91)

‖l∗λf‖L1 = ‖f‖L1 (λ > 0, f ∈ L1). (95)

Definition 14.6 (Mikhlin norm). Let m ∈ R and k = 2b1+ d
2c. For σ ∈ C

k(Rd \{0})
we define its Mikhlin norm of order m ∈ R by

Mm(σ) = max
α∈Nd0:|α|≤k

sup
x∈Rd\{0}

|x||α|−m|∂ασ(x)|.

Observe that Mm(σ) <∞ if and only if there exists a C > 0 such that

|∂ασ(x)| ≤ C|x|m−|α| (x ∈ Rd \ {0}, α ∈ Nd0, |α| ≤ k). (96)

In the case that the norm is finite one can of course take C = Mm(σ) in (96).

14.7. Observe that for m ≤ 0 and for σ ∈ S the Mikhlin norm Mm(σ) is finite as every
derivative decays faster than polynomially.

Moreover, observe that we have the following scaling relation

Mm(lλσ) = λmMm(σ) (σ ∈ Ck(Rd \ {0})). (97)

Exercise 14.3. Is the Mikhlin norm Mm(σ) also finite for all σ ∈ S and m > 0?

Lemma 14.8 (Hörmander-Mikhlin inequality). [2, Lemma 2.2] Let m ∈ R and k =
2b1 + d

2c.
(a) Let A be an annulus in Rd. There exists a C > 0 such that for all p ∈ [1,∞],

λ > 0, all σ ∈ C∞(Rd \ {0}) and all u ∈ Lp

supp û ⊂ λA =⇒ ‖σ(D)u‖Lp ≤ CMm(σ)λm‖u‖Lp . (98)

(b) Let B be a ball around the origin. There exists a constant C such that for all
p ∈ [1,∞], λ > 0, all σ ∈ C∞(Rd) and all u ∈ Lp

supp û ⊂ λB =⇒ ‖σ(D)u‖Lp ≤ CMm(σ)λm‖u‖Lp . (99)
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Proof. The proof of (a) and (b) are very similar. Without loss of generality we may
assume Mm(σ) < ∞. For (a) assume that φ ∈ C∞c is supported in an annulus be such
that φ = 1 on Aδ for some δ > 0 and for (b) assume that φ is instead supported in a ball
such that φ = 1 on Bδ.

Let λ > 0. Let u ∈ Lp be such that its Fourier transform is supported in λA. Then
û = (l 1

λ
φ)û and thus

σ(D)u = (σl 1
λ
φ)(D)u = F−1(σl 1

λ
φ) ∗ u.

By Young’s inequality we have ‖σ(D)u‖Lp ≤ ‖F−1(σl 1
λ
φ)‖L1‖u‖Lp . As by (94)

F−1(σl 1
λ
φ) = F−1(l 1

λ
(φlλσ)) = l∗1

λ
F−1(φlλσ),

by (95) it suffices to show that there exists a C > 0 such that

‖F−1(φlλσ)‖L1 ≤ CMm(σ)λm.

Observe that k
2 = b1 + d

2c is the smallest integer such that (1 + |x|2)−
k
2 is integrable.

We multiply and divide by this function to estimate the L1 norm by the integral of
(1 + |x|2)−

k
2 , for which we write M , and the supremum norm of the rest

‖F−1(φlλσ)‖L1 ≤M‖(1 + |x|2)
k
2F−1(φlλσ)‖L∞ .

With cα,β ∈ R being such that

(1− (2π)−2∆)
k
2 (fg) =

∑
α,β∈Nd0:|α|+|β|≤k

cα,β∂
αf · ∂βg,

we have by Theorem 11.5 and Theorem 11.26

‖(1 + |x|2)
k
2F−1(φlλσ)‖L∞ = ‖F−1((1− (2π)−2∆)

k
2 (φlλσ))‖L∞

≤
∑

α,β∈Nd0:|α|+|β|≤k

|cα,β| · ‖∂αφ · ∂βlλσ‖L1

≤
∑

α,β∈Nd0:|α|+|β|≤k

|cα,β| · ‖∂αφ‖L1 sup
ξ∈suppφ

|∂βlλσ(ξ)|.

We estimate the latter by

sup
ξ∈suppφ

|∂βlλσ(ξ)| = sup
ξ∈suppφ

λ|β||∂βσ(λξ)| ≤ sup
ξ∈suppφ

λ|β|Mm(σ)|λξ|m−|β|

≤ λmMm(σ) sup
ξ∈suppφ

|ξ|m−|β|.

Hence from the above estimates we conclude that there exists a C that only depends on
d, m, φ (which only depends on A or B) and k, such that (98) and (99) hold.
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Remark 14.9. We called Lemma 14.8 the Hörmander-Mikhlin inequality as it is strongly
related to what in literature is called the Hörmander–Mikhlin multiplier theorem, see [29]
for example, or [19] (in Russian) or [16] for the work of Mikhlin and Hörmander. As un-
fortunately happens with names from languages with different alphabets, we also found
instead of Mikhlin the names Michlin or Mihlin.

Their theorem dealt with the case m = 0. See for example also [17, Theorem 5.5.10]
(which looks again a bit different). We decided to call the norm the Mikhlin norm as
that seems to align with the literature and it seems that the Hörmander and Mikhlin
statements are slightly different.

Exercise 14.4. The upper bounds in the Bernstein inequalities can also be proved
using the Hörmander–Mikhlin inequalities, as follows. Prove that there exists an M > 0
such that for all k ∈ N and α ∈ Nd0 with |α| = k,

Mk((2πix)α) = Mk.

Conclude the upper bounds in (93) and (92) for q = p from the Hörmander-Mikhlin
inequality.

Let us regard the applicability of the Hörmander–Mikhlin inequality for the Fourier
multipliers we have considered in 13.8 and 13.9, namely (1 −∆)s and (−∆)s. For σ =
|2πx|s the Mikhlin norm of order s is finite (as we will see), but for (1 + |x|2)

s
2 it is not

for s and m being strictly positive, as the function at zero equals 0 but |x|m equals zero
for m > 0. However, if we apply the Fourier multiplier only to those u ∈ Lp that have the
support of their Fourier transform bounded away from zero, we can still obtain a bound
like (98). We state the exact statement in Lemma 14.12, after extending the notion of
the Mikhlin norm to a seminorm that only considers the space Rd without a ball at the
origin.

Definition 14.10 (Mikhlin seminorm). Let m ∈ R and k = 2b1 + d
2c. For σ ∈

Ck(Rd \ {0}) we define its Mikhlin seminorm of order m ∈ R on the complement of a
ball of radius θ by

Mm,θ(σ) = max
α∈Nd0:|α|≤k

sup
x∈Rd\B(0,θ)

|x||α|−m|∂ασ(x)|.

14.11. As for the Mikhlin norm, Mm,θ(σ) <∞ if and only if there exists a C > 0 such
that

|∂ασ(x)| ≤ C|x|m−|α| (x ∈ Rd \B(0, θ), α ∈ Nd0, |α| ≤ k). (100)

Moreover, as σ is smooth on Rd \ {0}, if Mm,θ(σ) is finite for some θ > 0, then it is finite
for all θ > 0.

Lemma 14.12 (Hörmander-Mikhlin inequality 2). Let m ∈ R, k = 2b1 + d
2c and

θ > 0. Let A be an annulus in Rd. There exist C > 0 and a > 0 such that for all
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p ∈ [1,∞], λ > θ, all σ ∈ C∞(Rd \ {0}) and all u ∈ Lp which Fourier transform is
supported in λA,

‖σ(D)u‖Lp ≤ CMm,aθ(σ)λm‖u‖Lp . (101)

Proof. Without loss of generality, we may assume that there exists a θ > 0 such that
Mm,θ(σ) < ∞ (so that this is actually finite for all θ). Let r, s ∈ (0,∞), r < s be such
that A = A(r, s). Let χ ∈ C∞p (Rd) be equal to 1 on Rd \ B(0, θ2r) and 0 on B(0, θ4r).
Then σ(D)u = (σχ)(D)u and by Leibniz formula there exists a C > 0 such that

Mm(σχ) ≤ ‖χ‖CkMm, θr4
(σ).

Therefore (101) follows from Lemma 14.8 (a).

14.13. For σ ∈ Ck(Rd) there exists a θ > 0 such that Mm,θ(σ) <∞ if and only if

max
α∈Nd0:|α|≤k

sup
x∈Rd

(1 + |x|)|α|−m|∂ασ(x)| <∞,

(see Exercise 14.5) or equivalently, there exists a C > 0 such that for all α ∈ Nd0 with
|α| ≤ k

|∂ασ(x)| ≤ C(1 + |x|)m−|α| (x ∈ Rd).

Exercise 14.5. Prove the statement in 14.13.

Lemma 14.14. Let l ∈ R. For all x 6= 0

∂α|x|l =
{∑n

i=0Q
α
2i(x)|x|l−2(n+i) if |α| = 2n for some n ∈ N0,∑n

i=0Q
α
2i+1(x)|x|l−2(n+i+1) if |α| = 2n+ 1 for some n ∈ N0,

where Qαk (x) =
∑
β:|β|=k ck,α,βx

β for some ck,α,β ∈ R. Consequently,

Ml(|x|l) <∞.

Proof. First note that ∂xi |x|l = ∂xi(x2
1 + · · · + x2

d)
l
2 = l|x|l−2xi for all l ∈ R. Moreover,

for all multi-indices β we have

∂xix
β|x|l =

{
(βi − 1)xβ−ei |x|l + lxβ+ei |x|l−2 if βi ≥ 1,
lxβ+ei |x|l−2 if βi = 0,

This argument can be used to proof the statement by induction.

Lemma 14.15. Let m ∈ R and l ∈ N. Then

Mlm,1((1 + |x|l)m) <∞.
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Proof. Let α ∈ Nd0. We will use Theorem D.1. Let g(y) = (1 + y)m for y ∈ (0,∞). Then
for k ∈ N

Dk g(y) =
{

(1 + y)m−k k /∈ {m+ n : n ∈ N},
0 ≤ (1 + y)m−k k ∈ {m+ n : n ∈ N}.

On the other hand, by Lemma 14.14 we have for all β ∈ Nd0 that there exists a cβ ≥ 0
such that Dβ |x|l = cβ|x|l−|β|. Hence if 1 ≤ k ≤ |α| and b ∈ (Nd)k \ {0}, b1 + · · ·+ bk = α
then ∣∣∣∣∣

k∏
i=1

Dbi |x|l
∣∣∣∣∣ ≤ |x|lk−|α|

And so
∣∣∣Dk g(|x|l)

∏k
i=1 Dbi |x|l

∣∣∣ ≤ (1 + |x|l)m−k|x|lk−|α| for all k with 1 ≤ k ≤ |α| and all
x. Let θ > 0. Then there exists a C > 0 such that for all k with 1 ≤ k ≤ |α|:

(1 + |x|l)m−k ≤ C|x|lm−lk (x : |x| > θ).

Hence with Theorem D.1

|∂ασ(x)| ≤
|α|∑
k=1

∣∣∣∣∣Dk g(|x|l)
k∏
i=1

∂bi |x|l
∣∣∣∣∣ ≤ |α|C|x|lm−|α| (x : |x| > θ).

Remark 14.16. In [2, Lemma 2.2], the σ is not assumed to be infinitely differentiable,
but have k-th order derivatives. However, in that case one has to justify the formula
σ(D)u = F−1(σû). For u ∈ Lp -to me- it is not clear whether û (with compact support)
is such that one can make sense of σû as a tempered distribution. If û is given by a Radon
measure (or of order 0), then σû would be again a Radon measure and with compact
support, therefore a tempered distribution. Observe that 1 ∈ L∞ and that 1̂ is not
represented by a function but by δ0.

15 Besov spaces defined by Littlewood–Paley decomposi-
tions

We write “N−1” for the set {−1, 0, 1, 2, . . . }. Next we introduce the notion of a dyadic
partition of unity, which consists of one function that is supported in a ball and equals
1 on a smaller ball around zero and of functions that are supported in annuli which are
scaled versions of each other.

Remember that a function f : Rd → F is called radial if that f(x) = f(y) for all
x, y ∈ Rd with |x| = |y|.

Definition 15.1. Let B be a ball around zero and A be an annulus. Let χ and ρ be C∞
radial functions with values in [0, 1], χ supported in B and ρ supported in A. We say
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that (χ, ρ) forms a dyadic partition of unity if for ρ−1 := χ and ρj := ρ(2−j ·) = l2−jρ we
have ∑

j∈N−1

ρj(ξ) = 1, 1
2 ≤

∑
j∈N−1

ρj(ξ)2 ≤ 1 (ξ ∈ Rd), (102)

|i− j| ≥ 2 =⇒ supp ρi ∩ supp ρj = ∅ (i, j ∈ N0). (103)

(ρj)j∈N−1 will also be called a dyadic partition of unity.

15.2. Next, we show the existence of a dyadic partition of unity. For this we take the
annulus A = A(3

4 ,
8
3) so that (103) follows directly from the fact that supp ρi ⊂ 2iA.

Indeed, if k ∈ N0 and 2kA ∩A 6= ∅, then 8
3 · ≥ 2k 3

4 , i.e.,

2k ≤ 25

32 < 22, which implies k ≤ 1.

Therefore

|i− j| ≥ 2 =⇒ 2iA ∩ 2jA = ∅ (i, j ∈ Z). (104)

Theorem 15.3. [2, Proposition 2.10] There exist C∞ radial functions χ and ρ such that
(χ, ρ) forms a dyadic partition of unity, where χ has support in the ball B = B(0, 4

3) and
ρ has support in the annulus A = A(3

4 ,
8
3). Moreover,

∑
j∈Z

ρ(2−jx) = 1, 1
2 ≤

∑
j∈Z

ρ(2−jx)2 ≤ 1 (x ∈ Rd \ {0}). (105)

Proof. Let a ∈ (1, 4
3) and C = A( 1

a , 2a). Then, as ( 1
a , 2a) ⊃ [1, 2], we have⋃

j∈Z
2jC = Rd \ {0}, (106)

Let θ be a smooth radial function supported in A that equals 1 on Cδ for some δ > 0. By
(104) for each ξ ∈ Rd \ {0} there exists an ε > 0 such that θ(2−j ·) is nonzero on B(ξ, ε)
only for finitely many j ∈ Z. Therefore the function S : Rd → R defined by

S(ξ) =
∑
j∈Z

θ(2−jξ) (ξ ∈ Rd),

is smooth. As θ(2−j ·) is one on 2jC for all j ∈ Z, by (106) it follow that S(ξ) > 0 for
ξ ∈ Rd \ {0}. We define the functions χ, ρ : Rd → R by

ρ(ξ) = θ(ξ)
S(ξ) , χ(ξ) = 1−

∑
j∈N0

ρ(2−jξ) (ξ ∈ Rd).
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Then ρ and χ are radial functions because both θ and S are. Moreover, they are smooth,
as θ is smooth and S is smooth on Rd \ {0}. For ξ ∈ Rd \ {0} we have

∑
j∈Z ρ(2−jξ) =

S(ξ)
S(ξ) = 1. As supp θ(2j ·) ⊂ B(0, 4

3) for j ∈ N, it follows that

suppχ ⊂ B(0, 4
3),

∑
j∈N0

ρ(2−jξ) = 1 (ξ ∈ Rd \B(0, 4
3)),

and in particular
∑
j∈N−1 ρj = 1 with the notation for ρj as in Definition 15.1.

We are left to show that 1
2 ≤

∑
j∈Z ρ(2−jξ)2 for all ξ ∈ Rd\{0} and 1

2 ≤
∑
j∈N−1 ρj(ξ)

2

for ξ ∈ Rd. Let us write Σodd =
∑
j∈2Z+1 ρ(2−j ·) and Σeven =

∑
j∈2Z ρ(2−j ·). As

the functions ρ(2−j ·) for j being odd have disjoint support by (104), we have Σ2
odd =∑

j∈2Z+1 ρ(2−j ·)2. Similarly, Σ2
even =

∑
j∈2Z ρ(2−j ·)2. Therefore, for ξ ∈ Rd \ {0},

1 = (Σodd(ξ) + Σeven(ξ))2 ≤ 2(Σ2
odd(ξ) + Σ2

even(ξ)) = 2
∑
j∈Z

ρ(2−jξ)2.

