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Abstract

In this paper we consider the Anderson Hamiltonian with white noise potential on the
box [0, L]2 with Dirichlet boundary conditions. We show that all the eigenvalues divided by
logL converge as L → ∞ almost surely to the same deterministic constant, which is given
by a variational formula.
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1 Introduction

We consider the Anderson Hamiltonian (also called random Schrödinger operator), formally
defined by H = ∆+ξ, under Dirichlet boundary conditions on the two-dimensional box [0, L]2,
where ξ is considered to be white noise. We are interested in the behaviour of this operator as
the size of the box, L, tends to infinity. In this paper we prove the following asymptotics of
the eigenvalues. Let λ(L) = λ1(L) > λ2(L) ≥ λ3(L) · · · be the eigenvalues of the Anderson
Hamiltonian on [0, L]2. For all n ∈ N, almost surely

lim
L∈Q
L→∞

λn(L)

logL
= 4 sup

ψ∈C∞c (R2)
‖ψ‖2

L2=1

‖ψ‖2L4 −
∫
R2

|∇ψ|2 = χ,

where χ is the smallest C > 0 such that ‖f‖4L4 ≤ C‖∇f‖2L2‖f‖2L2 for all f ∈ H1(R2) (this is
Ladyzhenskaya’s inequality).

1.1 Main challenge and literature

In the one dimensional setting, i.e., on the box [0, L], the Anderson Hamiltonian can be defined
using the associated Dirichlet form as the white noise is sufficiently regular, see Fukushima
and Nakao [15] (see [41] for the regularity of white noise). In dimension two the regularity of
white noise is too small to allow for the same approach. A naive way to tackle the problem
of the construction is to take a smooth approximation of the white noise ξε so that the operator
Hε = ∆ + ξε is well-defined as an unbounded self-adjoint operator, and then take the limit
ε ↓ 0. However, Hε does not converge, but Hε − cε does converge to an operator H for
certain renormalisation constants cε ↗ε↓0 ∞. This has been shown by Allez and Chouk [1] for
periodic boundary conditions, using the techniques of paracontrolled distributions introduced by
Gubinelli, Imkeller and Perkowski [17] in order to study singular stochastic partial differential
equations. In this paper we extend this to Dirichlet boundary conditions.

Recently, also Labbé [24] constructed the Anderson Hamiltonian with both periodic and
Dirichlet boundary conditions, using the tools of regularity structures. Gubinelli, Ugurcan and
Zachhuber [18] extend the work of Allez and Chouk to define the Anderson Hamiltonian with
periodic boundary conditions also for dimension 3.

One of the main interests in the study of this operator is due to its universal property, more
precisely, it was proved by Chouk, Gairing and Perkowski [8, Theorem 6.1] that under peri-
odic boundary conditions the operator H is the limit (in the resolvent sense) under a suitable
renormalisation of the discrete Anderson Hamiltonian HN = ∆N + 1

N ηN defined on the peri-
odic lattice ( 1

NZ/NZ)2 where ∆N is discrete Laplacian and (ηN (i), i ∈ Z2) are centred I.I.D.
random variables with normalised variance and finite p-th moment, for some p > 6.

Recently, Dumaz and Labbé [13] proved the Anderson localization for the one dimensional
case for the largest eigenvalues and they obtain the exact fluctuation of the eigenvalue and the
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exact behaviour of the eigenfunctions near their maxima. Unfortunately, their approach used
to tackle the Anderson localization in the one dimensional setting is strongly attached to the
SDE obtained by the so-called Riccati transform and cannot be adapted to the two dimensional
setting. Also Chen [7] considers the one dimensional setting for the white noise (and shows
λ(L) ≈ (logL)

2
3 ), but also a higher dimensional setting for the more regular fractional white

noise (where λ(L) ≈ (logL)β for some β ∈ (1
2 , 1) (and β ∈ (1

2 ,
2
3) for d = 1), where β is a

function of the degree of singularity of the covariance at zero). The techniques in his work do
not allow for an extension to a higher dimensional setting with a white noise potential. In [7,
Lemmas 2.3 and 4.1] the almost sure convergence of the principal eigenvalue is stated.

The asymptotics of the principal eigenvalue is of particular interest for the asymptotics of the
total mass of the solution to the parabolic Anderson model: ∂tu = ∆u + ξu = H u. Chen [7]
shows that with U(t) the total mass of u(t, ·), one has logU(t) ≈ tλ(Lt) for some almost linear
Lt, so that the asymptotics of λ(L) leads to asymptotics of logU(t): In d = 1 with ξ white noise,
logU(t) ≈ t(log t)

2
3 ; for d ≥ 1 with ξ a fractional white noise logU(t) ≈ t(log t)β , with β as

above. For smooth Gaussian fields ξ, Carmona and Molchanov [5] show logU(t) ∼ t(log t)
1
2 . In

a future work by König, Perkowski and van Zuijlen, the following asymptotics of the total mass
of the solution to the parabolic Anderson model with white noise potential in two dimensions
will be shown: logU(t) ≈ t log t.

For a general overview about the parabolic Anderson model and the Anderson Hamiltonian
we refer to the book by König [23].

Let us mention that our main result is already applied in [31] to prove that the super Brownian
motion in static random environment is almost surely super-exponentially persistent.

Remark 1.1. About defining the operator using Dirichlet forms. [33, Theorem VIII.15] states
that every closed semi-bounded quadratic form is the form of a unique self-adjoint operator
Considering one dimension, white noise is of regularity a little less than −1

2 in the sense that

ξ ∈ B−
1
2
−ε

∞,∞ for all ε > 0. For u, v ∈ H1
0 one has uv ∈ B1

1,1 (by Cauchy-Schwarz). Therefore
the pairing with ξ is (almost surely) well-defined and continuous by [2, Theorem 2.76] and so
q(u, v) := 〈∇u,∇v〉+ 〈ξ, uv〉 defines a semi-bounded quadratic form on H1

0 . Note that q(u, u)
is equivalent to ‖u‖2

H1
0

by Poincaré’s inequality, so that q is also closed and hence is the form of
a unique self-adjoint operator.

In two dimensions, this does not work as the product uv is still in B1
1,1 but ξ does not have

values in B−1
∞,∞ (the dual of B1

1,1) but in B−1−ε
∞,∞ for all ε > 0.