15.4. As we have seen in the proof, to form a dyadic partition of unity it is sufficient to
consider only a function supported on an annulus with certain properties. In the sense
that such function also can be said to “form a dyadic partition of unity”. In other words,
a dyadic partition of unity (ρj)j∈N−1 is generated by ρ0, as ρj = ρ0(2−j ·) for j ∈ N0 and
ρ−1 = 1−

∑
j∈N0 ρ0(2−j ·).

Lemma 15.5. Let (ρj)j∈N−1 be a dyadic partition of unity. Let χ = ρ−1, ρ = ρ0 and
write ∆j = ρj(D). Then

f ∈ S =⇒ ∆jf ∈ S, u ∈ S ′ =⇒ ∆ju ∈ S ′, u ∈ Lp =⇒ ∆ju ∈ Lp (j ∈ N−1),

and

χ(2−J ·) =
J−1∑
j=−1

ρj (J ∈ N0), (107)

∑
j∈N−1

∆jf = f in S (f ∈ S), (108)

∑
j∈N−1

∆ju = u in S ′ (u ∈ S ′), (109)

‖∆jf‖Lp ≤ ‖F−1(ρ)‖L1‖f‖Lp (j ∈ N0, f ∈ Lp), (110)∥∥∥∥∥∥
J∑

j=−1
∆jf

∥∥∥∥∥∥
Lp

≤ ‖F−1(χ)‖L1‖f‖Lp (J ∈ N−1, f ∈ Lp). (111)

Exercise 15.1. Prove Lemma 15.5. (Hint: Use 10.6 (e).)

81



15.6 (The notation “
∑
j∈N−1”). Let uj ∈ S ′ for j ∈ N−1. We write

u =
∑
j∈N−1

uj

to denote that u is the limit of the series independent of its reordering, which means that
for each bijection q : N−1 → N−1 we have

u = lim
J→∞

J∑
j=1

uq(j). (112)

This will however not be of any importance, so one may as well interpret it as
∑∞
j=1 uj .

(Hint: Use 10.6 (f), to prove the condition observe that

sup
N∈N
‖

N∑
n=1

ρq(n)‖Ck ≤ sup
N∈N

∥∥∥∥ ∑
j∈2N0−1

j∈{q(n):n∈{1,...,N}}

ρj

∥∥∥∥
Ck

+ sup
N∈N

∥∥∥∥ ∑
j∈2N0

j∈{q(n):n∈{1,...,N}}

ρj

∥∥∥∥
Ck

≤ sup
j∈2N0−1

‖ρj‖Ck + sup
j∈2N0

‖ρj‖Ck ≤ 2 sup
j∈N−1

‖ρj‖Ck ,

where we used that ‖f + g‖Ck = ‖f‖Ck ∨ ‖g‖Ck for f and g with disjoint support. )
In these lecture notes we interpret for example ‖u‖Lp for u ∈ S ′ that is not represented

by a Lp function to be equal to infinity.

Definition 15.7 (Besov Space). [2, Definition 2.68] Let α ∈ R and p, q ∈ [1,∞]. Let
(ρj)j∈N−1 be a dyadic partition of unity. We write ρ = ρ0 and ∆j = ρj(D). ∆j is also
called a Littlewood-Paley block. We define the nonhomogeneous Besov space Bα

p,q[ρ] to be
the space of all tempered distributions u such that

‖u‖Bαp,q [ρ] :=
∥∥∥∥(2jα‖∆ju‖Lp

)
j∈N−1

∥∥∥∥
`q
<∞. (113)

Here we wrote “‖ · ‖`q” as an abbreviation for “‖ · ‖`q(N−1)”. The parameter α can be
interpreted as a “regularity parameter”. See for example Exercise 15.2 for the implication
that “being of a certain regularity” implies “being also of lower regularity”.

We will drop the notation “[ρ]” later, as the space does not depend on the (choice of)
dyadic partition of unity, this follows from Theorem 15.9: we mention this in 15.11.

Exercise 15.2. Let p, q ∈ [1,∞], α, β ∈ R. Show that Bα
p,q[ρ] ⊂ Bβ

p,q[ρ] for β < α and
Bα
p,∞[ρ] ⊂ Bα−ε

p,q [ρ] for ε > 0.

In the proof of Theorem 15.9 we use Young’s inequality for `p spaces:

Theorem 15.8 (Young’s inequality for `p spaces). Let p, q, r ∈ [1,∞] be such that
1
p + 1

q = 1 + 1
r .

For f ∈ `p(Z), g ∈ `q(Z) we have f ∗ g ∈ `r(Z) and

‖f ∗ g‖`r ≤ ‖f‖`p‖g‖`q .
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Proof. Follows in the same way as Theorem 3.4 but with applying Hölder’s inequality
to the sequence spaces `p(Z), which means the underlying measure space is Z equipped
with the counting measure.

Theorem 15.9. Let α ∈ R and p, q ∈ [1,∞]. Let B be a ball around zero and A be an
annulus.
(a) There exist C > 0 such that for all dyadic partitions of unity (ρj)j∈N−1 and

(σj)j∈N−1 with supp ρ−1, suppσ−1 ⊂ B and supp ρ0, suppσ0 ⊂ A, and for all u ∈ S ′∥∥∥∥(2jα‖ρj(D)u‖Lp
)
j∈N−1

∥∥∥∥
`q
≤ C

∥∥∥∥(2jα‖σj(D)u‖Lp
)
j∈N−1

∥∥∥∥
`q
.

(b) Then there exist C > 0 and m ∈ N0 such that for all sequences of smooth functions
(uj)j∈N−1 with

supp û−1 ⊂ B, supp ûj ⊂ 2jA for j ≥ 0,
∥∥∥∥(2jα‖uj‖Lp

)
j∈N−1

∥∥∥∥
`q
<∞,

u :=
∑
j∈N−1 uj exists in S ′,

|〈u, ϕ〉| ≤ C
∥∥∥∥(2jα‖uj‖Lp

)
j∈N−1

∥∥∥∥
`q
‖ϕ‖m,S (ϕ ∈ S), (114)

and for all dyadic partitions of unity (ρj)j∈N−1∥∥∥∥(2jα‖ρj(D)u‖Lp
)
j∈N−1

∥∥∥∥
`q
≤ C

∥∥∥∥(2jα‖uj‖Lp
)
j∈N−1

∥∥∥∥
`q
. (115)

(c) If α > 0, then there exist C > 0 and m ∈ N0 such that for all sequences of smooth
functions (uj)j∈N−1 with

supp ûj ⊂ 2jB for all j ∈ N−1,

∥∥∥∥(2jα‖uj‖Lp
)
j∈N−1

∥∥∥∥
`q
<∞. (116)

one has that u :=
∑
j∈N−1 uj exists in S

′, (114) holds and (115) holds for all dyadic
partitions of unity (ρj)j∈N−1.

(d) If α = 0 and q = 1, then there exist C > 0 and m ∈ N0 such that for all sequences
of smooth functions (uj)j∈N−1 with (116) one has that u :=

∑
j∈N−1 uj exists in S

′,
(114) holds and for all dyadic partitions of unity (ρj)j∈N−1

sup
j∈N−1

‖ρj(D)u‖Lp ≤ C
∥∥∥(‖uj‖Lp)j∈N−1

∥∥∥
`1
. (117)

Proof. (a) follows from (b).
Let (uj)j∈N−1 be as in (b).
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• First we prove that for all bijections q : N−1 → N−1 the sum
∑J
j=−1 uq(j) con-

verges in S ′ as J → ∞ and prove (114). By Theorem 10.17 it suffices to prove that∑∞
j=−1 |〈uj , ϕ〉| <∞ for all ϕ ∈ S. Let ϕ ∈ S. Let k ∈ N0 be such that k > −α. For all

j ∈ N0 we have by Lemma 14.2

uj = 2−jk
∑

β∈Nd0:|β|=k

2jd(l2jgβ) ∗ ∂βuj .

And thus

〈uj , ϕ〉 = 2−jk(−1)k
∑

β∈Nd0:|β|=k

〈uj , 2jd(l2j ǧβ) ∗ ∂βϕ〉.

By Hölder’s and by Young’s inequality, with r ∈ [1,∞] such that 1
p + 1

r = 1,

|〈uj , ϕ〉| ≤ 2−jk‖uj‖Lp
∑

β∈Nd0:|β|=k

‖2jd(l2j ǧβ)‖L1‖∂βϕ‖Lr .

By Lemma 10.19 there is an n ∈ N and a C1 > 0 such that

‖∂βϕ‖Lr ≤ C1‖∂βϕ‖n,S ≤ C1‖ϕ‖n+k,S .

By (91) ‖2jd(l2j ǧβ)‖L1 = ‖gβ‖L1 . Therefore with

C2 =
∑

β∈Nd0:|β|=k

‖gβ‖L1 ,

we have for all j ∈ N0

|〈uj , ϕ〉| ≤ C1C22−jk‖uj‖Lp‖ϕ‖n+k,S

≤ C1C22−j(k+α)
∥∥∥∥(2jα‖uj‖Lp

)
j∈N−1

∥∥∥∥
`q
‖ϕ‖n+k,S .

We may assume that the above also holds for j = −1, as by a direct application of
Hölder’s inequality we have

|〈u−1, ϕ〉| ≤ ‖u−1‖Lp‖ϕ‖Lr ≤ C1‖u−1‖Lp‖ϕ‖n,S

≤ C12k+α
∥∥∥∥(2jα‖uj‖Lp

)
j∈N−1

∥∥∥∥
`q
‖ϕ‖n+k,S .

As k + α > 0, there exists a C > 0 such that (114) holds with m = n+ k.
• Let now (ρj)j∈N−1 be a dyadic partition of unity. We prove (115). Let B̃ be a ball

around zero and Ã be an annulus such that

supp ρ−1 ⊂ B̃, supp ρ0 ⊂ Ã. (118)
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Let N ∈ N be such that

2jA ∩ Ã = 2jA ∩ B̃ = 2jÃ ∩ A = 2jÃ ∩ B = ∅ (j ≥ N). (119)

We write ∆j = ρj(D). Then ∆jui = 0 for all i, j ∈ N−1 with |i − j| ≥ N . As 2(j−i)α ≤
2|α|N for i, j ∈ N−1 with |i−j| ≤ N , by (110) and (111) (for j = −1) there exists a C > 0
such that for all j ∈ N−1

2jα‖∆ju‖Lp ≤
j+N∑

i=(j−N)∨−1
2jα‖∆jui‖Lp ≤ C

j+N∑
i=(j−N)∨−1

2iα‖ui‖Lp

For k ∈ Z let ak = 1[−N,N ](k) and bk = 2kα‖uk‖Lp for k ∈ N−1 and bk = 0 otherwise.
Write a = (ak)k∈Z and b = (bk)k∈Z. Then

j+N∑
i=(j−N)∨−1

2iα‖ui‖Lp = (a ∗ b)j (j ∈ Z)

Therefore by Young’s inequality of Theorem 15.8,∥∥∥(2jα‖∆ju‖Lp)j∈N−1

∥∥∥
`q(N−1)

≤ C‖a ∗ b‖`q(Z) ≤ C‖a‖`1(Z)‖b‖`q(Z),

as ‖b‖`q(Z) =
∥∥∥(2jα‖uj‖Lp)j∈N−1

∥∥∥
`q(N−1)

and ‖a‖`1(Z) = 2N + 1 this finished the proof for
(b).

• Suppose that α > 0 and (uj)j∈N−1 is as in (c). By Hölder’s inequality we obtain

|〈uj , ϕ〉| ≤ ‖uj‖Lp‖ϕ‖Lq ≤ 2−jα
∥∥∥∥(2jα‖uj‖Lp

)
j∈N−1

∥∥∥∥
`q
‖ϕ‖Lq

which is summable as α > 0. (114) can be obtained in the same way as above.
Let N again be such that 2jÃ ∩B = ∅ for j ≥ N (as in (119)). Then ∆jui = 0 for all

j ≥ i+N and so by (110) and (111) there exists a C1 > 0 such that

2jα‖∆ju‖Lp ≤
∑

i∈N−1:i>j−N
2(j−i)α2iα‖∆jui‖Lp

≤ C1
∑

i∈N−1:i>j−N
2(j−i)α2iα‖ui‖Lp = C1(a ∗ b)(j),

where ak = 2kα1(−∞,N)(k) for k ∈ Z and bk = 2kα‖uk‖Lp for k ∈ N−1 and bk = 0
otherwise. So that again with Young’s inequality, we obtain the desired bound as

‖a‖`1 =
∑

k∈Z:k<N
2kα =

∑
k∈N0

2(N−1−k)α = 2(N−1)α

1− 2−α = 2Nα

2α − 1 .

• (d) follows again by applying Hölder’s inequality and the estimate ‖∆ju‖Lp ≤
∑
i∈N−1 ‖∆jui‖Lp .
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Remark 15.10. In general the inequality (115) only holds in this direction. E.g., let
u0 = −u1 6= 0 in Lp be supported in A∩ 2A and uj = 0 for j /∈ {0, 1}. For this example
the left-hand side of (115) is zero and the right-hand side is not.

15.11. Suppose ρ and σ form dyadic partitions of unity and that α ∈ R, p, q ∈ [1,∞].
By Theorem 15.9 (a) it follows that there exists a C > 0 such that

1
C
‖u‖Bαp,q [σ] ≤ ‖u‖Bαp,q [ρ] ≤ C‖u‖Bαp,q [σ] (u ∈ S ′).

Therefore Bα
p,q[ρ] = Bα

p,q[σ] and their norms are equivalent. For this reason we will write
“Bα

p,q” instead of “Bα
p,q[ρ]” and “‖ · ‖Bαp,q” instead of “‖ · ‖Bαp,q [ρ]”; of course the norm

depends on the choice of partition, but as our statements only consider estimates, the
choice of partition is irrelevant for our purposes.

For the rest of this section we fix (χ and) ρ and also the annulus A and ball B such
that supp ρ ⊂ A and suppχ ⊂ B.

In Theorem 15.15 we will show that Besov spaces are Banach spaces. Moreover, one
could say that they are sequentially compactly embedded in S ′. In other words, every
bounded sequence in a Besov space has a subsequence that converges in S ′ to an element
of that Besov space. Moreover, the norm of the limit is bounded from above by the lim inf
of the norm of the subsequence. This is similar to the statement in Fatou’s lemma, in [2]
they also call this the “Fatou property”.

We will first prove this sequentially compact embedding for Lp andM, after making
the following observation.

15.12. Let p ∈ (1,∞]. Then Lp is isometrically isomorphic to (Lq)′, the dual of Lq, for
q ∈ [1,∞) being such that 1

p + 1
q = 1. Moreover,

‖v‖Lp = sup{|〈v, f〉| : f ∈ Lq, ‖f‖Lq ≤ 1} (v ∈ Lp).

Let M the space of signed (F = R) or complex (F = C) Radon measures (see Defini-
tion H.6 and H.8), is the dual of C0, the space of continuous functions that vanish at
infinity (see Definition H.9). Moreover,

‖µ‖M = sup{|〈µ, f〉| : f ∈ C0, ‖f‖C0 ≤ 1} (µ ∈M).