Theorem 1.2. [5, Theorem 5.1] Let V be a mean zero stationary Gaussian field on Rd with
covariance function γ, i.e., V (x) is a mean zero Gaussian random variable and E[V (x)V (0)] =
γ(x). With u the solution to the parabolic Anderson model, ∂tu = ∆u+ V u, for all x ∈ Rd

log u(t, x)

t
√

log t
=
√

2dγ(0) a.s.

Remark 1.3. This then leads to the asymptotics of the total mass, as mentioned in the introduc-
tion. In their paper they need not mention the asymptotics of the principal eigenvalue, as their
approach does not use the eigenvalue expansion. However, by using the heuristics mentioned
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above that logU(t) ≈ tλ(Lt), one expects λ(L) ≈ (logL)
1
2 . This implies that one cannot

interchange limits in L and ε for λ(QL, ξε), where ξε denotes a mollification of ξ.

Theorem 1.4 ( McKean [27]).

lim
L→∞

P
(
L
πλ(L)

1
2 exp(−8

3λ(L)
3
2 ) > x

)
=

{
1 x < 0,

e−x x ≥ 0.

Theorem 1.5. [7, Lemmas 2.3 and 4.1] Let V be a mean zero stationary generalised Gaussian
field on Rd with covariance function γ : Rd \ {0} with γ(x) ∼ c|x|−α as x → 0 for some
α ∈ (0, 2 ∧ d). This means that for all ϕ,ψ ∈ S (Rd), 〈V, ϕ〉 is a mean zero Gaussian random
variable and

E[〈V, ϕ〉〈V, ψ〉] =

∫
Rd

∫
Rd
γ(x− y)ϕ(x)ψ(y) dx dy.

Then (logL)−
2

4−αλ((−L,L)d, V ) converges almost surely to a deterministic scalar, which can
be described in terms of d, α and γ.

In case V is white noise in dimension 1 (formally, γ = δ0), then (logL)−
2
3λ((−L,L), V )

converges almost surely to a deterministic scalar.

1.2 Outline

In Section 2 we state the main results of this paper. In Section 3 we give a proof of the tail
bounds of the eigenvalues using the other ingredients presented in Section 2, and use this to
prove the main theorem. The definitions of our Dirichlet and Neumann (Besov) spaces and para-
and resonance products between those spaces are given in Section 4. With the definitions given
we can properly define the Anderson Hamiltonian on its Dirichlet domain and state the spectral
properties in Section 5. In Section 6 we prove the convergence to enhanced white noise, that will
be used to extend properties for smooth potentials to analogue properties where enhanced white
noise is taken. In Section 7 we prove scaling and translation properties. In Section 8 we compare
eigenvalues on boxes of different size. In Section 9 we prove the large deviation principle of
the enhanced white noise. This leads to the large deviation principle for the eigenvalues. In
Section 10 we study infima over the large deviation rate function, which are used to express the
limit of the eigenvalues. The more cumbersome calculations needed to prove convergence to
enhanced white noise are postponed to Section 11 and Section 12.

Acknowledgements. The authors are grateful to G. Cannizzaro, P. Gaudreau Lamarre, C.
Labbé, W. König, A. Martini, T. Orenshtein, N. Perkowski, A.C.M. van Rooij, T. Rosati and R.S.
dos Santos for discussions and valuable feedback. KC contributed to this paper when he was em-
ployed at the Technische Universität Berlin and was supported by the European Research Coun-
cil through Consolidator Grant 683164. WvZ is supported by the German Science Foundation
(DFG) via the Forschergruppe FOR2402 “Rough paths, stochastic partial differential equations
and related topics”.
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1.3 Notation

N = {1, 2, . . . }, N0 = {0} ∪ N, N−1 = {−1} ∪ N0. δk,l is the Kronecker delta, i.e., δk,k = 1
and δk,l = 0 for k 6= l. i =

√
−1. For f, g ∈ L2(D), for some domain D ⊂ Rd we write

〈f, g〉L2(D) =
∫
D fg. We write TdL for the d-dimensional torus of length L > 0, i.e., Rd/LZd.

(Ω,P) will be our underlying complete probability space. In order to avoid cumbersome admin-
istration of constants, for families (ai)i∈I and (bi)i∈I in R, we also write ai . bi to denote that
there exists a C > 0 such that ai ≤ Cbi for all i ∈ I and ai h bi to denote that both ai . bi
and ai & bi (i.e., bi . ai). We write C∞c (A) for those functions in C∞(A) that have compact
support in A◦.

2 Main results

In this section we give the main results of this paper without the technical details and definitions;
the main theorem is Theorem 2.8.

We build on the methods on the construction of the Anderson Hamiltonian in [1]. In that
paper the operator is considered on the torus or differently said, on a box with periodic boundary
conditions. In order to consider Dirichlet boundary conditions we will consider the domain to be
a subset ofH1

0 . The construction in [1] relies on Bony estimates for para- and resonance products.
We therefore have to find the right space in which we take ξ in order to be able to take para- and
resonance products of ξ with elements in the domain. For this reason we construct the framework
of Dirichlet, Bd,α

p,q , and Neumann Besov spaces, Bn,α
p,q in Section 4. We will show that Hγ

0 agrees
with Bd,γ

2,2 and show that the Bony estimates extend to products between elements of Dirichlet
and Neumann spaces. Basically the idea is as follows, for d = 1 and L = 1. Instead of the basis
for the periodic Besov space L2, given by x 7→ e2πikx we build the Dirichlet Besov space by
the basis of L2 given by x 7→ sin(πkx) and the Neumann Besov space by x 7→ cos(πkx). The
elements of the Dirichlet/Neumann Besov space on [0, L] then extend oddly/evenly to elements
of the periodic Besov space on T2L. We show that the extension of a product is the same as
the product of the respective extensions, which allows us to obtain the Bony estimates from the
periodic spaces. Moreover, this also allows us to extend the main theorem in [1] to Dirichlet
boundary conditions on QL = [0, L]2, as we present in the following theorem. We will consider
ξ in C α

n and its enhancement in Xαn , which are the Neumann analogues of C α and Xα.

Theorem 2.1 (Summary of Theorem 5.4). Let α ∈ (−4
3 ,−1). Let y ∈ R2, L > 0 and

Γ = y + QL. For an enhanced Neumann distribution ξ = (ξ,Ξ) ∈ Xαn (Γ) we construct a
stongly paracontrolled Dirichlet domain Dd

ξ(Γ), such that the Anderson Hamiltonian on Dd
ξ(Γ)

maps in L2(Γ) and is self-adjoint as an operator on L2(Γ) with a countable spectrum given by
eigenvalues λ(Γ, ξ) = λ1(Γ, ξ) > λ2(Γ, ξ) ≥ · · · (counting multiplicities). For all n ∈ N the
map ξ 7→ λn(Γ, ξ) is locally Lipschitz. Moreover, a Courant-Fischer formula is given for λn
(see (47)).