Lemma 15.13. Let p ∈ (1,∞]. Let X be either the Banach space Lp or M. If (un)n∈N
is a sequence in X that is bounded in the X norm, then it has a subsequence (unm)m∈N
that converges in S ′ to an element u, which is also in X and

‖u‖X ≤ lim inf
m→∞

‖unm‖X. (120)

Proof. Let Y be either Y = Lq or Y = C0 (see 15.12), so that X is isometrically iso-
morphic to the dual of Y, Y′ and

‖u‖X = sup{|〈u, f〉| : f ∈ Y, ‖f‖Y ≤ 1} (u ∈ X). (121)
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In either case there exist k ∈ N and C > 0 such that ‖ · ‖Y ≤ C‖ · ‖k,S , see Lemma 10.19.
Let (un)n∈N be a sequence that is bounded in X. Without loss of generality we assume

‖un‖X ≤ 1 for all n ∈ N. Then

|〈un, ϕ〉| ≤ ‖un‖X‖ϕ‖Y ≤ C‖ϕ‖k,S (n ∈ N, ϕ ∈ S). (122)

Therefore, for each ϕ ∈ S the sequence (〈un, ϕ〉)n∈N is bounded in F and hence has a
convergent subsequence. Let D be a countable dense subset of S (see Theorem 10.10).
We may assume that D is a Q-linear space (first of all we may assume that QD = D, then
we can take the countable union of the countable sets D, D+D, D+D+D, . . . ). By a
Cantor’s diagonal method we find a subsequence (unm)m∈N such that 〈unm , ϕ〉 converges
as m→∞ for all ϕ ∈ D. We define u : D → F by

〈u, ϕ〉 = lim
m→∞

〈unm , ϕ〉 (ϕ ∈ D).

As each un is linear, u is Q-linear. By (122) we have

|〈u, ϕ〉| ≤ ‖ϕ‖Y ≤ C‖ϕ‖k,S ,

so that u extends continuously on the whole of S, as an element of S ′, and moreover,
also extends to an element of Y′ and thus to X. As S is dense in Y we may replace “Y”
in (121) by “S”, and obtain

‖u‖X = sup{lim inf
m→∞

|〈unm , ϕ〉| : ϕ ∈ S, ‖ϕ‖Y ≤ 1}

≤ sup{lim inf
m→∞

‖unm‖X‖ϕ‖Y : ϕ ∈ S, ‖ϕ‖Y ≤ 1}

≤ lim inf
m→∞

‖unm‖X.

Exercise 15.3. Show that the statement in Lemma 15.13 for p = 1 does not hold.

15.14. For p = 1, we still have the following: If (un)n∈N is a sequence in L1 that is
bounded in the L1 norm, and there exists a compact set K such that supp ûn ⊂ K for
all n ∈ N, then there exists a subsequence (unm)m∈N that converges in S ′ to an element
u, which is also in L1 and (120) holds for X = L1.

First of all, that the limit in S ′ is actually in L1 follows from the fact that it is a
(signed or) complex Radon measure by Lemma 15.13 and because supp û ⊂ K, so that
u ∈ C∞p (by Lemma 12.11). To obtain (120), it is sufficient to show that ‖f‖M = ‖f‖L1

for f ∈ L1.
There exists a sequence of functions (fn)n∈N in Cc(Rd, [0, 1]) such that fn(x)→ 1 for

those x such that u(x) > 0, fn(x) → 0 for those x such that u(x) = 0 and fn(x) → −1
for those x such that u(x) < 0. By Lebesgue’s dominated convergence theorem

〈u, fn〉 =
∫
ufn → ‖u‖L1 .
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Theorem 15.15. Let α ∈ R and p, q ∈ [1,∞]. The function ‖ · ‖Bαp,q : Bα
p,q → [0,∞)

defined as in (113) is a norm. Bα
p,q equipped with this norm is a Banach space that is

continuously embedded in S ′. Moreover, if (un)n∈N is a sequence in Bα
p,q that is bounded

in the Bα
p,q norm, then it has a subsequence (unm)m∈N that converges in S ′ to an element

u, which is also in Bα
p,q and

‖u‖Bαp,q ≤ lim inf
m→∞

‖unm‖Bαp,q .

Proof. By its definition it follows rather immediately that ‖ · ‖Bαp,q is a semi-norm. That
it is a norm follows from the following: If ‖u‖Bαp,q = 0, then ∆ju = 0 and so ρj û = 0 for
all j ∈ N−1, whence supp û = ∅ and so û = 0 and thus u = 0. That Bα

p,q is continuously
embedded in S ′ follows from (114) in Theorem 15.9. We will prove that Bα

p,q is complete
after proving the “Moreover” statement.

Let (un)n∈N be a sequence that is bounded in Bα
p,q. Without loss of generality we

may assume that ‖un‖Bαp,q ≤ 1 for all n ∈ N. Then

‖∆jun‖Lp ≤ 2−αj (n ∈ N, j ∈ N−1).

By applying Lemma 15.13 to (∆jun)n∈N for each j, and applying Cantor’s diagonal
argument, we find a subsequence (unm)m∈N of (un)n∈N such that there exist uj ∈ S ′ for
all j ∈ N−1 such that

∆junm
m→∞−−−−→ uj , ‖uj‖Lp ≤ lim inf

m→∞
‖∆junm‖Lp ≤ 2−αj (j ∈ N−1).

As the support of the Fourier transform of ∆jun is in the annulus 2jA (or ball B), so is
the support of ûj for j ∈ N0 (for j = −1).

By Theorem 15.9 (b) it follows that u :=
∑
j∈N−1 uj exists in S ′ and that there is a

C > 0 such that

‖u‖Bαp,q ≤ C
∥∥∥∥(2jα‖uj‖Lp

)
j∈N−1

∥∥∥∥
`q

≤ C
∥∥∥∥(2jα lim inf

m→∞
‖∆junm‖Lp

)
j∈N−1

∥∥∥∥
`q

≤ C lim inf
m→∞

∥∥∥∥(2jα‖∆junm‖Lp
)
j∈N−1

∥∥∥∥
`q

= C lim inf
m→∞

‖unm‖Bαp,q .

To prove that Bα
p,q is complete, we assume that the sequence (un)n∈N as above is also

Cauchy. Let u be the limit of the subsequence as above. It suffices to show that un → u
in Bα

p,q. Let ε > 0 and N ∈ N be such that m, k ≥ N implies ‖uk − um‖Bαp,q < ε. Let
k ≥ N . Apply the above limiting argument to the sequence (un − uk)n∈N, so that for
some sequence (nm)m∈N in N

‖u− uk‖Bαp,q ≤ C lim inf
m→∞

‖unm − uk‖Bαp,q < Cε.

Therefore, un → u in Bα
p,q.
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For a negative regularity index α the Besov norm is equivalent to the function that
replaces “∆j” in the norm by “

∑j
i=−1 ∆i”:

Theorem 15.16. [2, Theorem 2.33] Let α < 0 and p, q ∈ [1,∞]. For u ∈ S ′ we write
Sju =

∑j
i=−1 ∆iu for j ∈ N−1. Then we have for u ∈ S ′

u ∈ Bα
p,q ⇐⇒ ‖(2jα‖Sju‖Lp)j∈N−1‖`q <∞.

Moreover,

(1 + 2α)−1‖u‖Bαp,q ≤ ‖(2
jα‖Sju‖Lp)j∈N−1‖`q ≤ (1− 2α)−1‖u‖Bαp,q (u ∈ S ′). (123)

Proof. For the inequality on the left–hand side of (123):

2jα‖∆ju‖Lp ≤ 2jα(‖Sju‖Lp + 2α2(j−1)α‖Sj−1u‖Lp).

Therefore

‖u‖Bαp,q ≤ (1 + 2α)‖(2jα‖Sju‖Lp)j∈N−1‖`q .

For the inequality on the right hand side of (123):

2jα‖Sju‖Lp ≤ 2jα
j∑

i=−1
‖∆iu‖Lp =

j∑
i=−1

2(j−i)α2iα‖∆iu‖Lp = (a ∗ b)(j),

where a, b : Z→ R are given for j ∈ Z by

aj =
{

2jα j ∈ N0,

0 j ≤ −1,
bj =

{
2jα‖∆ju‖Lp j ∈ N−1,

0 j ≤ −2.

Hence, by Young’s inequality Theorem 15.8

‖(2jα‖Sju‖Lp)j∈N−1‖`q = ‖a ∗ b‖`q ≤ ‖a‖`1‖b‖`q = ‖a‖`1‖u‖Bαp,q .

As α < 0 we have ‖a‖`1 =
∑
j∈N0 2jα = (1− 2α)−1.

Example 15.17. We will consider in which Besov space the Dirac delta, δ0, lies. Note
that ∆iδ0 = F−1(ρi) so that for i ≥ 0 and p ∈ [1,∞) see (94) and Exercise 14.1

‖∆iδ0‖L∞ ≤ ‖ρi‖L1 = 2id‖ρ‖L1 ,

‖∆iδ0‖Lp = ‖F−1(ρi)‖Lp = 2−i(
d
p
−d)‖F−1ρ‖Lp .

Therefore, δ0 ∈ B
−d(1− 1

p
)

p,∞ and δ0 ∈ B
−d(1− 1

p
)−ε

p,q for all q ∈ [1,∞) and ε > 0.

Exercise 15.4. Show that for ε > 0 the function z 7→ δz is continuous in B−ε1,∞ but
that it is not continuous in B0

1,∞. Hint: Use (but show) that for any ϕ ∈ S \ {0} and
z ∈ Rd \ {0}, there exists an κ > 0 such that

lim sup
a→∞

‖Tazϕ− ϕ‖L1 > κ.
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16 Embeddings of Besov spaces and Sobolev spaces
The following lemma also justifies that one can view α as the regularity, as the regularity
decreases by the number of derivatives one takes.

Lemma 16.1. For all γ ∈ Nd0 there exists a C > 0 such that for all α, β ∈ R, p1, p2, q1, q2 ∈
[1,∞], with

p2 ≥ p1, q2 ≥ q1 β ≤ α− d( 1
p1
− 1

p2
), (124)

one has

‖∂γu‖
B
β−|γ|
p2,q2

≤ C‖u‖Bαp1,q1
(u ∈ S ′). (125)

In particular, Bα
p1,q1 is continuously embedded in Bβ

p2,q2.

Proof. This follows by Bernstein’s inequality, Lemma 14.3, as ∆j∂
γ = ∂γ∆j it implies

that there exists a C > 0 such that

‖∆j∂
γu‖Lp2 ≤ C2j(|γ|+d( 1

p1
− 1
p2

))‖∆ju‖Lp1 .

Therefore

‖∂γu‖
Bβp2,q2

≤ C‖u‖
B
β+|γ|+d( 1

p1
− 1
p2

)
p1,q2

(u ∈ S ′).

By monotonicity of the norm ‖ · ‖`q in q (see A.6) and by monotonicity of the norm
‖ · ‖Bαp,q in α (see Exercise 15.2) we obtain (125).

16.2. Observe that the third condition in 124 can be rewritten as

α− d

p1
≥ β − d

p2
or α+ d

p2
≥ β + d

p1
.

So given that u is an element of Bα
p1,q, one can obtain that u is also in a Besov space

with a larger parameter than p1 at the cost of a smaller regularity parameter than α.
An alternative presentation to (125) is

‖∂γu‖
B
α+ d

p2
−|γ|

p2,q2

≤ C‖u‖
B
α+ d

p1
p1,q1

(u ∈ B
α+ d

p1
p1,q1 ).

On the other hand, observe that one can always “increase” the second parameter q,
without the need to change the regularity parameter. The following lemma states that
one can also decrease the second parameter by paying the littlest amount of regularity.

Lemma 16.3. For all q1, q2 ∈ [1,∞] and ε > 0 there exists a C > 0 such that for all
α ∈ R and p ∈ [1,∞]

‖u‖Bα−εp,q2
≤ C‖u‖Bαp,q1

(u ∈ S ′), (126)

that is, Bα
p,q1 is continuously embedded in Bα−ε

p,q2 .
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Proof. If q1 ≤ q2, then this follows directly from Lemma 16.1 (even for ε = 0). Therefore
we assume q1 > q2. The case q1 = ∞ has already been treated in Exercise 15.2. Let
u ∈ Bα−ε

p,q2 and aj := ‖∆ju‖Lp . Then by Hölder’s inequality (observe that q2
q1

+ q1−q2
q1

= 1)

‖u‖Bα−εp,q2
= ‖(2j(α−ε)aj)j∈N−1‖`q2 =

 ∑
j∈N−1

2−jεq2(2jαaj)q2

 1
q2

≤

 ∑
j∈N−1

2−jε
q1q2
q1−q2


q1−q2
q1q2

 ∑
j∈N−1

(2jαaj)q1

 1
q1

= ‖(2−jε)j∈N−1‖ q1q2
q1−q2

‖(2jαaj)j∈N−1‖`q1 .

So that with C = ‖(2−jε)j∈N−1‖ q1q2
q1−q2

we have (126).

16.4. Let α ∈ R, p, q ∈ [1,∞]. Let us show that C∞c is a subset of Bα
p,q by using

Bernstein’s inequality. Let k ∈ N be such that k > α. By Bernstein’s inequality (The-
orem 14.3) and (110) there exist C1, C2 > 0 such that for all u ∈ S ′ and j ∈ N0

‖∆ju‖Lp ≤ Ck+1
1 2−kj max

β∈Nd0:|β|=k
‖∂β∆ju‖Lp

≤ Ck+1
1 C22−kj max

β∈Nd0:|β|=k
‖∂βu‖Lp .

As the Lp norm of ∆−1u is also bounded a multiple of ‖u‖Lp (see (111)), and as
(2(α−k)j)j∈N−1 is in `q, we obtain that there exists a C > 0 such that for all u ∈ S ′

‖u‖Bαp,q ≤ C
(
‖u‖Lp + max

β∈Nd0:|β|=k
‖∂βu‖Lp

)
(127)

≤ C| suppu|
1
p ‖u‖Ck , (128)

where | suppu| is the Lebesgue measure of suppu. By the above estimate, we in particular
obtain that D is sequentially continuously embedded in Bα

p,q: If ϕn → ϕ in D then ϕn → ϕ
in Bα

p,q. Moreover, as we can bound the right–hand side of (127) by the Sobolev norm,
we have also obtained part of the following theorem (by observing that k ≥ α is sufficient
for q =∞).

Theorem 16.5. Let α, β ∈ R, k ∈ N0 and p, q ∈ [1,∞]. If α < k < β, then

Bβ
p,q ⊂W k,p ⊂ Bα

p,q,

and there exists a C > 0 such that

1
C
‖ · ‖Bαp,q ≤ ‖ · ‖Wk,p ≤ C‖ · ‖Bβp,q . (129)
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Moreover,

Bk
p,1 ⊂W k,p ⊂ Bk

p,∞,

and there exists a C > 0 such that

1
C
‖ · ‖Bkp,∞ ≤ ‖ · ‖Wk,p ≤ C‖ · ‖Bkp,1 . (130)

Proof. By 16.4 we obtain thatWk,p is continuously embedded in Bα
p,q if k > α, and where

we may take k = α in case α ∈ N0 and q =∞.
Let us first consider k = 0 and show that Bβ

p,q is continuously embedded in Lp for
β > 0 or if (β, q) = (0, 1) (remember that W 0,p = Lp). By Hölder’s inequality (for `p
spaces: Corollary A.7), for r ∈ [1,∞] being such that 1 = 1

r + 1
q ,

‖u‖Lp ≤
∞∑

i=−1
2−βi2βi‖∆iu‖Lp ≤ ‖(2−βi)i∈N−1‖`r‖(2βi‖∆iu‖Lp)i∈N−1‖`q .

As β > 0 or (β, q) = (0, 1) (and thus r = ∞), we have M := ‖(2−βi)i∈N−1‖`r ∈ (0,∞).
For general k ∈ N0, by the above estimate and by Lemma 16.1 there exists a L > 0 such
that for all γ ∈ Nd0 with |γ| ≤ k

‖∂γu‖Lp ≤M‖∂γu‖Bβp,q ≤ LM‖u‖B|γ|+βp,q
≤ LM‖u‖

Bk+β
p,q

.

From this we conclude (129) and (130).

We have already seen that D is sequentially continuously embedded in Bα
p,q. In

Theorem 16.7 we will show that D is also dense in Bα
p,q in case p and q are both finite.

For this we will use the following lemma.

Lemma 16.6. [2, Lemma 2.73] Let α ∈ R and p, q ∈ [1,∞]. Suppose q < ∞. Then∑J
j=−1 ∆ju→ u in Bα

p,q as J →∞ for all u ∈ Bα
p,q.

Exercise 16.1. Prove Lemma 16.6.

Theorem 16.7. [2, Proposition 2.74] Let α ∈ R, k ∈ N0 and p, q ∈ [1,∞]. Suppose
p <∞ and q <∞. Then D is dense in Bα

p,q and sequentially continuously embedded and
D is dense in W k,p and sequentially continuously embedded.

Proof. That D is sequentially continuously embedded in Bα
p,q we have already seen in 16.4.

That it is also sequentially continuously embedded in W k,p follows by Theorem 16.5.
Let ε > 0 and u ∈ Bα

p,q. By Lemma 16.6 there exists a J ∈ N−1 such that for
uJ =

∑J
j=−1 ∆ju one has ‖uJ − u‖Bαp,q < ε. As the Fourier support of uJ is compact, uJ

is smooth (see Lemma 12.11). Therefore C∞ ∩ Bα
p,q is dense in Bα

p,q (for all α ∈ R) and
therefore by Theorem 16.5 C∞ ∩W k,p is dense in W k,p (for all k ∈ N0).
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Let θ ∈ C∞c be equal to 1 on B(0, 1) and have support in B(0, 2). Write θR = θ( 1
R ·).

As θRuJ ∈ C∞c for u ∈ C∞ we show

‖(θR − 1)uJ‖Bαp,q
R→∞−−−−→ 0 for u ∈ C∞ ∩Bα

p,q and α ∈ R, (131)

‖(θR − 1)uJ‖Wk,p
R→∞−−−−→ 0 for u ∈ C∞ ∩W k,p and k ∈ N0. (132)

By Theorem 16.5 (131) follows from (132). Let k ∈ N0 and u ∈ C∞ ∩W k,p. Then by
Leibniz rule (see 5.3) there exists a C > 0 such that

‖(θR − 1)uJ‖Wk,p ≤ C max
β∈Nd0:|β|≤k

max
γ∈Nd0:|γ|≤k

‖∂γ(θR − 1)∂βuJ‖Lp .

For all γ ∈ Nd0 the function ∂γ(θR − 1) converges pointwise to zero as R → ∞. As
this function is uniformly bounded in R and ∂βuJ ∈ Lp, which can be concluded from
Bernstein’s inequality, by Lebesgue’s dominated convergence theorem we obtain (132).

Let us show that D is not dense in case both p and q equal infinity.

16.8. We have seen that C∞c ⊂ Bα
p,q for all α ∈ R, p, q ∈ [1,∞]. Therefore, if ϕ ∈ C∞c ,

then for all α ∈ R and p ∈ [1,∞] there exists a C > 0 such that ‖∆jϕ‖Lp ≤ C2−αj for
all j ∈ N−1 and therefore

lim
j→∞

2αj‖∆jϕ‖Lp = 0. (133)

In particular, if q ∈ [1,∞] and ϕ is in the closure of D in Bα
p,q, then (133) holds.

Example 16.9 (D is not dense in B0
∞,∞, L∞ ( B0

∞,∞). Let d = 1 and (ρj)j∈N−1 be
a dyadic partition of unity. Let a > 0 be such that ρ0(a) = 1 and thus ρi(a2j) equals 1
if i = j and zero otherwise. Let v ∈ S ′ be given by

v = 1
2
∑
n∈N

δa2n + δ−a2n .

Then v = F v̂ and u := v̂ is given by

u =
∑
n∈N

cos(2πa2n·).

By assumption we have ∆ju = F−1(ρjv) = F−1(δa2j + δ−a2j ) = cos(2πa2j ·). Therefore
‖∆ju‖L∞ = 1 for all j ∈ N−1 and thus

‖u‖B0
∞,∞

= 1.

Therefore u cannot be in the closure of D, see 16.8.
Let us show that u is not locally integrable and therefore in particular not an element

of L∞. Let us consider the function w : R→ R given by

w(x) =
∑
n∈N

2−n cos(π2nx) (x ∈ R).
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Then in distributional sense, u is the derivative of 1
2πa l2aw. w is a Weierstrass function,

as Hardy showed, see [15]. This means that w is a continuous function that is nowhere
differentiable.

We will derive to a contradiction by assuming that u is locally integrable by the
use of Lebesgue’s differentiation theorem (Theorem 4.1). For notational convenience we
assume a = 1 (otherwise replace “u” by “l 1

2a
u” in the following). As we will show, w is the

indefinite integral of u, and therefore the mentioned theorem implies that w is almost
everywhere integrable, which clearly is a contradiction to the fact that it is nowhere
differentiable.

We show that w is the indefinite integral of u, that is∫ b

a
u = w(b)− w(a) (a, b ∈ R, a < b).

Let a, b ∈ R and a < b. Similar to the Heaviside function (see Exercise 3.7) in the
distributional sense we have that D1[a,b] = δa − δb. Let ψ be a mollifier. Then ψε ∗ 1[a,b]
converges almost everywhere to 1[a,b] by Theorem 4.3. As it is bounded, by Lebesgue’s
dominated convergence theorem we have∫ b

a
u = lim

ε↓0
〈u, ψε ∗ 1[a,b]〉 = lim

ε↓0
〈w′, ψε ∗ 1[a,b]〉

= − lim
ε↓0
〈w,ψε ∗D1[a,b]〉 = − lim

ε↓0
〈w,ψε ∗ (δa − δb)〉

= lim
ε↓0
〈w, Tbψε〉 − 〈w, Taψε〉 = lim

ε↓0
w ∗ (ψ̌)ε(b)− w ∗ (ψ̌)ε(a)

= w(b)− w(a),

where for the last equality we used that w is continuous and Theorem 4.3 (b).

Due to the following lemma we easily show in Theorem 16.11 that Bα
2,2 = Hα, where

Hα is as in Definition 13.12.

Lemma 16.10. For all α ∈ R there exists a C > 0 such that

22αjρj(ξ)2 ≤ C
(
1 + |ξ|2

)α
(j ∈ N−1, ξ ∈ Rd). (134)

Moreover, for all α ∈ R there exist c, C > 0 such that

c
(
1 + |ξ|2

)α
≤

∑
j∈N−1

22αjρj(ξ)2 ≤ C
(
1 + |ξ|2

)α
(ξ ∈ Rd). (135)

Proof. First we give the proof for α ≥ 0. Let a > 0 be such that B(0, a) ∩ supp ρ = ∅.
Then for j ∈ N0 we have

ρj(ξ)2 ≤
(

1 + |ξ|2

a222j

)α
(ξ ∈ Rd).
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Hence (134) follows as ρ−1 is bounded.
This also implies the upper bound in (135) as ρj(ξ) and ρi(ξ) are only both nonzero

if |i− j| ≤ 1 (by (103)).
By (102) and (103) it follows that⋃

j∈N−1

[ρ2
j ≥

1
4] = Rd,

where [ρ2
j ≥ 1

4 ] = {ξ ∈ Rd : ρ2
j (ξ) ≥ 1

4}. Let b > 2 be such that [ρ2
j ≥ 1

4 ] ⊂ B(0, 2jb) for
all j ∈ N−1. Then for ξ ∈ [ρ2

j ≥ 1
4 ] (note that as b ≥ 2 one has b2j ≥ 1 for all j ∈ N−1)

1
4

(
1 + |ξ|2

2b222j

)α
≤ 1

4

(
1 + b222j

2b222j

)α
≤ 1

4 ≤ ρj(ξ)
2,

so that the lower bound in (135) follows.
Now we give the proof for α < 0. Let b ≥ 2 be such that supp ρj ⊂ B(0, 2jb) for all

j ∈ N−1. As ρj ≤ 1 the bound in (134) follows as for ξ ∈ supp ρj ⊂ B(0, 2jb) one has
1 + |ξ|2 ≤ 2b222j . Let a > 0 be such that [ρ2

j ≥ 1
4 ] ⊂ B(0, 2ja)c for all j ∈ N0. Then for

ξ ∈ [ρ2
j ≥ 1

4 ]

1
4

(
a222j

1 + |ξ|2

)−α
≤ 1

4

(
a222j

1 + 22ja2

)−α
≤ 1

4 ≤ ρj(ξ)
2,

which implies the lower bound in (135).

Theorem 16.11. For all α ∈ R we have

Bα
2,2 = Hα,

with equivalent norms.

Proof. By the Plancherel formula (Theorem 11.21),

‖u‖2Bα2,2 =
∑
j∈N−1

22αj‖ρj(D)u‖2L2 =
∑
j∈N−1

22αj‖ρj û‖2L2

=
∫
Rd

∑
j∈N−1

22αj |ρj(ξ)|2|û(ξ)|2 dξ.

The rest follows from Lemma 16.10.

16.12. In particular, Theorem 16.11 implies L2 = B0
2,2. However, there do not exist

s ∈ R, p, q ∈ [1,∞] such that L1 = Bs
p,q, see Exercise 16.2

Exercise 16.2. Show that there do not exist s ∈ R, p, q ∈ [1,∞] such that L1 = Bs
p,q.

Hint: Use the property of Theorem 15.15 and Exercise 15.3.

Question 16.1. Is each tempered distribution in a Besov space? That is, does the
following equality hold?

S ′ =
⋃

p,q∈[1,∞]

⋃
s∈R

Bs
p,q.
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17 *Besov spaces related to other spaces*
In this section we give an overview of other spaces and embeddings between those and
Besov spaces.

Definition 17.1 (Hölder spaces). Let Ω be an open subset of Rd and k ∈ N0. We
write also Ck,0(Ω) for Ck(Ω). Let α ∈ (0, 1].

• A function f : Ω→ F is α-Hölder continuous if there exists a C > 0 such that

|f(x)− f(y)| ≤ C|x− y|α (x, y ∈ Ω). (136)

• C0,α(Ω) is defined to be the space of α-Hölder continuous functions Ω → F. The
Hölder coefficient of a function f is given by

|f |C0,α(Ω) = sup
x,y∈Ω:x 6=y

|f(x)− f(y)|
|x− y|α

.

• Ck,α(Ω) is defined to be the space of functions Ω→ F that are k-times continuously
differentiable for which their derivatives of order k are α-Hölder continuous.

We already defined Ckb(Ω) to be those elements of Ck(Ω) for which ‖ · ‖Ck is finite,
similarly we define

‖f‖Ck,α(Ω) = ‖f‖Ck,α(Ω) = ‖f‖Ck(Ω) +
∑

β∈Nd0:|β|=k

|∂βf |C0,α (f ∈ Ck,α(Ω)), (137)

Ck,αb (Ω) = {f ∈ Ck,α(Ω) : ‖f‖Ck,α(Ω) <∞}. (138)

17.2. For the rest of this section we consider Ω = Rd and write “Ck,α” instead of
“Ck,α(Rd)”.

Observe that C0,1 consists of all the Lipschitz functions and that for k ∈ N, Ck+1
b (

Ck,1b .
For s ∈ (0,∞) \N it is also common in literature to write Cs for Ck,α, where k = bsc

and α = s− bsc.

Exercise 17.1. Can you classify the space of α-Hölder functions with α > 1, that is,
which functions f satisfy (136) for α > 1.

In Definition 8.1 we introduced the Sobolev spaces W k,p for k ∈ N0 and p ∈ [1,∞].
In Definition 13.12 and 13.15 we introduced the fractional Sobolev or Bessel–potential
spaces Hs

p for s ∈ R \ N0 and p ∈ [1,∞]. We will now consider Slobodeckij spaces, W s,p

with s ∈ (0,∞) \ N as subspaces of W k,p with k = bsc in a similar way as Cs or Ck,α is
defined to be a subspace of Ck, where (with α = s− k).
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Definition 17.3 (Slobodeckij spaces). Let p ∈ [1,∞) and s ∈ (0,∞) \ N. Let k ∈ Z
and α ∈ (0, 1) be given by

k = bsc, α = s− k.

For f ∈W k,p we define

‖f‖W s,p := ‖f‖Wk,p +
∑

α∈Nd0:|α|=k

(∫
Rd

∫
Rd

|∂αf(x)− ∂αf(y)|p

|x− y|d+αp dx dy
) 1
p

.

We define the Slobodeckij space W s,p by

W s,p = {f ∈W k,p : ‖f‖W s,p <∞}.

Definition 17.4 (Zygmund spaces). Let s ∈ R. Let k ∈ Z and α ∈ (0, 1] be given by

k = ds− 1e, α = s− k, (139)

in other words, k is such that s− k ∈ (0, 1]. We define ‖ · ‖Cs : Ck → R, by

‖f‖Cs = ‖f‖Ck +
∑

β∈Nd0:|β|=k

sup
h∈Rd\{0}

‖(Th − 1)2∂βf‖C0

|h|α
,

and the Zygmund space Cs by

Cs = {f ∈ Ck : ‖f‖Cs <∞}.

Observe that

(Th − 1)2g(x) = (Th − 1)(Th − 1)g(x) = (Th − 1)g(x− h)− (Th − 1)g(x)
= g(x− 2h)− 2g(x− h) + g(x).

Definition 17.5 (Besov–Lipschitz spaces). Let s ∈ (0,∞). Let k ∈ Z and α ∈ (0, 1]
be as in (139). For p, q ∈ [1,∞) we define for f ∈W k,p

‖f‖Λsp,q := ‖f‖Wk,p +
∑

β∈Nd0:|β|=k

(∫
Rd

‖(Th − 1)2∂βf‖qLp
|h|d+αq dh

) 1
q

,

‖f‖Λsp,∞ := ‖f‖Wk,p +
∑

β∈Nd0:|β|=k

sup
h∈Rd\{0}

‖(Th − 1)2∂αf‖qLp
|h|α

.

For q ∈ [1,∞] we define the Besov-Lipschitz space Λsp,q to be the set of for which the
above norm is finite:

Λsp,q = {f ∈W k,p : ‖f‖Λsp,q <∞}.
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The Triebel–Lizorkin spaces are defined as the Besov spaces, but with the “Lp” and
“`q” norm interchanged:

Definition 17.6 (Triebel–Lizorkin spaces). Let (ρj)j∈N−1 be a dyadic parition of
unity. Let s ∈ R. For p ∈ [1,∞) and q ∈ [1,∞] we define

‖u‖F sp,q := ‖‖(2js|∆iu|)j∈N−1‖`q‖Lp ,

for example, for q <∞ this means

‖u‖F sp,q =

∫
Rd

( ∑
j∈N−1

2qjs|∆iu(x)|q
) p
q dx

 1
p

.

We define the Triebel–Lizorkin space F sp,q to be the set of tempered distributions for
which the above norm is finite:

F sp,q = {u ∈ S ′ : ‖u‖F sp,q <∞}.

Remark 17.7. As for Besov spaces, the norm of F sp,q depends on the choice of dyadic
partition, but the space itself does not. This is shown in [33, Section 2.3.2].

17.8. Let us summarize for which parameters we have either continuous embeddings or
equality between spaces with equivalent norms. Here, “A ⊂ B” means that the space A
is continuously embedded in B, and “A = B” means that A and B are the same space
with equivalent norms.
(a) [33, p.90, (9)] Csb = Cs for s ∈ (0,∞) \ N (Cs is as in 17.2).
(b) [33, p.90, (9)] W s,p = Λsp,p for s ∈ (0,∞) \ N and p ∈ (1,∞).
(c) [33, p.88] Hs

p = F sp,2 for s ∈ R and p ∈ (1,∞).

(d) [33, p.88] Hk
p = W k,p for k ∈ N and p ∈ (1,∞).

(e) [33, p.89] B0
p,1 ⊂ Lp ⊂ B0

p,∞ for p ∈ [1,∞).
(f) [33, p.89] B0

∞,1 ⊂ C0
b ⊂ B0

∞,∞.
(g) [33, p.90, p.113] Λsp,q = Bs

p,q for s > 0, p ∈ [1,∞) and q ∈ [1,∞].
(h) [33, p.90, p.113] Cs = Bs

∞,∞ for s > 0.
(i) [33, p.47] Bs

p,min{p,q} ⊂ F
s
p,q ⊂ Bs

p,max{p,q} for s ∈ R, p ∈ [1,∞) and q ∈ [1,∞].