In Section 6 we show that there exists a canonical enhanced white noise in Xαn :

Theorem 2.2 (See Theorem 6.4 and 6.5). Let α ∈ (−4
3 ,−1). For all y ∈ R2 and L > 0 there

exists a canonical ξyL = (ξyL,Ξ
y
L) ∈ Xαn (y +QL) such that ξyL is a white noise (in the sense that
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is described in that theorem).

We will write ξL = ξ0
L, ξL = ξ0

L,ΞL = Ξ0
L and for β > 0

λn(y +QL, β) = λn(y +QL, (βξ
y
L, β

2ΞyL)), λn(y +QL) = λn(y +QL, 1).

Now we have the framework set and can get to the key ingredients, of which two are given
in Section 7, the scaling and translation properties:

2.3. (a) (Lemma 7.3) For L, β, ε > 0, λn(QL, β)
d
= 1

ε2
λn(QL

ε
, εβ) + 1

2π log ε.

(b) (Lemma 7.4) For y ∈ R2 and L, β > 0, λn(QL, β)
d
= λn(y + QL, β). Moreover, if

y +Q◦L ∩Q◦L = ∅, then λn(QL, β) and λn(y +QL, β) are independent.

In [16, Proposition 1] and [3, Lemma 4.6] the principal eigenvalue on a large box is bounded
by maxima of principal eigenvalues on smaller boxes. We extend these results from smooth
potentials to enhanced potentials:

Theorem 2.4 (Consequence of Theorem 8.71). There exists a K > 0 such that for all ε > 0 and
L > r ≥ 1, the following inequalities hold almost surely

max
k∈N2

0,|k|∞<
L
r
−1

λ(rk+Qr, ε) ≤ λ(QL, ε) ≤ max
k∈N2

0,|k|∞<
L
r

+1
λ(rk +Q 3

2
r, ε) + 4K

r2
.

Moreover, for n ∈ N and L > r ≥ 1; if x, y ∈ R2 and x+Qr ⊂ y+QL, then λn(x+Qr, ε) ≤
λn(y +QL, ε); if y, y1, . . . , yn ∈ R2 are such that (yi +Qr)

n
i=1 are pairwise disjoint subsets of

y +QL, then almost surely λn(y +QL, ε) ≥ mini∈{1,...,n} λ(yi +Qr, ε).

Note that rk+ [0, r]d is indeed a subset of [0, L]d for k ∈ Nd0 if (and only if) |k|∞ < L
r − 1.

Another important tool that we prove is the large deviations of the eigenvalues, which –by
the contraction principle and continuity of the eigenvalues in terms of its enhanced distribution–
is a consequence of the large deviations of (

√
εξL, εΞL), proven in Section 9.

Theorem 2.5 (See Corollary 9.3). λn(QL,
√
ε) = λn(QL, (

√
εξL, εΞL)) satisfies the large de-

viation principle with rate ε and rate function IL,n : R→ [0,∞] given by

IL,n(x) = inf
V ∈L2(QL)

λn(QL,V )=x

1
2‖V ‖

2
L2 .

In Section 10 we study infima over the large deviation rate function over half-lines, in terms
of which the almost sure limit of the eigenvalues will be described:

Theorem 2.6. There exists a C > 0 such that for all n ∈ N, %n = infL>0 inf IL,n[1,∞) =
limL→∞ inf IL,n[1,∞) > C and

2

%n
= 4 sup

V ∈C∞c (R2)
‖V ‖2

L2≤1

sup
F@C∞c (R2)
dimF=n

inf
ψ∈F

‖ψ‖2
L2=1

∫
R2

−|∇ψ|2 + V ψ2. (1)

1In this statement we have choosen a = 1
2
r.
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Moreover,

2

%1
= 4 sup

ψ∈C∞c (R2)
‖ψ‖2

L2=1

‖ψ‖2L4 −
∫
R2

|∇ψ|2 = χ, (2)

where χ is the smallest C > 0 such that ‖f‖4L4 ≤ C‖∇f‖2L2‖f‖2L2 for all f ∈ H1(R2) (this is
Ladyzhenskaya’s inequality).

Using the scaling and translation properties of 2.3, the comparison of the eigenvalue with
maxima of eigenvalues of smaller boxes in Theorem 2.4 and the large deviations in Theorem 2.5
we obtain the following tail bounds in Section 3.

Theorem 2.7. Let K > 0 be as in Theorem 8.7. Let r, β > 0. We will abbreviate Ir,1 by Ir. For
all µ > inf Ir(1,∞) and κ < inf I 3

2
r[1−

16K
r2

) there exists an M > 0 such that for all L, x > 0

with L
√
x > M

P (λ(QL, β) ≤ x) ≤ exp

(
−e

2 logL− µ

β2
x
x

2r2

)
, (3)

P (λ(QL, β) ≥ x) ≤ 2
r2
xe

2 logL− κ
β2
x
. (4)

Using the tail bounds and the limit in Theorem 2.6 we obtain our main result by a Borel-
Cantelli argument and the ‘moreover’ part of Theorem 2.4. For the details see Section 3.

Theorem 2.8. Let I ⊂ (1,∞) be an unbounded countable set, and let β > 0. For L ∈ I let
yL ∈ R2 be such that yr +Qr ⊂ yL +QL for r, L ∈ I with L > r. Then for n ∈ N

lim
L∈I
L→∞

λn(yL +QL, β)

logL
=

2β2

%1
= β2χ a.s.

3 Proof of Theorem 2.7 and Theorem 2.8

In this section we prove Theorem 2.7 and Theorem 2.8 by using 2.1–2.6.

3.1. Let K > 0 be as in Theorem 2.4. To simplify notation we take β = 1. By consecutively ap-
plying the scaling in 2.3(a), the bounds in Theorem 2.4 and then the independence and translation
properties in 2.3(b), we get for L, r, ε > 0 with L

ε > r ≥ 1

P
(
ε2λ(QL) ≤ 1

)
= P

(
λ(QL

ε
, ε) + ε2

2π log ε ≤ 1
)

≤ P

(
max

k∈N2
0,|k|∞<

L
εr
−1

λ(rk +Qr, ε) ≤ 1− ε2

2π log ε

)
≤

∏
k∈N2

0,|k|∞<
L
εr
−1

P
(
λ(rk +Qr, ε) ≤ 1− ε2

2π log ε
)

= P
(
λ(Qr, ε) ≤ 1− ε2

2π log ε
)#{k∈N2

0:|k|∞< L
εr
−1}

, (5)
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and similarly

P
(
ε2λ(QL) ≥ 1

)
= P

(
λ(QL

ε
, ε) + ε2

2π log ε ≥ 1
)

≤ P

(
max

k∈N2
0,|k|∞<

L
εr

+1
λ(rk +Q 3

2
r, ε) + 4K

r2
+ ε2

2π log ε ≥ 1

)
≤

∑
k∈N2

0,|k|∞≤
L
εr

+1

P
(
λ(rk +Q 3

2
r, ε) ≥ 1− 4K

r2
− ε2

2π log ε
)

≤ #{k ∈ N2
0 : |k|∞ < L

εr + 1}P
(
λ(Q 3

2
r, ε) ≥ 1− 4K

r2
− ε2

2π log ε
)
. (6)

As #{k ∈ N2
0 : |k|∞ ≤ n} = (n+ 1)2 for n ∈ N, we have

lim
M→∞

#{k ∈ N2
0 : |k|∞ < M ± 1}
M2

= 1.

Observe that there exists an M > 0 such that for all L, r, ε > 0 with L
εr > M

1
2( Lεr )2 ≤ #{k ∈ N2

0 : |k|∞ < L
εr ± 1} ≤ 2( Lεr )2.

By combining the above observations we have obtained the following.

Lemma 3.2. Let K > 0 be as in Theorem 8.7. Let β > 0. There exists an M > 1 such that for
all L, r, ε > 0 with L

ε > Mr > r ≥ 1

P
(
ε2λ(QL, β) ≤ 1

)
≤ P

(
λ(Qr, εβ) ≤ 1− ε2

2π log ε
) 1

2( Lεr )
2

, (7)

P
(
ε2λ(QL, β) ≥ 1

)
≤ 2

(
L
εr

)2 P(λ(Q 3
2
r, εβ) ≥ 1− 4K

r2
− ε2

2π log ε
)
. (8)

3.3. Let r > 0. Let us now use the large deviation principle in Corollary 9.3. First, observe
that as limε↓0

ε2

2π log ε = 0, also λ(Qr, εβ) + ε2

2π log ε satisfies the large deviation principle with
the rate function β−2Ir,n (by exponential equivalence, see [10, Theorem 4.2.13]). Hence for all
µ > inf Ir,n(1,∞) and κ < inf I 3

2
r,n[1 − 4K

r2
,∞) there exists a ε0 such that for ε ∈ (0, ε0) we

have the following bound on the probability appearing in (7) (using that 1−x ≤ e−x for x ≥ 0):

P
(
λ(Qr, εβ) ≤ 1− ε2

2π log ε
)
≤ 1− e−

µ

ε2β2 ≤ e−e
− µ

ε2β2

, (9)

P
(
λ(Q 3

2
r, εβ) ≥ 1− 4K

r2
− ε2

2π log ε
)
≤ e−

κ
ε2β2 . (10)

Proof of Theorem 2.7. This now follows by Lemma 3.2 and the bounds (9) and (10). We obtain

∀r > 0 ∀µ > inf Ir(1,∞) ∃M > 0 ∀L, x > 0 with L
√
x

r > M :

P (λ(QL) ≤ x) ≤ e−
L2x
2r2

e−µx = e−
x

2r2
e2 logL−µx

, (11)

∀L, r > 0 ∀κ < inf I 3
2
r[1−

4K
r2
,∞) ∃M > 0 ∀L, x > 0 with L

√
x

r > M :

P (λ(QL) ≥ x) ≤ 2L
2x
r2
e−κx. (12)
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First we prove the convergence of the eigenvalues along the set {2m : m ∈ N}, before
proving Theorem 2.8. Observe that in Theorem 3.4, contrary to Theorem 2.8, we do not impose
a condition on the sequence (ym)m∈N.

Theorem 3.4. Let n ∈ N and β > 0. For any sequence (ym)m∈N in R2.

lim
m∈N,m→∞

λn(ym +Q2m , β)

log 2m
=

2β2

%1
= 4β2 sup

V ∈C∞c (R2)
‖V ‖2

L2≤1

sup
ψ∈C∞c (R2)
‖ψ‖2

L2=1

∫
R2

−|∇ψ|2 + V ψ2 a.s.

Proof. Without loss of generality we may assume ym = 0 for all m ∈ N and take β = 1.
• First we prove the convergence of the principal eigenvalue, i.e., we consider n = 1. Let

p, q ∈ R be such that p < 2
%1
< q. We show that

lim inf
m→∞

λ(Q2m)

log 2m
> p a.s., lim sup

m→∞

λ(Q2m)

log 2m
< q a.s.

By the lemma of Borel-Cantelli it is sufficient to show that
∞∑
m=1

P
[
λ(Q2m)

log 2m
< p

]
<∞,

∞∑
m=1

P
[
λ(Q2m)

log 2m
> q

]
<∞.

By Lemma 10.1

lim
r→∞

inf Ir(1,∞) = lim
r→∞

inf I 3
2
r[1−

16K
r2
,∞) = %1.

Let r > 0 be large enough such that

p inf Ir(1,∞) < 2 < q inf I 3
2
r[1−

16K
r2
,∞).