(j) [33, p.60] For s1, s2 ∈ R, p1, p2, q1, q2 ∈ [1,∞]:
Bs1
p1,q1(Rd) = Bs2

p2,q2(Rd) if and only if s1 = s2 and p1 = p2, q1 = q2.
For p1, p2 <∞:
F s1
p1,q1(Rd) = F s2

p2,q2(Rd) if and only if s1 = s2 and p1 = p2, q1 = q2,
F s1
p1,q1(Rd) = Bs2

p2,q2(Rd) if and only if s1 = s2 and p1 = p2 = q1 = q2.
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Observe that we can combine some of the above to obtain:

Csb = Cs = Bs
∞,∞ (s ∈ (0,∞) \ N),

W s,p = Λsp,p = Bs
p,p = F sp,p (s ∈ (0,∞) \ N, p ∈ (1,∞)).

Hk
p = W k,p = F kp,2 (k ∈ N, p ∈ (1,∞)).

17.9. In 16.12 we mentioned that there is no Besov space that is equal to L1. We can
generalise this as follows: For r ∈ [1, 2) ∪ (2,∞) there are no s ∈ R, p, q ∈ [1,∞] such
that Lr = Bs

p,q.

Exercise 17.2. Let r ∈ (1,∞). Show that Bs
p,q = Lr if and only if p = q = r = 2 and

s = 0. Hint: H0
r = Lr (see 13.15).

Remark 17.10. The proof of Cα = Bα
∞,∞ for α ∈ (0, 1) can also be found in [20, Lemma

8.6].

18 Fourier–multipliers on Besov spaces
We will use the Hörmander–Mikhlin inequality to show that under some conditions,
Fourier multipliers map Besov spaces into other Besov space. We will only need the
version of the Hörmander–Mikhlin inequality, Lemma 14.12. The following lemma shows
that the condition of Lemma 14.12 can be described in a different way.

Lemma 18.1. Let σ ∈ C∞ and m ∈ R. Then there exists a θ > 0 such that Mm,θ(σ) <
∞ if and only if

max
α∈Nd0:|α|≤k

sup
x∈Rd

(1 + |x|)|α|−m|∂ασ(x)| <∞, (140)

i.e., if and only if there exists a C > 0 such that

|∂ασ(x)| ≤ C(1 + |x|)m−|α| (x ∈ Rd, α ∈ Nd0, |α| ≤ k). (141)

Proof. We have already seen that Mm,θ(σ) <∞ for all θ > 0 (see 14.11). Hence we may
take θ = 1. We have Mm,1 <∞ if and only if there exists a C > 0 such that

|∂ασ(x)| ≤ C|x|m−|α| (x ∈ Rd, |x| ≥ 1, α ∈ Nd0, |α| ≤ k). (142)

As
1
2(1 + |x|) ≤ |x| ≤ 1 + |x| (x ∈ Rd, |x| ≥ 1),

(142) is equivalent to

|∂ασ(x)| ≤ C(1 + |x|)m−|α| (x ∈ Rd, |x| ≥ 1, α ∈ Nd0, |α| ≤ k). (143)
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Let us show that (143) is equivalent to (141).
As 1 ≤ 1 + |x| ≤ 2 for all x ∈ B(0, 1), there exists an C1 > 0 such that

1 ≤ C1(1 + |x|)m−|α| (x ∈ B(0, 1), α ∈ Nd0, |α| ≤ k).

As σ is smooth, its restriction to B(0, 1) is bounded in Ck-norm. Let C2 = ‖σ‖Ck(B(0,1)).
Then

|∂ασ(x)| ≤ C2 ≤ C1C2(1 + |x|)m−|α| (x ∈ B(0, 1), α ∈ Nd0, |α| ≤ k).

This shows that (143) is equivalent to (141).

Now we show that if the condition in Lemma 18.1 is satisfied for σ that it forms a
continuous map between Besov spaces.

Theorem 18.2. [2, Theorem 2.78] and [13, Lemma A.5] Let m, s ∈ R, p, q ∈ [1,∞]. Let
σ ∈ C∞p be such that (140) holds. Then there exists a C > 0 such that

‖σ(D)u‖Bs−mp,q
≤ C‖u‖Bsp,q (u ∈ Bs

p,q). (144)

In other words, σ(D) forms a continuous operator Bs
p,r → Bs−m

p,r . Moreover, if F(σ) ∈ L1,
then there exists a C > 0 such that

‖(lλσ)(D)u‖Bs−mp,q
≤ C(λm ∨ 1)‖u‖Bsp,q (u ∈ Bs

p,q, λ > 0). (145)

Proof. By Lemma 14.12, (97) and Lemma 18.1 there exists a C > 0 such that

‖(lλσ)(D)∆ju‖Lp ≤ C2jmλm‖∆ju‖Lp (j ∈ N0, u ∈ S ′). (146)

Therefore, by Theorem 15.9, for (144) it is sufficient to show

‖σ(D)∆−1u‖Lp ≤ C‖∆−1u‖Lp (u ∈ S ′), (147)

and for (145) it is sufficient to show

‖(lλσ)(D)∆−1u‖Lp ≤ C‖∆−1u‖Lp (u ∈ S ′, λ > 0). (148)

Let ψ ∈ C∞c be such that ψ = 1 on supp ρ−1. Then

σ(D)∆−1u = σ(D)ψ(D)∆−1u = (σψ)(D)∆−1u = F−1(σψ) ∗ u.

Hence, by applying Young’s inequality we obtain (147) with C = ‖F−1(σψ)‖L1 , which is
finite as σψ ∈ C∞c ⊂ S and thus F−1(σψ) ∈ S ⊂ L1.

If F(σ) ∈ L1, then (148) holds with C = ‖F−1(σ)‖L1 as this equals ‖F−1(σ)‖L1 for
all λ > 0.
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Exercise 18.1. Let β ∈ R, p, q ∈ [1,∞] and γ ∈ Nd0. In Lemma 16.1 we have seen that
there exists a C > 0 such that

‖∂γu‖
B
β−|γ|
p,q

≤ C‖u‖
Bβp,q

(u ∈ S ′).

Show that this can also be derived from Theorem 18.2.

Example 18.3. Let us also apply the above to the Bessel–Potentials, (1 − ∆)
s
2 for

s ∈ R. By Lemma 14.15 we have that for σ(x) = (1 + |x|2)
s
2 , Ms,1(σ) < ∞. Therefore,

by Theorem 18.2 we have that (1−∆)
s
2 , being σ(D), maps Bα

p,q continuously into Bα−s
p,q .

Of course, if we take s = 2, as one should expect, (1−∆) lowers the regularity by 2.

19 Paraproducts
In this section we consider the definition of a product of two distributions (for which this
product makes sense). Let u, v ∈ S ′. As (see Lemma 15.5)

u =
∑
i∈N−1

∆iu, v =
∑
i∈N−1

∆iv,

formally the product of u, v should equal

uv =
∑

i,j∈N−1

∆iu∆jv.

This decomposition, that is the series on the right-hand side, will be further decomposed
in terms of two ‘paraproducts’ and a ‘resonance product’ (see Definition 19.1).

Question 19.1. Does it hold that

ψv = lim
J→∞

J∑
i,j=−1

∆iψ∆jv?

Definition 19.1. For u ∈ S ′ and j ∈ N−1 we write

Sju =
j∑

i=−1
∆iu (j ∈ N−1), S−2u = 0, S−3u = 0.

Moreover, we will use the following -a priori formal- notations for u, v ∈ S ′:

u4 v =
∞∑

j=−1

j−2∑
i=−1

∆iu∆jv =
∞∑

j=−1
Sj−2u∆jv,

u� v =
∞∑

j=−1

j+1∑
i=j−1

∆iu∆jv.

If u4 v exists in S ′, then it is called the paraproduct of v by u. If u� v exists in S ′, then
it is called the resonance product of u and v. We also write u5 v := v 4 u.

101



Remark 19.2 (About notation). In many textbooks one writes “Tuv” for the paraproduct
instead of “u4v” (for example in [2]). In this sense one views Tu as an multiplying oper-
ator. Also “Π(u, v)” or “R(u, v)” is written for the resonance product. In the application
to SPDEs in the authors of the paper [13] wrote “u ≺ v” and “u◦v” for the para- and res-
onance product, respectively. The latter notation changed in the SPDE literature, with
some authors creating new symbols, for example “<” and “=” with a circle around it. In
the latter case, “≤” with a circle around it is then used for the sum of the paraproduct
and the resonance product, for which the authors of [13] used “�”.

For this in our notation we could write �4. The following table presents the latex
commands for the symbols used in these notes.

\varolessthan 4
\varogreaterthan 5
\varodot �
\mathrlap{\varodot}{\varolessthan} �4

19.3 (Intuition behind the bound on paraproducts). In Theorem ?? we will bound
the Besov norm of the paraproduct u 4 v. The idea is as follows. Let us say that u is
of regularity α if it is in some Bα

p,q space for some p, q ∈ [1,∞]. It will turn out that we
need some restrictions for the different parameters p, q for u and v but this we forget for
the moment and concentrate on the regularity.

Suppose u is of regularity α and v of regularity β. Then the regularity of u 4 v for
strictly positive α equals the regularity of β. The idea behind this is that if one multiplies
a low frequency function with a high frequency function, the frequency of the product
has a frequency equal to the highest frequency. For an illustration see Figure 1 and 2.
In case the regularity of u is strictly negative, then the regularity of the product is the
sum α+ β. So that the low frequencies of u still worsen the regularity of u4 v.

Figure 1: A function with high and low
frequency.

Figure 2: The product of the functions
with high and low frequencies.

Theorem 19.4. [2, Theorem 2.82], [21, Lemma 2.1] Let p, p1, p2, q, q1, q2 ∈ [1,∞] be
such that 1

p1
+ 1

p2
≤ 1 and

1
p = 1

p1
+ 1

p2
, 1

q = min{1, 1
q1

+ 1
q2
},
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For C = ‖F−1(χ)‖L1 > 0 and all α ∈ R

‖u4 v‖Bαp,q ≤ C‖u‖Lp1‖v‖Bαp2,q
(u, v ∈ S ′). (149)

For all α < 0 and β ∈ R

‖u4 v‖
Bα+β
p,q
≤ (1− 2α)−1‖u‖Bαp1,q1

‖v‖
Bβp2,q2

(u, v ∈ S ′). (150)

Proof. Let u, v ∈ S ′. We will invoke Theorem 15.9 (b) for the functions Sj−2u∆jv =∑j−2
i=−1 ∆iu∆jv with j ∈ N−1. Observe that S−3u∆−1v = 0 and S−2u∆0v = 0, and so

their Fourier transform is trivially supported in any ball. Let us check that for j ∈ N0
the Fourier transform of Sj−2u∆jv is supported in 2jÃ for some annulus Ã.

Let a, b > 0, a < b be such that supp ρ = A(a, b). Then in particular supp ρ−1 ⊂
B(0, b) and so supp ρj ⊂ B(0, 2jb). We write A = A(a, b) and B = B(0, b).

As F(∆iu∆jv) = (ρiû) ∗ (ρj v̂), we have (see Theorem 3.9 and Lemma 3.7):

suppF(∆iu∆jv) ⊂ 2j(2i−jB +A) (i ∈ N−1, j ∈ N0). (151)

For all i ∈ N−1 with i ≤ j − 2 we have 2i−j ≤ 2−2 and thus 2i−jB ⊂ 2−2B. As
supp ρ0 ∩ supp ρ2 = ∅ we have A ∩ 22A = ∅ and thus 2−2B ∩ A = ∅. Therefore Ã :=
A+B(0, 2−2b) is an annulus and

suppF

 j−2∑
i=−1

∆iu∆jv

 ⊂ 2jÃ (j ∈ N0).

By Hölder’s inequality (Theorem A.3) and by (111),

‖Sj−2u∆jv‖Lp ≤ ‖Sj−2u‖Lp1‖∆jv‖Lp2 ≤ ‖F−1(χ)‖L1‖u‖Lp1‖∆jv‖Lp2 (j ∈ N−1).

By this and Theorem 15.9 one obtains (149).
By Hölder’s inequality (Corollary A.7), we get∥∥∥∥(2j(α+β)‖Sj−2u∆jv‖Lp

)
j∈N−1

∥∥∥∥
`q
≤
∥∥∥∥(2jα‖Sj−2u‖Lp1 2jβ‖∆jv‖Lp2

)
j∈N−1

∥∥∥∥
`q

≤
∥∥∥∥(2jα‖Sj−2u‖Lp1

)
j∈N−1

∥∥∥∥
`q1

∥∥∥∥(2jβ‖∆jv‖Lp2

)
j∈N−1

∥∥∥∥
`q2
.

By Theorem 15.16∥∥∥∥(2jα‖Sj−2u‖Lp1

)
j∈N−1

∥∥∥∥
`q1

= 22α
∥∥∥∥(2jα‖Sju‖Lp1

)
j∈N−1

∥∥∥∥
`q1
≤ 22α

1− 2α ‖u‖B
α
p1,q1

,

as so we conclude (150) by Theorem 15.9.

Question 19.2. Can we show that (150) does not hold in case α = 0? For example,
can we take u = v equal to the example in Example 16.9. [[I plan to look at this, but
maybe you want to provide me the answer before I possibly include this in the notes]]
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sin(x) sin2(x)
sin2(x) = 1

2 − 1
2 cos(2x)

Figure 3: The sine function and its square and the decomposition of the square of the
sine function in a low and high frequency function.

19.5 (Intuition behind the bound on the resonance product). In Theorem 19.6
we consider the resonance product of u and v. Let us use the language as in 19.3, with u
of regularity α and v of regularity β. The block of ∆iu has a frequency of the order 2−iα
and ∆iv of 2−iβ, so that the product is of frequency 2−i(α+β). This already indicates
that the regularity of the resonance product should be α + β. The term “resonance” is
used as one considers the outcome of two ‘systems’ that interact with the same or similar
frequency, but also as this may ‘strengthen’ the outcome. Let us for example consider the
product of two sine functions. As is illustrated in Figure 3 we see that the product can be
decomposed in terms of a function with lower and one with higher frequencies. Therefore
the frequencies of ∆iu∆iv range from zero frequencies up to the order 2i. Hence the k-th
Littlewood-Paley block ∆k(u � v) possibly contains information of ∆iu for i inbetween
0 and 2i. In order to ‘deal’ with that it makes sense to impose the condition α + β > 0
in order to have some summability (such condition is also assumed in Theorem 15.9(c),
on which the proof of Theorem 19.6 relies).

Theorem 19.6. Let α, β ∈ R and α + β ≥ 0. There exists a C > 0 such that for all
p, p1, p2, q, q1, q2 ∈ [1,∞] such that 1

p1
+ 1

p2
≤ 1, with

1
p = 1

p1
+ 1

p2
, 1

q = min{1, 1
q1

+ 1
q2
},

we have in case α+ β > 0,

‖u� v‖
Bα+β
p,q
≤ C‖u‖Bαp1,q1

‖v‖
Bβp2,q2

(u, v ∈ S ′), (152)

and in case α+ β = 0 and {q1, q2} = {1,∞},

‖u� v‖B0
p,∞
≤ C‖u‖Bαp1,q1

‖v‖
Bβp2,q2

(u, v ∈ S ′). (153)

Proof. Let u ∈ Bα
p1,q1 , v ∈ B

β
p2,q2 . We define ∆−2u := 0 and

Rj :=

 1∑
i=−1

∆j+iu

∆jv (j ∈ N−1),
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so that u� v =
∑
j∈N−1 Rj . Then

supp R̂j ⊂ supp ρj+iû ∗ ρj v̂ ⊂ supp ρj+i + supp ρj ⊂ 2jB.

for some ball B around the origin: Indeed, if B1 is a ball around the origin such that
supp ρ−1 ∪ supp ρ0 ⊂ B1. Then ρj+i + supp ρj ⊂ (2j+i + 2j)B1 ⊂ 2j3B1, so that we can
take B = 3B1. Observe that {q1, q2} = {1,∞} is equivalent to q = 1. Therefore, in case
α+ β > 0, we can use Theorem 15.9(c) and in case α+ β = 0 and {q1, q2} = {1,∞} we
can use Theorem 15.9 (d) to obtain that it is sufficient to show the existence of a C > 0
such that ∥∥∥(2j(α+β)‖Rj‖Lp)j∈N−1

∥∥∥
`q
≤ C‖u‖Bαp1,q1

‖v‖
Bβp2,q2

This follows by Hölder’s inequality (both Theorem A.3 and Corollary A.7):

∥∥∥(2j(α+β)‖Rj‖Lp)j∈N−1

∥∥∥
`q
≤

∥∥∥∥∥∥∥
2j(α+β)∥∥ 1∑

i=−1
∆j+iu

∥∥
Lp1‖∆jv‖Lp2


j∈N−1

∥∥∥∥∥∥∥
`q

≤

∥∥∥∥∥∥∥
2jα

1∑
i=−1

∥∥∆j+iu
∥∥
Lp1


j∈N−1

∥∥∥∥∥∥∥
`q1

∥∥∥∥(2jβ‖∆jv‖Lp2

)
j∈N−1

∥∥∥∥
`q2

≤ (2−α + 1 + 2α)
∥∥∥∥(2jα

∥∥∆ju
∥∥
Lp1

)
j∈N−1

∥∥∥∥
`q1
‖v‖

Bβp2,q2
(154)

The following is basically the same as Corollary 2.1.35 of Jörg Martin’s thesis. Such
statement that combines the estimates on the paraproducts and resonance products is
missing in [2].