Let µ > inf Ir(1,∞) be such that pµ < 2 and κ < inf I 3
2
r[1−

16K
r2
,∞) be such that qκ > 2. By

Theorem 2.7 for M ∈ N large enough
∞∑

m=M

P
[
λ(Q2m)

log 2m
< p

]
≤

∞∑
m=M

2−m
p2(2−pµ)m

2r2 <∞,

which is finite because p2(2−pµ)m

8r2
> 1 for large m, as 2− pµ > 0. Also

∞∑
m=M

P
[
λ(Q2m)

log 2m
> q

]
≤

∞∑
m=M

2m log 2

r2
2(2−κq)m,

which is finite as 2− κq < 0 (and because 2−αmm→ 0 for α > 0).
• Let n ∈ N. Let us first observe that as λn(Q2m) ≤ λ(Q2m), we have lim supm→∞

λn(Q2m )
log 2m ≤

2
%1

. Let x1, . . . , xn ∈ Q2n be such that (xi + Q1)ni=1 are disjoint. By Theorem 2.4 we obtain
almost surely

lim inf
m→∞

λn(Q2n+m)

log 2n+m
≥ min

i∈{1,...,n}
lim
m→∞

λ(2mxi +Q2m)

log 2n + log 2m
=

2

%1
.
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Proof of Theorem 2.8. The condition on yL is assumed in order to have the monotonicity of
L 7→ λn(yL) on I. Therefore and for convenience, we assume yL = 0 for all L ∈ I. Also we
take β = 1. Write s = 2

%1
. Let ε ∈ (0, s). By Theorem 3.4 there exists an M such that for all

m ≥M

(log 2m)(s− ε) ≤ λn(Q2m) ≤ (log 2m)(s+ ε) a.s.

Let a ∈ [1, 2], then almost surely, as L 7→ λn(QL) is an increasing function

(log a2m−1)(s− ε) ≤ λn(Q2m) ≤ λn(Qa2m) ≤ λn(Q2m+1) ≤ (log a2m+1)(s+ ε),

and (
1− log 2

log(2m)

)
(s− ε) ≤

(
1− log 2

log(a2m)

)
(s− ε)

≤ λn(Qa2m)

log(a2m)
≤
(

1 +
log 2

log(2m)

)
(s+ ε).

From this it follows that almost surely limL∈I,L→∞
λn(QL)
log(L) = s.

4 Dirichlet and Neumann Besov spaces, para- and resonance prod-
ucts

Let d ∈ N. Let L > 0. We will first introduce Dirichlet and Neumann spaces on QL = [0, L]d.
In order to do this we use 3 different bases of L2([0, L]d), one standard (the ek’s), one as an
underlying basis for Dirichlet spaces (the dk’s) and one as an underlying basis for Neumann
spaces (the nk’s). After defining these spaces (in Definition 4.9) we prove a few results that
compare Besov and Sobolev spaces. Later, in Definition 4.20 we show how to generalize this to
spaces on general boxes of the form

∏d
i=1[ai, bi]. Then we present bounds on Fourier multipliers

(Theorem 4.21) and define para- and resonance products (Definition 4.25) and state their Bony
estimates (Theorem 4.27).

In the following we will introduce some notation. For q ∈ {−1, 1}d and x ∈ Rd we use the
following short hand notation (q ◦ x is known as the Hadamard product)

(
∏

q) =
d∏
i=1

qi, q ◦ x = (q1x1, . . . , qdxd).

We call a function f : [−L,L]d → C odd if f(x) = (
∏

q)f(q ◦ x) for all q ∈ {−1, 1}d, and
similarly we call f even if f(x) = f(q ◦ x) for all q ∈ {−1, 1}d. For any f : [0, L]d → C we
write f̃ : [−L,L]d → C for its odd extension (the∼ notation is taken as it looks like the graph of
an odd function) and f : [−L,L]d → C for its even extension (similarly, the notation – is taken
as it looks like the graph of an even function), i.e., for the functions that satisfy

f̃(q ◦ x) = (
∏

q)f(x), f(q ◦ x) = f(x) for all x ∈ [0, L]d, q ∈ {−1, 1}d.
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If a function f : [−L,L]d → C is periodic, which means that f(y, L) = f(y,−L) and
f(L, y) = f(−L, y) for all y ∈ [−L,L], then it can be extended periodically on Rd (with period
2L) we will also consider it to be a function on the domain Td2L. Note that if f is periodic and
odd, then f = 0 on ∂[0, L]d. Indeed, as f is odd we have f(x1, x2) = −f(−x1, x2) from which
it follows that f(x1, x2) = 0 in case x1 = 0. As f is periodic, we have f(L, x2) = f(−L, x2) so
that combined with the above rule we see that f(x1, x2) = 0 also in case x1 = −L or x1 = L.

For k = (k1, . . . , kd) ∈ Nd0 let νk = 2−
1
2

#{i:ki=0} and write dk,L and nk,L or simply dk and
nk for the functions [0, L]d → C and ek,2L or simply ek for the function [−L,L]d → C given by

dk,L(x) = dk(x) = ( 2
L)

d
2

d∏
i=1

sin( πLkixi), (13)

nk,L(x) = nk(x) = νk(
2
L)

d
2

d∏
i=1

cos( πLkixi), (14)

ek,2L(x) = ek(x) = ( 1
2L)

d
2 e

πi
L
〈k,x〉. (15)

Note that d̃k(x) equals the right-hand side of (13) and nk(x) equals the right-hand side of (14)
for x ∈ [−L,L]d, so that d̃k and nk are elements of C∞(Td2L). We can also write d̃k and nk as
follows

d̃k(x) = ( 2
L)

d
2

d∏
i=1

e
πi
L
kixi − e−

πi
L
kixi

2i
= (−i)d

∑
q∈{−1,1}d

(
∏

q)eq◦k(x), (16)

nk(x) = νk(
2
L)

d
2

d∏
i=1

e
πi
L
kixi + e−

πi
L
kixi

2
= νk

∑
q∈{−1,1}d

eq◦k(x). (17)

( 2
L)

d
2

d∏
i=1

e
πi
L
kixi − e−

πi
L
kixi

2i
= ( 1

2L)
d
2

d∏
i=1

∑
qi∈{−1,1}

qi
i
e
πi
L
qikixi .

For an integrable function f : Td2L → C its k-th Fourier coefficient is defined by

Ff(k) = 〈f, ek〉 =
1

(2L)
d
2

∫
Td2L

f(x)e−
πi
L
〈k,x〉 dx (k ∈ Zd).
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4.1. It is not difficult to see that for ϕ,ψ ∈ L2([0, L]d), the following equalities hold:

F (ϕ̃)(k) = (
∏

q)F (ϕ̃)(q ◦ k) for all k ∈ Zd, q ∈ {−1, 1}d, (18)

F (ϕ̃)(k) = 0 for all k ∈ Zd with ki = 0 for some i, (19)

F (ϕ)(k) = F (ϕ)(q ◦ k) for all k ∈ Zd, q ∈ {−1, 1}d, (20)

〈ϕ̃, ψ̃〉L2[−L,L]d = 2d〈ϕ,ψ〉L2[0,L]d = 〈ϕ,ψ〉L2[−L,L]d , (21)

〈ϕ, dk〉 =
1

2d
〈ϕ̃, d̃k〉 =

( i

2

)d ∑
q∈{−1,1}d

(
∏

q)F (ϕ̃)(q ◦ k) = idF (ϕ̃)(k) for all k ∈ Nd, (22)

〈ϕ, nk〉 =
1

2d
〈ϕ, nk〉 =

1

2d

∑
q∈{−1,1}d

F (ϕ)(q ◦ k) = F (ϕ)(k) for all k ∈ Nd0. (23)

4.2. By partial integration one obtains that F (∂αf)(k) = (πi
L k)αF (f)(k). So that F (∆f)(k) =

−| πLk|
2F (f)(k). Consequently 〈∆f, dk〉 = −| πLk|

2〈f, dk〉 and 〈∆f, nk〉 = −| πLk|
2〈f, nk〉.

This will be used later to define (a−∆)−1 for a ∈ R \ {0}.
Indeed, by partial integration one has

F (∂if)(k) =
1

(2L)
d
2

∫
Td2L

e−
πi
L
〈k,x〉∂if(x) dx

= − 1

(2L)
d
2

∫
Td2L

f(x)∂ie
−πi
L
〈k,x〉 dx

=
πi

L
ki

1

(2L)
d
2

∫
Td2L

f(x)e−
πi
L
〈k,x〉 dx.

Moreover, from this one obtains that the spectrum of −∆ is given by { π2

L2 |k|2 : k ∈ Zd} and
that every ek is an eigenvector.

Lemma 4.3. {dk : k ∈ Nd} and {nk : k ∈ Nd0} form orthonormal bases for L2([0, L]d).

Proof. We leave it to the reader to check that those sets are orthonormal. Let ϕ ∈ L2([0, L]d).
By expressing ϕ̃ and ϕ in terms of the basis {ek : k ∈ Zd} and using 4.1 one obtains ϕ̃ =∑

k∈Nd〈ϕ, dk〉L2[0,L]2 d̃k and ϕ =
∑

k∈Nd0
〈ϕ, nk〉L2[0,L]2nk.

Indeed ∑
k∈Nd
〈ϕ, dk〉L2[0,L]2 d̃k =

∑
k∈Nd

idF (ϕ̃)(k)d̃k

=
∑
k∈Nd

id(−i)d
∑

q∈{−1,1}d
(
∏

q)F (ϕ̃)(k)eq◦k(x)

=
∑
k∈Nd

∑
q∈{−1,1}d

F (ϕ̃)(q ◦ k)eq◦k(x)

=
∑
k∈Zd

F (ϕ̃)(k)ek(x) = ϕ̃(x).
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For the orthonormality, for k, l ∈ Nd

2d〈dk, dl〉L2([0,L]d) = 〈d̃k, d̃l〉L2(Td2L) =
∑

q,p∈{−1,1}d
(
∏

qp)〈eq◦k, ep◦l〉 =

{
0 k 6= l,

2d k = l.

For k, l ∈ Nd0

2d〈nk, nl〉L2([0,L]d) = 〈nk, nl〉L2(Td2L) =
∑

q,p∈{−1,1}d
〈eq◦k, ep◦l〉

=

{
0 k 6= l,

2d2#{i:ki=0} k = l.

Definition 4.4. We define the set of test functions on [0, L]d that oddly and evenly extend to
smooth functions on Td2L (here S (Td2L) = C∞(Td2L)):

S0([0, L]d) := {ϕ ∈ C∞([0, L]d) : ϕ̃ ∈ S (Td2L)},
Sn([0, L]d) := {ϕ ∈ C∞([0, L]d) : ϕ ∈ S (Td2L)}.

We equip S0([0, L]d), Sn([0, L]d) and S (Td2L) with the Schwarz–seminorms. The Schwarz-
seminorms ‖ · ‖k,S for k ∈ N0 are defined by

‖f‖k,S :=
∑

α:|α|≤k

sup
x∈Rd

|(1 + |x|)kDαf(x)| <∞. (24)

Note that2 C∞c ([0, L]d) is a subset of both S0([0, L]d) and Sn([0, L]d).

In the following theorem we state how one can represent elements of S , S0 and Sn and of
S ′, S ′

0 and S ′
n in terms of series in terms of ek, dk and nk.

Theorem 4.5. (a) Every ω ∈ S (Td2L), ϕ ∈ S0([0, L]d) and ψ ∈ Sn([0, L]d) can be repre-
sented by

ω =
∑
k∈Zd

akek, ϕ =
∑
k∈Nd

bkdk, ψ =
∑
k∈Nd0

cknk, (25)

where (ak)k∈Zd , (bk)k∈Nd and (ck)k∈Nd0
in C are such that

∀n ∈ N : sup
k∈Zd

(1 + |k|)n|ak| <∞, sup
k∈Nd

(1 + |k|)n|bk| <∞, sup
k∈Nd0

(1 + |k|)n|ck| <∞,

(26)

and ak = 〈ω, ek〉, bk = 〈ϕ, dk〉 and ck = 〈ψ, nk〉.
Conversely, if (ak)k∈Zd , (bk)k∈Nd and (ck)k∈Nd0

satisfy (26) then
∑

k∈Zd akek,
∑

k∈Nd bkdk

and
∑

k∈Nd0
cknk converge in S (Td2L), S0([0, L]d) and Sn([0, L]d), respectively.

2For the notation see Section 1.3.
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(b) Every w ∈ S ′(Td2L), u ∈ S ′
0([0, L]d) and v ∈ S ′

n([0, L]d) can be represented by

w =
∑
k∈Zd

akek, u =
∑
k∈Nd

bkdk, v =
∑
k∈Nd0

cknk, (27)

where (ak)k∈Zd , (bk)k∈Nd and (ck)k∈Nd0
in C are such that

∃n ∈ N : sup
k∈Zd

|ak|
(1 + |k|)n

<∞, sup
k∈Nd

|bk|
(1 + |k|)n

<∞, sup
k∈Nd0

|ck|
(1 + |k|)n

<∞, (28)

and ak = 〈w, ek〉, bk = 〈u, dk〉 and ck = 〈v, nk〉.
Conversely, if (ak)k∈Zd , (bk)k∈Nd and (ck)k∈Nd0

satisfy (28) then
∑

k∈Zd akek,
∑

k∈Nd bkdk

and
∑

k∈Nd0
cknk converge in S ′(Td2L), S ′

0([0, L]d) and S ′
n([0, L]d), respectively.