Theorem 19.7. Let α, β ∈ R \ {0} be such that α + β > 0, α ≤ β. Let δ > 0. There
exists a C > 0 such that for all p, p1, p2, q, q1, q2 ∈ [1,∞] such that 1

p1
+ 1

p2
≤ 1, with

1
p = 1

p1
+ 1

p2
, 1

q = min{1, 1
q1

+ 1
q2
}, (155)

we have

‖u · v‖Bα−δp,q
≤ C‖u‖Bαp1,q1

‖v‖
Bβp2,q2

(u, v ∈ S ′), (156)

and, for all r ≥ q1

‖u · v‖Bαp,r ≤ C‖u‖Bαp1,q1
‖v‖

Bβp2,q2
. (u, v ∈ S ′). (157)
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Proof. Let δ > 0 and r ≥ q1. Observe that β > 0 by assumption. By Theorem 19.6
and Theorem 19.4 there exists a C1 > 0, by Theorem 16.5 there exists a C2 > 0 and by
Lemma 16.1 there exists a C3 > 0 such that for all u, v ∈ S ′

‖u� v‖
Bα+β
p,q
≤ C1‖u‖Bαp1,q1

‖v‖
Bβp2,q2

, (158)

‖u4 v‖Bαp,q ≤

C1‖u‖Lp1‖v‖Bαp2,q
≤ C1C2C3‖u‖Bαp1,q1

‖v‖Bαp2,q2
α > 0,

‖u4 v‖
Bα+β
p,q
≤ C1‖u‖Bαp1,q1

‖v‖
Bβp2,q2

α < 0,
(159)

‖u5 v‖Bα−δp,q
= ‖v 4 u‖Bα−δp,q

≤ C1‖v‖B−δp2,q2
‖u‖Bαp1,q1

≤ C1‖v‖Bβp2,q2
‖u‖Bαp1,q1

, (160)

‖u5 v‖Bαp,r ≤ C1‖v‖Lp2‖u‖Bαp1,r
≤ C1C2C3‖v‖Bβp2,q2

‖u‖Bαp1,q1
, (161)

(156) follows then from (158), (159) and (160). For r ≥ q1 we also have r ≥ q and thus
‖ · ‖

Bα+β
p,r
≤ C3‖ · ‖Bα+β

p,q
, so that by combining (158), (159) and (161) we obtain (157).

19.8 (The notation .). As we have seen in a couple of proofs, keeping track of which
constant comes from which statement can became quite administrative. The benefit is
that one actually sees where things come from and on which parameters they depend.
However, when one reaches a higher number of constants, say 10, at the moment that
C10 appears one can probably not tell the different constants apart any ways. For this
reason often the notation “.” is used. The usage is as follows: For families (ai)i∈I, (bi)i∈I
in R for an index set I, one write ai . bi to denote the existence of a C > 0 such that
ai ≤ Cbi for all i ∈ I. With this notation (161) could instead read

‖u5 v‖Bαp,r . ‖v‖Lp2‖u‖Bαp1,r
. ‖v‖

Bβp2,q2
‖u‖Bαp1,q1

.

Now, we however do have multiple parameters on the left and right-hand side: α, β and
p, r, p1, q2, q1. But the C1, C2 and C3 introduced in that proof depend on α and β, which
one now does not see in the notation. One way to overcome this is to write “.α,β”. For
families (ai,α)i∈I,α∈A, (bi,α)i∈I,α∈A we write ai,α .α bi,α to denote that for all α ∈ A there
exists a C > 0 such that ai,α ≤ Cbi,α for all i ∈ I. But of course it might be that there
are many parameters that change the C, or in other words, which the C depends on.
Another way how some authors overcome this is to write “ai,α . bi,α uniformly in i ∈ I”,
which means the same as “there exists a C > 0 such that ai,α ≤ Cbi,α for all i ∈ I”.

If we will use the notation “.”, then it will be in proofs, without the dependence on
the parameters. From the statement in the theorem or lemma (of the order of the “for
all” and “there exists”) it will be clear on which parameters the constant depends and
on which not (as we fix the dimension for example, basically one should a priori assume
that the constant depends on the dimension).

We turn now to a specific case of products between Besov spaces with p = q =∞.

19.9 (Notation). In 17.8 we have mentioned that the Zygmund space (Definition 17.4)
Cs for s > 0 equals Bs

∞,∞. It is common, and therefore we will follow this convention,
to write Cs for Bs

∞,∞ for all s ∈ R. As the norms ‖ · ‖Cs and ‖ · ‖Bs∞,∞ are equivalent
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for s > 0, and as we are interested in bounds of norms, as is mentioned in 15.11 for the
dependence of the Besov norm on the choice of partition, we do not distinguish between
the norms as we consider statements about estimates on those norms: In other words,
when reading “‖ · ‖Cs” one may as well read “‖ · ‖Bs∞,∞”.

19.10. By Leibniz rule (see 5.3) we have seen in (30) that the product of two Ck functions
is again in Ck and that the product map

Ck × Ck → Ck, (f, g) 7→ fg,

is a bilinear continuous map. It follows that if k,m ∈ N0 that the product of a Ck

function and a Cm function is a Ck∧m function and

Ck × Cm → Ck∧m, (f, g) 7→ fg,

is a bilinear continuous map with

‖fg‖Ck∧m ≤ ‖f‖Ck‖g‖Cm (f ∈ Ck, g ∈ Cm).

The following theorem states something similar for the Cα spaces.

By taking p = p1 = p2 = q1 = q2 = r = ∞ in (157) we obtain the following
consequence of Theorem 19.7, which is widely used in the theory of SPDEs. See for
example [14, Proposition 4.14] and [13, Lemma 2.1 and text below].

Corollary 19.11. Let α, β ∈ R and α+ β > 0. If u ∈ Cα and v ∈ Cβ, then uv = u · v =
u4 v + u� v + u5 v is an element of Cα∧β. Moreover, the map

Cα × Cβ → Cα∧β, (u, v) 7→ uv,

is a bilinear continuous map and there exists a C > 0 such that

‖u · v‖Cα∧β ≤ C‖u‖Cα‖v‖Cβ (u, v ∈ S ′). (162)

19.12. The product map in Corollary 19.11 agrees for α, β ∈ (0,∞) \ N with the map

Cα × Cβ 7→ Cα∧β, (f, g) 7→ fg,

as for those α and β we have Cα = Cα (see 17.8).

The following corollary is another consequence of Theorem 19.4 and Theorem 19.6
and is left as an exercise:

Corollary 19.13. Let α ∈ (0,∞). There exists a C > 0 such that for all p, q ∈ [1,∞]

‖uv‖Bαp,q ≤ C
(
‖u‖Bαp,q‖v‖L∞ + ‖u‖L∞‖v‖Bαp,q

)
(u, v ∈ S ′).

Consequently, L∞ ∩Bα
p,q is a Banach algebra under the norm (C ∨ 1)(‖ · ‖L∞ + ‖ · ‖Bαp,q).
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Exercise 19.1. Prove Corollary 19.13.

Another consequence is the following:

Theorem 19.14. Let α, β ∈ R \ N and α + β > 0. For u ∈ Hα and v ∈ Hβ we have
uv ∈ Wα+β,1. Moreover, the product map Hα ×Hβ → Wα+β,1, (u, v) 7→ uv is bilinear
and continuous, moreover there exists a C > 0 such that

‖uv‖Wα∧β,1 ≤ C‖u‖Hα‖v‖Hβ .

Exercise 19.2. Prove Theorem 19.14. (Hint: 17.8)

Remark 19.15. In [25, Theorem 4.3.1] one can find that certain conditions are necessary
for such product embeddings.

Question 19.3. In [26, Theorem 4.3.6] is stated a similar estimate on the product as
in Theorem 19.7. How do they relate to each other, is the one a consequence of the other
or do the describe different cases?

20 The heat kernel and heat equation
In Example 7.15 we have seen that E : Rd+1 → R given by

E(t, x) =
{
ht(x) (t, x) ∈ (0,∞)× Rd,
0 (t, x) ∈ (−∞, 0]× Rd,

where

ht(x) = (4πt)−
d
2 e−

1
4t |x|

2 ((t, x) ∈ (0,∞)× Rd), (163)

is the fundamental solution of the partial differential operator ∂t −∆x , also called heat
operator. ht is also called the heat kernel (at time t).

In this section we consider the heat equation and solutions described by the heat
kernel. We write “∆” for “∆x”.

20.1 (Heat equation with initial condition). The following equation is called the
heat equation with initial condition f (which is also called “heat equation”){

∂tu = ∆u on (0,∞)× Rd,
u(0, ·) = f on Rd,

(164)

where f ∈ S ′. We have already seen that the function (0,∞) × Rd → R, (t, x) 7→ ht(x)
satisfies the heat equation (∂t − ∆)ht(x) = 0 on (0,∞) × Rd. In Lemma 20.3 we will
show that ht ∗ ϕ→ ϕ in S as t ↓ 0 for ϕ ∈ S. Because of these facts, u defined by{

u(t, x) = ht ∗ f(x) (t > 0),
u(0, ·) = f,

(165)
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is a solution to the heat equation with initial condition f such that t 7→ u(t, ·) is in
C([0,∞),S ′). Observe that u is smooth on (0,∞) × Rd. If f ∈ Cb, then u is also
continuous as a function on [0,∞)×Rd by (40) and therefore u is a classical solution to
this partial differential equation.

Observe that if f = δ0, then u(t, x) = ht(x) for (t, x) ∈ (0,∞)× Rd. For this reason
the heat kernel is also called the fundamental solution to the heat equation. Moreover, for
t > 0, as ht(x) = E(·, x)∗ δ0(t) (for which we could write formally

∫
RE(s, x)δ0(t−s) ds),

we see that ht ∗ f(x) = E ∗ (δ0× f)(t, x), where δ0× f is the distribution on R×Rd given
by

〈δ0 × f, ϕ〉 = 〈f, ϕ(0, ·)〉 (ϕ ∈ S(R× Rd)).

Exercise 20.1. Verify that u defined in (165) for f ∈ Cb solves the heat equation and
is smooth on (0,∞) × Rd and continuous on [0,∞) × Rd. (Hint: This follows from a
couple of results from Section 7)

Question 20.1. It kind of would make sense to let h0 = δ0, also because of Lemma 20.2.
Then we would have that h(t, x) = ht ∗ f not only for t > 0 but also for t = 0. However,
E(0, ·) = 0. What would happen if we instead take E′(t, ·) = E(t, ·) for t 6= 0 and
E′(0, ·) = δ0?

For the proof of Lemma 20.3 we will use the following fact:

Lemma 20.2. For all k ∈ N0 and t > 0, y 7→ |y|kht(y) is integrable.

Exercise 20.2. Prove Lemma 20.2.

Lemma 20.3. Let ϕ ∈ S. Then ht ∗ ϕ→ ϕ in S as t ↓ 0.

Proof. As derivatives of Schwartz functions are Schwartz functions, it suffices to show
that for all k ∈ N0 and ϕ ∈ S

sup
x∈Rd

(1 + |x|)k|ht ∗ ϕ(x)− ϕ(x)| t↓0−−→ 0.

Let k ∈ N0 and ϕ ∈ S. For all x ∈ Rd we have

(1 + |x|)k|ht ∗ ϕ(x)− ϕ(x)| ≤ (1 + |x|)k
∫
Rd
ht(y)|ϕ(x− y)− ϕ(x)| dy.

By (40) one can easily show (Exercise 20.1) that we supremum over x in B(0, 1) converges
to zero. Therefore we may consider the complement, the x with |x| > 1. We split the
integral into two parts, the integral over B(0, x2 ) and over its complement. Observe that
for y ∈ B(x, x2 ) we have |y| ≥ 1

2 |x|. Therefore, by Taylor’s theorem (Theorem C.7) we
have

sup
y∈B(0,x2 )

|ϕ(x− y)− ϕ(x)| ≤ sup
z∈B(x,x2 )

max
α∈Nd0:|α|=1

|∂αϕ(z)||y|

≤ ‖ϕ‖k+1,S(1 + 1
2 |x|)

−k|y|.
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As x 7→ (1 + |x|)k(1 + 1
2 |x|)

−k is bounded, we see there exists a C > 0 such that∫
B(0,x2 )

ht(y)|ϕ(x− y)− ϕ(x)| dy ≤ C
∫
Rd
|y|ht(y) dy = C

√
t

∫
Rd
|y|h1(y) dy,

which converges to zero as t ↓ 0 (because is y 7→ |y|h1(y) integrable by Lemma 20.2).
On the complement we bound |ϕ(x− y)−ϕ(x)| by M which is two times the supremum
norm of ϕ and obtain∫

Rd\B(0,x2 )
ht(y)|ϕ(x− y)− ϕ(x)| dy ≤M

∣∣∣∣x2
∣∣∣∣−k ∫

Rd
|y|kht(y) dy.

As x 7→ (1 + |x|)k|x2 |
−k is bounded uniformly in x for |x| ≥ 1 and

∫
Rd |y|kht(y) dy =

√
t
k ∫

Rd |y|kh1(y) dy t↓0−−→ 0 (see Lemma 20.2) we conclude that ht ∗ϕ→ ϕ in S as t ↓ 0.

Remark 20.4 (Stochastic analogue). Another common definition of a heat kernel is

pt(x) = (2πt)−
d
2 e−

1
2t |x|

2 ((t, x) ∈ (0,∞)× Rd),

so that pt = h t
2
. This is the common choice in stochastics, as this is also the density of

a normal distributed random variable with variance t. In other words, it is the density
of Bt, where (Bt)t≥0 is a Brownian motion. So instead of our language, we could have
used “pt” instead of “ht” if we also used “1

2∆” instead of “∆”. This also relates to
the fact that 1

2∆ is the generator of the Brownian motion. In this way, one can also
represent the solution to the heat equation in the following stochastic way. If Ex is the
expectation corresponding to the probability space in which (Bt)t≥0 is a Brownian motion
with B0 = x, then u(t, x) = Ex[f(Bt)].

This is a special case of the Feynman–Kac formula, which describes solutions of
parabolic partial differential equations in terms of diffusion process, which in turn satisfies
a stochastic differential equation. For more details see for example [11, Section 6.5].

Exercise 20.3. Let λ > 0. Show that if u is given by (165) that the function v given
by v(t, x) := u(λt, x) for (t, x) ∈ (0,∞) × Rd satisfies ∂tv = λ∆u. From this one can
verify the statement in Remark 20.4 about replacing “ht” by “pt” and “∆” by “1

2∆”.

20.5. For t ≥ 0 we will now write Ht : S ′ → S ′ for the function given by

Htf =
{
ht ∗ f t > 0,
f t = 0.