Proof. Let ω ∈ S (Td2L). As one has the relation F (∆nω)(k) = (− π2

L2 |k|2)nF (ω)(k) for

all n ∈ N0, we have (26) and
∑

k∈Zd:|k|≤N F (ω)(k)ek
N→∞−−−−→ ω in S (Td2L), see also [38,

Corollary 2.2.4].
Let ϕ ∈ S0([0, L]d). Using the shown convergence above for ω = ϕ̃, by (16), (18), (19) and

(22) ∑
k∈Zd
|k|≤N

F (ϕ̃)(k)ek =
∑
k∈Nd
|k|≤N

∑
q∈{−1,1}d

F (ϕ̃)(q ◦ k)eq◦k =
∑
k∈Nd
|k|≤N

〈ϕ, dk〉d̃k.

Hence
∑

k∈Nd:|k|≤N 〈ϕ, dk〉dk converges to ϕ in S0([0, L]d).
Let ψ ∈ Sn([0, L]d). Using the shown convergence above for ψ, by (17), (20) and (23)∑

k∈Zd
|k|≤N

F (ψ)(k)ek =
∑
k∈Nd0
|k|≤N

2−#{i:ki=0}
∑

q∈{−1,1}d
F (ψ)(q ◦ k)eq◦k =

∑
k∈Nd0
|k|≤N

cknk.

Hence
∑

k∈Nd:|k|≤N 〈ψ, nk〉nk converges to ψ in Sn([0, L]d).
(b) follows from (a).
Let w ∈ S ′(Td2L). Then there exists an n ∈ N and a C > 0 such that |w(ϕ)| ≤ C‖ϕ‖m =

C
∑

α:|α|≤n ‖Dαϕ‖∞. As Dαek = (−πi
L )αkαek, (28) follows.

For ϕ ∈ S0([0, L]d), note that ϕ̃ =
∑

k∈Nd〈ϕ, dk〉d̃k. Moreover, note that ω ∈ S (Td2L) is
odd if and only if 〈ω, eq◦k〉 = (

∏
q)〈ω, ek〉 for all k ∈ Zd and q ∈ {−1, 1}d. This motivates the

following definition.

Definition 4.6. For u ∈ S ′
0([0, L]d) we write ũ for the distribution in S ′(Td2L) given by ũ =∑

k∈Nd〈u, dk〉d̃k. For v ∈ S ′
n([0, L]d) we write v for the distribution in S ′(Td2L) given by

v =
∑

k∈Nd0
〈u, nk〉nk. A w ∈ S ′(Td2L) is called odd if 〈w, eq◦k〉 = (

∏
q)〈w, ek〉 for all k ∈ Zd

and q ∈ {−1, 1}d. If instead 〈w, eq◦k〉 = 〈w, ek〉 for all k ∈ Zd and q ∈ {−1, 1}d, then w is
called even.

Note that ũ is odd and v is even.
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By (21) and Theorem 4.5, for u ∈ S ′
0([0, L]d), ϕ ∈ S0([0, L]d) and v ∈ S ′

n([0, L]d),
ψ ∈ Sn([0, L]d)

〈u, ϕ〉 = 2−d〈ũ, ϕ̃〉, 〈v, ψ〉 = 2−d〈v, ψ〉. (29)

Theorem 4.7. (a) We have

S̃0(Td2L) := {ϕ̃ : ϕ ∈ S0([0, L]d)} = {ψ ∈ S (Td2L) : ψ is odd},
S n(Td2L) := {ϕ : ϕ ∈ Sn([0, L]d)} = {ψ ∈ S (Td2L) : ψ is even},

and S̃0(Td2L) and S n(Td2L) are closed in S (T2L).

(b) S (Td2L), S0([0, L]d) and Sn([0, L]d) are complete.

(c) We have

S̃ ′
0(Td2L) := {ũ : u ∈ S ′

0([0, L]d)} = {w ∈ S ′(Td2L) : w is odd},

S
′
n(Td2L) := {v : v ∈ S ′

n([0, L]d)} = {w ∈ S ′(Td2L) : w is even},

and S̃ ′
0(Td2L) and S

′
n(Td2L) are closed in S ′(Td2L).

(d) S ′(Td2L), S ′
0([0, L]d) and S ′

n([0, L]d) are (weak∗) sequentially complete.

Proof. (a) follows as convergence in S implies pointwise convergence and therefore the limit
of odd and even functions is again odd and even, respectively. (b) follows from (a) as S (Td2L)
is complete (see [12, Page 134]). (c) If a net (wι)ι∈I in S̃ ′

0 converges in S ′ to some w, then
〈wι, ek〉 → 〈w, ek〉 for all k, so that w is odd. (d) follows from (c) as S ′(Td2L) is weak∗

sequentially complete (see [12, Page 137]).

As we index the basis ek, dk and nk by elements k in Zd and not in 1
LZ

d, in the next definition
of a Fourier multiplier we have an additional 1

L factor in the argument of the functions τ and σ.

Definition 4.8. Let τ : Rd → R, σ : [0,∞)d → R, w ∈ S ′(Td2L), u ∈ S ′
0([0, L]d) and

v ∈ S ′
n([0, L]d). We define (at least formally) the so-called Fourier multipliers by

τ(D)w =
∑
k∈Zd

τ( kL)〈w, ek〉ek,

σ(D)u =
∑
k∈Nd

σ( kL)〈u, dk〉dk, σ(D)v =
∑
k∈Nd0

σ( kL)〈v, nk〉nk. (30)

Let (ρj)j∈N−1 form a dyadic partition of unity, i.e., ρ−1 and ρ0 are C∞ radial functions on
Rd, where ρ−1 is supported in a ball and ρ0 is supported in an annulus, ρj = ρ(2−j ·) for j ∈ N0,
and ∑

j∈N−1

ρj(y) = 1,
1

2
≤
∑
j∈N−1

ρj(y)2 ≤ 1 (y ∈ Rd), (31)

|j − k| ≥ 2 =⇒ supp ρj ∩ supp ρk = ∅ (j, k ∈ N0). (32)
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Let w ∈ S ′(Td2L), u ∈ S ′
0([0, L]d) and v ∈ S ′

n([0, L]d). We define the Littlewood-Paley
blocks ∆jw, ∆ju and ∆jv for j ∈ N−1 by ∆jw = ρj(D)w, ∆ju = ρj(D)u, ∆jv = ρj(D)v,
i.e.,

∆jw =
∑
k∈Zd
〈w, ek〉ρj( kL)ek, ∆ju =

∑
k∈Nd
〈u, dk〉ρj( kL)dk, ∆jv =

∑
k∈Nd0

〈v, nk〉ρj( kL)nk.