For t > 0, Htf ∈ C∞p . For t > 0 we will consider in which Besov space the function Htf
lies, when f is in the Besov space Bs

p,q.
Ht is a Fourier multiplier, by Theorem 11.15. Indeed, we have

ht = F−1(gt) = ĝt,

110



for

gt(x) = e−4π2t|x|2 (x ∈ Rd),

and therefore for g = g1

Ht = gt(D) = (l√tg)(D).

Therefore, we can apply Theorem 18.2. For i ∈ {1, . . . , d} we have that ∂ig(x) =
−8π2txig(x). Therefore, inductively we obtain for α ∈ Nd0 that ∂αg = Pg, where P
is a polynomial of order |α|, hence bounded in absolute value by a multiple of (1+ |x|)|α|.
Moreover, as (1 + |x|)mg is bounded for all m ∈ R, we have we obtain the following.

Theorem 20.6. Let s,m ∈ R, p, q ∈ [1,∞]. There exists a C > 0 such that

‖Htf‖Bs+m
p,q
≤ C(t−

m
2 ∨ 1)‖f‖Bsp,q (f ∈ Bs

p,q, t > 0).

So we have that Htf ∈ Bs
p,q for all s ∈ R if f ∈ Bα

p,q for some α ∈ R. A similar
statement holds for Sobolev spaces:

Exercise 20.4. Let p ∈ [1,∞], f ∈ Lp and t > 0. Show that Htf ∈ Lp. Moreover,
show that Htf ∈W k,p for all k ∈ N0.

20.7. For a normed space X, the space of continuous functions on [0, T ] with values in
X, for which we write C([0, T ],X), is equipped with the supremum norm

‖u‖C([0,T ],X) = sup
s∈[0,T ]

‖u(t)‖X (u ∈ (S ′)[0,T ]).

Equipped with this norm, C([0, T ],X) is a Banach space.

20.8. If the initial condition f to the heat equation (164) is in a Besov space Bα
p,q for

some α ∈ R, p, q ∈ [1,∞], then by Theorem 20.6 the solution u as in (165) satisfies

‖u‖C([0,T ],Bαp,q) <∞ (T > 0).

Actually u is in C([0, T ], Bα−ε
p,q ) for all ε > 0 (see for example Lemma 4.5 in the lecture

notes of N. Perkowski on SPDEs, this considers p = q = ∞). Moreover, we have for
m ∈ R

sup
t∈(0,T ]

t
m
2 ‖u(t)‖Bα+m

p,q
<∞. (166)

20.9 (The heat equation with additive noise). Let ξ be a tempered distribution on
R × Rd such that supp ξ ⊂ [0,∞) × Rd and for all mollifier functions ψ ∈ D(R × Rd)
and x ∈ Rd, 〈ξ, T(0,x)ψε〉

ε↓0−−→ 0. In this way we regard ξ as a tempered distribution on
(0,∞)× Rd, which “is zero” on {0} × Rd. Let f be a tempered distribution on Rd. Let
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us regard ξ as a noise term, often also called potential. We consider the heat equation
with additive potential/noise:{

∂tu = ∆u+ ξ on (0,∞)× Rd,
u(0, ·) = f on Rd.

(167)

A solution is given by (at least if E ∗ ξ exists and is a function)

E ∗ (ξ + δ0 × f)(t, x) ((t, x) ∈ (0,∞)× Rd),

which we can also view (at least formally, see Question 20.2) as a solution to (∂t−∆)u =
ξ + δ0 × f . Moreover, we can interpret convoluting with E to be the ‘inverse’ of ∂t −∆.

A ξ as above is also called a space–time noise. If it is independent of its time variable,
by which we mean that T(t,0)ξ = ξ, then we call ξ a space noise. If the last is the case,
then u : [0,∞)× S ′ given by u(0, ·) = f and

u(t, x) =
∫ t

0
Hs(ξ + δ0 × f)(x) ds =

∫ t

0
Hsξ(x) ds+Ht ∗ f(x) ((t, x) ∈ (0,∞)× Rd),

is a solution that is smooth on (0,∞)×Rd. Such u is also called a mild solution to (167).

Question 20.2. How can we interpret E ∗ (ξ+ δ0× f)(0, ·)? Do we have E ∗ (ξ+ δ0×
f)(t, ·)→ f in S ′ as t ↓ 0? Depending on the answers, can we interpret E ∗ (ξ + δ0 × f)
as a continuous function on [0,∞) with values in S ′? Is the condition on ξ the ‘right’
one, that it “is zero” on {0} × Rd.

20.10. In the course on SPDEs by N. Perkowski it is shown (in Theorem 4.6) that if
f ∈ Cα+2 and ξ ∈ C([0, T ], Cα), then

‖u‖C([0,T ],Cα+2) <∞.

Moreover, by replacing Cα by the closure of D in Cα (which is the interpretation as in the
lecture notes by N. Perkowski), lets call it Cα∗ , one also has continuity: u ∈ C([0, T ], Cα+2

∗ ).

20.11 (The heat equation with multiplicative noise). Let ξ and f be as in 20.9.
We consider the heat equation with multiplicative potential/noise:{

∂tu = ∆u+ ξu on (0,∞)× Rd,
u(0, ·) = f on Rd.

(168)

Here we are possibly dealing with a product that is ill–posed, as a priori u is a distribution
and we cannot multiply two distributions in general. We can find a solution by finding a
u that satisfies

u(t, x) =
∫ t

0
Hs(ξu)(x) ds+Ht ∗ f(x) ((t, x) ∈ (0,∞)× Rd).
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As for the heat equation with additive noise, such u is also called a mild solution to (168).
Such mild solution can be derived via a fixed point argument (by taking the right–

hand side as the outcome of a map Φ acting on u and showing that this map has a fixed
point). We consider a different equation which has a similar flavour as the heat equation
in 20.14.

Question 20.3. What about uniqueness of distributional solutions? About uniqueness
of mild solutions?

Remark 20.12 (The stochastic heat equation). In stochastics, ξ is often regarded
as a random variable and (167) and (168) are called the stochastic heat equation with
additive noise and stochastic heat equation with multiplicative noise, respectively. Also
often “stochastic heat equation” is abbreviated by “SHE”. The stochastic heat equation
with multiplicative noise is also called the parabolic Anderson model. The interpretation
is as follows. ξ being a random variable means it is a measurable map Ω→ S ′, where Ω
is the underlying space of a probability space. A (distributional) solution to for example
(167) is then also a random map Ω → (S ′)[0,∞). For example one could say u is almost
surely a solution to (167). This means that when we write “uω” for “u(ω)”, that for
almost all ω (that means for all omega in a set of probability one), uω is the solution to{

∂tuω = ∆uω + ξω on (0,∞)× Rd,
uω(0, ·) = fω on Rd,

where we have also written “ξω” for “ξ(ω)” and also allowed the initial condition f to be
random.

In general, ξ is assumed to be white noise, either space–time white noise or space
white noise. White noise is a totally uncorrelated noise, which informally means that
the outcome of it at some point in space (and time) is independent from the outcome
of a different point in space (and time). It can be shown that space–time white noise is
almost surely (which means for almost all realisation) an element of B−1− d2−ε∞,∞,w and space
white noise is almost surely in B−

d
2−ε∞,∞,w for all ε > 0; where the w is a “weight” and Bs

p,q,w

is a “weighted Besov space”.

Instead of considering the heat equation with multiplicative noise, let us consider a
different type of equation which we solve by a fixed point argument. First we recall
Banach’s fixed point theorem.

Theorem 20.13 (Banach’s fixed point theorem). Let (X, d) be a complete metric
space. Suppose that Φ : X→ X is a contraction, i.e., there exists a c ∈ (0, 1) such that

d(Φ(x),Φ(y)) ≤ cd(x, y).

Then there exists a unique point x∗ in X such that Φ(x∗) = x∗. Moreover, by defining
Φ1 = Φ and Φk = Φ ◦ Φk−1 for k ∈ N with k ≥ 2, we have for each x ∈ X that

lim
k→∞

Φk(x) = x∗.
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20.14. Let ξ, ψ ∈ S ′ and consider the following partial differential equation

(1−∆)u = uξ + ψ.

We define (at least formally)

Φ(u) = (1−∆)−1(uξ + ψ),

and want to show that Φ has a fixed point under some conditions on ξ and ψ.
First of all, let us observe that by Theorem 18.2, see also Example 18.3, for all

p, q ∈ [1,∞] and α ∈ R there exists a C1 > 0 such that

‖(1−∆)−1w‖Bαp,q ≤ C1‖w‖Bα−2
p,q

(w ∈ S ′).

In order to have our Φ mapping Bα
p,q into itself, let us consider α = 1, p = q = 2, ψ ∈ H−1

and ξ ∈ C−1+δ for some δ > 0 (where Hs = Bs
2,2 and Cs = Bs

∞,∞). By Theorem 19.7there
exists a C2 > 0 such that

‖ξu‖H−1 ≤ C2‖u‖H1‖ξ‖C−1+δ .

Therefore we have

‖Φ(u)‖H1 ≤ C1‖uξ + ψ‖H−1

≤ C1C2‖u‖H1‖ξ‖C−1+δ + C2‖ψ‖H−1 (u ∈ H1),

which shows that Φ maps H1 into itself, and

‖Φ(u)− Φ(v)‖H1 ≤ C1C2‖u− v‖H1‖ξ‖C−1+δ (u, v ∈ H1).

Therefore, if ‖ξ‖C−1+δ < (C1C2)−1+δ, Φ is a contraction map on H1 and hence possesses
a unique fixed point. Alternatively, for each ξ ∈ C−1+δ and ψ ∈ H−1 there exists an
a ∈ (0,∞) such that the equation

(1−∆)u = auξ + ψ

has a unique solution.

Exercise 20.5. We have shown that Φ is a contraction map on Bα
p,q in case

ξ ∈ Bβ
p1,q1 , ψ ∈ Bγ

p2,q2 ,

and ‖ξ‖βBp1,q1
is small enough, with p1 = q1 = ∞, p = q = p2 = q2, β = −1 + δ, γ = −1

and α = 1.
Which other choices can be made for those parameters so that one still obtains a

contraction map? For example, with p1 = q1 = ∞, p = q = p2 = q2 consider for which
other α, β, γ the map is a contraction. And, for p = p1 = p2 = q = q1 = q2 = ∞, do we
need δ > 0 or does δ = 0 suffices?

What can you say if instead one considers

(1−∆)su = uξ + ψ,

for s ∈ R?
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A Preliminaries on Lp spaces
Let (X,A, µ) be a measure space. Let F be either R or C.

Definition A.1. We say that a subset A of X is an (µ-)null set, if there exists a B ∈ A
with A ⊂ B and µ(B) = 0. We write Ac for the complement of A inX, so that Ac = X\A.

Definition A.2. Let p ∈ [1,∞). Lp(µ) is the space of measurable functions f : X → F
for which ∫

|f(x)|p dµ(x) <∞.

We say that two measurable functions f and g are equivalent, written f ∼ g if there
exists a null set A ∈ A such that f = g on Ac. We write Lp(µ) for the space that
consists of all equivalence classes in Lp(µ), in formula Lp(µ) = Lp(µ)/ ∼ or when we
define [f ]∼ = {g ∈ Lp : g ∼ f} for f ∈ Lp, then

Lp(µ) = {[f ]∼ : f ∈ Lp(µ)}.

We define

‖f‖Lp :=
(∫
|f(x)|p dµ

) 1
p

.

Similarly, we define L∞ to be the space of measurable functions f : X → F for which
there exist a null set A such that f is bounded on Ac. In other words, those functions
that are almost everywhere (abbreviated “a.e.”) bounded. We define

‖f‖L∞ = inf{M > 0 : |f | ≤M a.e. }.

Similarly as for p ∈ [1,∞), we define

L∞(µ) = {[f ]∼ : f ∈ L∞(µ)},

and write for f ∈ L∞(µ) and g ∈ f (the following is independent of the choice of g)

‖f‖L∞ = ‖g‖L∞ .

We say that a function f : Ω → F is locally integrable if f1K is an integrable function
for all compact sets K ⊂ Ω. We write L1

loc(Ω) for the space of all locally integrable
functions and L1

loc(Ω) for the space of their equivalence classes similarly as for Lp and
Lp. Similarly, we write Lploc(Ω) for the space of functions that are locally in Lp(Ω).

But from now on we ‘identify’ functions f with their equivalence class [f ]∼, and so
use also consider elements of Lp as functions.

Theorem A.3 (Hölder’s inequality). [2, Theorem 1.1] Let p, q, r ∈ [1,∞] satisfy
1
p

+ 1
q

= 1
r
.

If f ∈ Lp(µ) and g ∈ Lq(µ), then fg ∈ Lr(µ) and

‖fg‖Lr ≤ ‖f‖Lp‖g‖Lq .
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Theorem A.4 (Generalized Hölder inequality). Let n ∈ N and p1, . . . , pn, r ∈ [1,∞].
Suppose

1
p1

+ · · ·+ 1
pn

= 1
r
.

For i ∈ {1, . . . , n} let fi ∈ Lpi(µ). Then f1 · · · fn ∈ Lr and

‖f1 · · · fn‖Lr ≤ ‖f1‖Lp1 · · · ‖fn‖Lpn .

Proof. Let q ∈ [1,∞] be such that

1
q

= 1
p1

+ · · ·+ 1
pn−1

.

Let g = f1 · · · fn−1. If g ∈ Lq, then by the Hölder inequality, as 1
q + 1

pn
= 1

r

‖gfn‖Lr ≤ ‖g‖Lq‖fn‖Lpn .

From this one can finish the proof by an induction argument.

Lemma A.5. We have Lp(µ) ⊂ L1(µ) + L∞(µ) for all p ∈ [1,∞].

Proof. Let f ∈ Lp(µ). Then [|f | > 1] has finite measure. Define f1 := f1[|f |≤1] and
f2 := f1[|f |>1]. Then f1 ∈ L∞(µ) and with Hölder’s inequality we have

‖f2‖L1 ≤ ‖f‖Lp‖1[|f |>1]‖Lq <∞,

for q ≥ 1 such that 1
p + 1

q = 1.

A.6. [5, Exercise 5.17] Let 1 ≤ p ≤ r ≤ ∞. If x ∈ `p, then x ∈ `r and ‖x‖`r ≤ ‖x‖`p .
Moreover, if x ∈ `p, then x ∈ c0.

Corollary A.7 (Hölder’s inequality for `p spaces). Let p, q ∈ [1,∞] and r ∈ [1,∞]
be such that

min{1, 1
p

+ 1
q
} = 1

r
.

If f ∈ `p and g ∈ `q, then fg ∈ `r with

‖fg‖`r ≤ ‖f‖`p‖g‖`q .

Proof. Suppose that 1
p + 1

q > 1, in the other case we can apply Hölder’s inequality
immediately. Then both p and q are finite, and we can find p̃, q̃ with p ≤ p̃ < ∞,
q ≤ q̃ <∞ such that

1
p̃

+ 1
q̃

= 1,

Let f ∈ `p and g ∈ `q. Then f ∈ `p̃ and g ∈ `q̃ and ‖fg‖`1 ≤ ‖f‖`p̃‖g‖`q̃ ≤ ‖f‖`p‖g‖`q .
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Theorem A.8 (Log-convexity of Lp norms). Let p, r be such that 1 ≤ p < r ≤ ∞.
Then Lp(µ) ∩ Lr(µ) ⊂ Lq(µ) for all q with p ≤ q ≤ r and with θ ∈ [0, 1] such that

1
q

= θ

p
+ 1− θ

r
.

we have

‖f‖Lq ≤ ‖f‖θLp‖f‖1−θLr (f ∈ Lp ∩ Lr).

Proof. As 1 = θq
p + (1−θ)q

r , we obtain by Hölder’s inequality,

‖f‖qLq =
∫
|f |θq|f |(1−θ)q ≤ ‖|f |θq‖

L
p
θq
‖|f |(1−θ)q‖

L
r

(1−θ)q
= ‖f‖θqLp‖f‖

(1−θ)q
Lr .

Lemma A.9 (Young’s inequality for products). For p, q > 0 with 1
p + 1

q = 1,

ab ≤ 1
p
ap + 1

q
bq (a, b ≥ 0).

In an other formulation; if θ ∈ [0, 1] then aθb1−θ ≤ θa+ (1− θ)b for all a, b ≥ 0.

Proof. As the exponential function is convex, we have for p, q as above and a, b ≥ 0,

ab = exp
(1
p

log ap + 1
q

log bq
)
≤ 1
p

exp (log ap) + 1
q

exp (log bq) = 1
p
ap + 1

q
bq.

Corollary A.10. Let p, q ∈ [1,∞] be such that 1
p + 1

q = 1. Then L1(µ)∩L∞(µ) ⊂ Lp(µ)
and

‖f‖Lp ≤
1
p
‖f‖L1 + 1

q
‖f‖L∞ (f ∈ L1 ∩ L∞).

Proof. Note that θ = 1
p is such that 1

p = θ
1 + (1−θ)

∞ . Apply Theorem A.8, to obtain

‖f‖Lp ≤ ‖f‖
1
p

L1‖f‖
1
q

L∞ . Then apply Lemma A.9.

A.11 (Notation). Let d ∈ N. We write B(Rd) for the Borel-σ-algebra on Rd. If µ is
the Lebesgue measure on the measurable space (Rd,B(Rd)) and p ∈ [1,∞], then we write
Lp(Rd) instead of Lp(µ).

Definition A.12. We call a set of the form
∏d
i=1[ai, bi], where ai, bi ∈ R and ai < bi, a

rectangle (in Rd).

Lemma A.13. Let p ∈ [1,∞).
(a) Cc(Rd) is dense in Lp(Rd).
(b) C∞c (Rd) is dense in Lp(Rd).
(c) Let R denote the set of rectangles in Rd. The linear span of {1A : A ∈ R} is dense

in Lp(Rd).

Observe that ((b)) follows from ((a)) by the Stone-Weierstrass Theorem.
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B Preliminaries on topological spaces (incomplete of course)
Definition B.1 (Neighbourhood of a point). We say that a set S is a neighbourhood
of a point x, if there exists an open subset U ⊂ S, with x ∈ U .

C Taylor’s formula

C.1 For one dimension

Let us first recall the fundamental theorem of calculus.

Theorem C.1. [22, §15] Let g : [a, b]→ R be continuous. Then

d

dx

∫ x

a
g(y) dy = g(x).

The following is a direct consequence.

Corollary C.2. If f ∈ C1[a, b], then

f(x) = f(a) +
∫ x

a
f ′(y) dy.

C.3. If f ∈ C2, then we have

f ′(y) = f ′(a) +
∫ y

a
f ′′(z) dz,

and thus

f(x) = f(a) +
∫ x

a
f ′(y) dy

= f(a) +
∫ x

a

(
f ′(a) +

∫ y

a
f ′′(z) dz

)
dy

= f(a) + (x− a)f ′(a) +
∫ x

a

∫ y

a
f ′′(z) dz dy.

This can be iterated:
For f ∈ Ck[a, b], we have

f(x) =
k−1∑
i=0

(x− a)i

i! Di f(a) +Rkf,a(x),

where by Fubini

Rkf,a(x) =
∫ x

a

∫ y1

a
· · ·
∫ yk−1

a
Dk f(yk) dyk dyk−1 · · · dy1

=
∫

[a,b]k
1{y:a≤yk≤yk−1≤···≤y1≤x}(y) Dk f(yk) dy.

=
∫ x

a

∫ x

yk

∫ x

yk−1
· · ·
∫ x

y2
dy1 dy2 · · · dyk−1 Dk f(yk) dyk
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By induction one can easily see that∫ x

yk

∫ x

yk−1
· · ·
∫ x

y2
dy1 dy2 · · · dyk−1 = (x− yk)k−1

(k − 1)! .

So we have obtained the following.

Theorem C.4. Let f ∈ Ck[a, b], then

f(x) =
k−1∑
i=0

(x− a)i

i! Di f(a) +
∫ x

a

(x− y)k−1

(k − 1)! Dk f(y) dy

=
k∑
i=0

(x− a)i

i! Di f(a) +
∫ x

a

(x− y)k−1

(k − 1)! [Dk f(y)−Dk f(a)] dy.

Let

L = max
y∈[a,b]

|Dk f(y)|

M = max
y∈[a,b]

|Dk f(y)−Dk f(a)|.

Then ∣∣∣∣∣f(x)−
k−1∑
i=0

(x− a)i

i! Di f(a)
∣∣∣∣∣ ≤ L

k! (x− a)k,
∣∣∣∣∣f(x)−

k∑
i=0

(x− a)i

i! Di f(a)
∣∣∣∣∣ ≤ M

k! (x− a)k.

C.2 Taylor expansion in higher dimensions

Definition C.5. Let f ∈ Ck(U,Rp) for U ⊂ Rd open. Let a ∈ U . The Taylor polynomial
of order of order k at the point a, written T kf,a, is given by

T kf,a(x) =
∑

α:|α|≤k

1
α!∂

αf(a)(x− a)α

The remainder of order k at the point a is given by Rkf,a(x) = f(x)− T kf,a(x).

Lemma C.6. [8, Lemma 6.1] Let f ∈ Ck(U,Rd). Then for l ∈ {0, 1, . . . , k} and a, h ∈
Rd and t ∈ R such that a+ th ∈ U we have

1
j!
dj

dtj
f(a+ th) =

∑
α:|α|=j

hα

α! ∂
αf(a+ th)
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Theorem C.7 (Taylor’s Formula). [8, Theorem 6.2] Let f ∈ Ck(U,Rp) for U ⊂ Rd
being an open ball. Let a ∈ U . For all l ∈ {1, . . . , k} and x ∈ U

f(x) = T l−1
f,a (x) +

∑
α:|α|=l

(x− a)α

α!

∫ 1

0

(1− s)l−1

(l − 1)! ∂αf(a+ s(x− a)) ds (169)

= T lf,a(x) +
∑

α:|α|=l

(x− a)α

α!

∫ 1

0

(1− s)l−1

(l − 1)! [∂αf(a+ s(x− a))− ∂αf(a)] ds. (170)

For a, x ∈ U let us define

Rlf,a(x) =
∑

α:|α|=l

(x− a)α

α!

∫ 1

0

(1− s)l−1

(l − 1)! (∂αf(a+ s(x− a))− ∂αf(a)) ds. (171)

The map U ×U → R given by (a, x) 7→ Rlf,a(x) is in Ck−l, and for every compact K ⊂ U
and every ε > 0 there exists a δ > 0 such that

|Rlf,a(x)| ≤ ε|x− a|l for x, a ∈ K and |x− a| < δ.

Moreover, for all a ∈ U the map Rlf,a : U → R is in Ck and ∂αRlf,a(a) = 0 for all α ∈ Nd0
with |α| ≤ l.

Proof. Let g be the one-dimensional function given by g(t) = f(a + t(x − a)). Then by
Theorem C.4

g(t) =
l−1∑
i=0

ti

i!
di

dti
g(0) +

∫ t

0

(t− s)l−1

(l − 1)!
dl

dsl
g(s) ds.

So that with Lemma C.6 one obtains (169) and (170).

D Multivariate chain rule for mixed derivatives
The following theorem is a special case of the Faà di Bruno formula (in which the codo-
main of g is allowed to be of higher dimensions than one).

Theorem D.1 (Chain rule for multi-index differentiation). Let α ∈ Nd0 and let
m = |α|. Assume m ≥ 1. Let U ⊂ R be open, g : U → R and f : Rd → U both be
Cm-functions. Then there exist cm,a ∈ R for a ∈ (Nd0)k such that

∂α[g ◦ f ](x) =
m∑
k=1

Dk g(f(x))
∑

a∈(Nd0\{0})k
a1+···+ak=α

cm,a

k∏
i=1

∂aif(x)

Proof. We give a proof by induction. In case m = 1, then the formula follows by the
chain rule for one derivative.
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Let m ∈ N and assume that the formula holds for all β ∈ Nd0 with |β| = m. Let
α ∈ Nd0 be such that |α| = m + 1. Then we can find a e ∈ Nd0 and |e| = 1 and β ∈ Nd0
with |β| = m such that α = e+ β.

For k ∈ {1, . . . ,m} and b ∈ (Nd0 \ {0})k with b1 + · · ·+ bk = β we have

∂e
(
Dk g(f(x))

)
= Dk+1 g(f(x))∂ef(x),

∂e
(

k∏
i=1

∂bif(x)
)

=
k∑
j=1

∂bj+ef(x) ·
∏

i∈{1,...,k}\{j}
∂bif(x)

Hence

∂e∂β[g ◦ f ](x)

=
m∑
k=1

Dk+1 g(f(x))
∑

b∈(Nd0\{0})k
b1+···+bk=β

∂ef(x)cm,b
k∏
i=1

∂bif(x)

+
m∑
k=1

Dk g(f(x))
∑

b∈(Nd0\{0})k
b1+···+bk=β

cm,b

k∑
j=1

∂bj+ef(x) ·
∏

i∈{1,...,k}\{j}
∂bif(x)

= Dm+1 g(f(x))
∑

b∈(Nd0\{0})m
b1+···+bm=β

cm,b∂
ef(x)

m∏
i=1

∂bif(x)

+
m−1∑
k=2

Dk g(f(x))
[ ∑
b∈(Nd0\{0})k−1

b1+···+bk−1=β

cm,b∂
ef(x) ·

k−1∏
i=1

∂bif(x)

+
∑

b∈(Nd0\{0})k
b1+···+bk=β

cm,b

k∑
j=1

∂bj+ef(x) ·
∏

i∈{1,...,k}\{j}
∂bif(x)

]

+ D1 g(f(x))∂αf(x).

Note that for b ∈ (Nd0)k−1 with b1 + · · · bk−1 = β one has (for example) (b1, . . . , bk, e) ∈
(Nd0)k and of course β + e = α. Also for b ∈ (Nd0)k with b1 + · · · + bk = β one has
(b1, . . . , bj + e, . . . , bk) ∈ (Nd0)k and b1 + · · · + bj + e + · · · + bk = β + e = α. From this
we can conclude that there exists cm+1,a for a ∈ (Nd0 \ {0})k with a1 + · · ·+ ak = α such
that the chain rule holds for m + 1. Why do the constants not depend on the choice of
e and β.... consistency left to prove.

E Integration by parts
Theorem E.1. [9, Appendix C.2, Theorem 2] Let Ω be a bounded open set with C1

boundary ∂Ω. We write σ for the d − 1 dimensional “surface” measure on ∂Ω. For
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f, g ∈ C(Ω) and i ∈ {1, . . . , d} we have∫
U
f∂ig = −

∫
U
g∂if +

∫
∂U
fgni dσ,

where n(x) for x ∈ ∂U is the outward pointing normal vector and ni its i-th component.

F The Stone-Weierstrass Theorem
Theorem F.1 (Stone-Weierstrass, algebra version). [5, Theorem 6.14] Let K be a
compact topological space. Let D be a linear subspace of C(K) with:
(a) if f, g ∈ D, then fg ∈ D;
(b) if F = C: if f ∈ D, then f ∈ D;
(c) if x, y ∈ K and x 6= y, then there is an f ∈ D with f(x) = 0 and f(y) = 1.

Then D is dense in C(K).

G The Arzela-Ascoli Theorem
Theorem G.1 (Arzela-Ascoli). [7, Page 3] Let X be a compact metric space. Suppose
F is an infinite collection of functions that X → F that is equicontinuous and uniformly
bounded, i.e.,

∀ε > 0 ∃δ > 0 ∀f ∈ F ∀x, y ∈ X Jd(x, y) < δ ⇒ |f(x)− f(y)| < εK, (172)
∃M > 0 ∀x ∈ X ∀f ∈ R J|f(x)| ≤MK. (173)

Then there exists a sequence (fn)n∈N in F that uniformly converges to a function f ∈
C(X ).

H Riesz representation theorem
Definition H.1. Let (X,A) be a measurable space. A (positive) measure on A is a
countably additive function µ : A → [0,∞] such that µ(∅) = 0. A signed measure is
a countably additive function µ : A → R such that µ(∅) = 0. A complex measure is a
countably additive function µ : A → C such that µ(∅) = 0.

Theorem H.2 (Hahn-Jordan Decomposition). [4, Theorem C.1] Let µ be a signed
measure on a measurable space (X,A). Then there exist positive measures µ1, µ2, meas-
urable sets E1, E2 ∈ A such that E1 ∩E2 = ∅ and E1 ∪E2 = X, µ1(E2) = 0, µ2(E1) = 0
and µ = µ1 − µ2. These measures µ1 and µ2 are unique, and one writes also µ+ for µ1
and µ− for µ2. The sets E1 and E2 are unique up to µ1 + µ2–null sets.

Consequently, if µ is a complex measure, then there exist positive measures µ1, µ2, µ3, µ4
such that

µ = µ1 − µ2 + i[µ3 − µ4]. (174)
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Definition H.3. If µ is a positive, signed or complex measure, we define its total vari-
ation |µ| to be the function A → [0,∞] given by

|µ|(A) = sup{
n∑
i=1
|µ(Ei)| : E1, . . . , En are pairwise disjoint and in A and

n⋃
i=1

Ei = A}.

Theorem H.4. [4, Proposition C.3] If µ is a positive measure, then |µ| = µ.
If µ is a signed measure, then |µ| is a positive finite measure and |µ| = µ+ − µ−.
If µ is a complex measure, then |µ| is a positive finite measure then |µ| ≤

∑4
i=1 µi.

Definition H.5. We say that a positive measure µ is inner regular if

µ(A) = sup{µ(K) : K ⊂ A,K is compact},

and is outer regular if

µ(A) = inf{µ(U) : A ⊂ U,U is open}.

Definition H.6. Let X be a topological space. It is also considered to be a measurable
space equipped with the Borel-σ-algebra. We define M(X,R) and M(X,C) to be the
set of signed and complex measures on X, respectively, such that their total variation is
inner and outer regular. We define ‖ · ‖M :M(X,F) → [0,∞), which is called the total
variation norm, by

‖µ‖M = |µ|(X) (µ ∈M(X,F)).

Theorem H.7. [4, Proposition C.12] ‖ · ‖M is a norm onM(X,F).

H.8. If X = Rd, then every Radon measure is inner and outer regular.

Definition H.9. Let X be a locally compact space. We write C0(X,F) for the continu-
ous functions X → F that vanish at infinity: f ∈ C(X,F) is in C0(X,F) if for all ε > 0
there exists a compact set K such that |f | < ε on X \K. C0(X,F) is equipped with the
norm ‖ · ‖C0 (for which we sometimes also write ‖ · ‖C0).

Theorem H.10 (Riesz(-Markov-Kakutani) representation theorem). [4, Theorem
C.18] Let X be a locally compact space. For µ ∈M(X,F) define Ψµ : C0(X,F)→ F by

Ψµ(f) =
∫
f dµ (f ∈ C0(X,F)).

Then ψµ ∈ C0(X,F)′ and the map M(X,F) → C0(X,F)′, µ 7→ Ψµ is an isometric
isomorphism.

H.11. Of course if X be a compact Hausdorff space, the C0(X,F) = C(X,F).
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I Baire’s category theorem
Theorem I.1 (Baire’s Theorem). [5, Theorem 11.1] Let X be a complete nonempty
metric space and let U1, U2, . . . be dense open subsets of X. Then the intersection of
those sets,

⋂
n∈N Un is dense in X.

J Hahn-Banach Theorem
Definition J.1. Let X be a vector space and q : X → R. Then q is called a sublinear
function if
(a) q(x+ y) ≤ q(x) + q(y) for all x, y ∈ X,
(b) q(λx) = λq(x) for all x ∈ X and λ ≥ 0.

Theorem J.2. [4, Theorem III.6.2] Let X be a vector space over R and q : X → R be a
sublinear functional. Let M be a linear subspace of X. If f : M → R is a linear function
such that f(x) ≤ q(x) for all x ∈M , then there is a linear function F : X → R such that
G|M = f and F (x) ≤ q(x) for all x ∈ X.
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