Let σ : Rd → R be the even extension of σ, i.e., σ(q ◦ x) = σ(x) for all x ∈ [0,∞)d and
q ∈ {−1, 1}d. As σ(D)dk = σ( kL)dk and σ(D)d̃k = σ( kL)d̃k, by Theorem 4.5 we obtain that for
all u ∈ S ′

0([0, L]d) and v ∈ S ′
n([0, L]d),

σ̃(D)u = σ(D)ũ, σ(D)v = σ(D)v. (33)

Moreover, with ad,p = 2
− d
p for p <∞ and ad,∞ = 1 we have for all p ∈ [1,∞]

‖σ(D)u‖Lp([0,L]d) = ad,p‖σ̃(D)u‖Lp(Td2L) = ad,p‖σ(D)ũ‖Lp(Td2L),

‖σ(D)v‖Lp([0,L]d) = ad,p‖σ(D)v‖Lp(Td2L) = ad,p‖σ(D)v‖Lp(Td2L).

Therefore, by applying the above to σ = ρj , with ‖ · ‖Bαp,q the standard Besov norm,

ad,p‖ũ‖Bαp,q = ‖(2iα‖∆iu‖Lp)i∈N−1‖`q , ad,p‖v‖Bαp,q = ‖(2iα‖∆iv‖Lp)i∈N−1‖`q .

This motivates the following definition.

Definition 4.9. Let α ∈ R, p, q ∈ [1,∞]. We define the Dirichlet Besov space Bd,α
p,q ([0, L]d) to

be the space of u ∈ S ′
0([0, L]d) for which ‖u‖Bd,α

p,q
:= ad,p‖ũ‖Bαp,q < ∞. Similarly, we define

the Neumann Besov space Bn,α
p,q ([0, L]d) as the space of v ∈ S ′

n([0, L]d) for which ‖v‖Bn,α
p,q

:=

ad,p‖v‖Bαp,q <∞.
We will abbreviate C α

n = Bn,α
∞,∞, Hα

n = Bn,α
2,2 . In Theorem 4.15 we show Hα

0 = Bd,α
2,2 .

4.10. Let us see if the definition is such that we get “what we want”. First of all let us note that
the Littlewood-Paley block ∆iu needs to be defined as ρi(D)u which has the factor 1

L in front of
the Fourier coefficient k, so that we have equivalence with the Hα spaces for p = q = 2. This
so that the regularity of distributions does not change when considering a bigger space. Let us
demonstrate this for δ0 in S ′

n([0, L]d). We have

∆iδ0 =
∑
k∈Nd0

ρi(
k
L)n0.

As ‖n0‖L∞ is bounded by L−
d
2 and equal to it at 0 we have

‖
∑
k∈Nd0

ρi(
k
L)n0(0)n0‖L∞ = L−d

∑
k∈Nd0

ρi(
k
L).
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The latter sum is about equal to 2idLd so that δ0 ∈ B−d∞,∞([0, L]d) and has the about the same
norm for all L (at least for L = λ2m with λ > 0 and m ∈ N0 the norms are the same).

Now let us see what happens for α = 0 and constant functions. We have

〈1, n0,L〉 =

∫
[0,L]d

L−
d
2 dx = L

d
2 ,

and thus

∆−11 = ρ−1(0)〈1, n0,L〉n0,L = 1 ∆i1 = 0 for i ≥ 0.

Hence ‖∆−11‖L∞ = 1 and thus ‖1‖
Bn,0
∞,∞([0,L]d)

= 1 = ‖1‖L∞ . On the other hand ‖∆−11‖Lp =

L
1
p and thus ‖1‖

Bn,0
2,2 ([0,L]d)

= L
1
p = ‖1‖L2 .

As Bα
p,q(Td2L) is a Banach space, ‖ · ‖Bd,α

p,q
is a norm on Bd,α

p,q ([0, L]d) under which it is a

Banach space. Similarly, ‖ · ‖Bn,α
p,q

is a norm on Bn,α
p,q ([0, L]d) under which it is a Banach space.

Theorem 4.11. C∞c ([0, L]d) is dense in Bd,α
p,q ([0, L]d) for all α ∈ R, p, q ∈ [1,∞).

Proof. The proof follows the same strategy as the proof of [2, Proposition 2.74].

Theorem 4.12. For α > 0, Hα(Rd) = Bα
2,2(Rd) = Λα2,2(Rd) and their norms are equivalent

(for the definitions see [40, p. 36]).

Proof. For Hα(Rd) = Fα2,2(Rd) see [40, p.88], for Fα2,2(Rd) = Bα
2,2(Rd) see [40, p.47] and for

Bα
2,2(Rd) = Λα2,2(Rd) see [40, p.90].

Lemma 4.13. For α ∈ R the spaces Bα
2,2(Td2L) and Hα(Td2L) (see [36, p. 168]) are equal with

equivalent norms. Here Hα(Td2L) is the space of distributions in S ′(Td2L) for which ‖u‖Hα <
∞, where

‖u‖Hα =

√∑
k∈N2

0

(1 + | kL |2)α〈u, ek〉2.

Proof. Observe that by the properties of the dyadic partition: for all α ∈ R there exist cα, Cα > 0
such that

cα
(
1 + | kL |

2
)α ≤ ∑

j∈N−1

22αjρj(
k
L)2 ≤ Cα

(
1 + | kL |

2
)α
. (34)

Therefore the equivalence of the norms follows by Plancherel’s formula.

The following is a consequence of the fact that the norms of Hα(Td2L) (see [36, p. 168]) and
Bα

2,2(Td2L) are equivalent.
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Theorem 4.14. For all α ∈ R we have for u ∈ S ′
n([0, L]d) and v ∈ S ′

0([0, L]d)

‖u‖Bn,α
2,2

h
√∑
k∈N2

0

(1 + | kL |2)α〈u, nk〉2, ‖v‖Bd,α
2,2

h
√∑
k∈N2

0

(1 + | kL |2)α〈v, dk〉2.

Theorem 4.15. For α > 0 the spaces Bd,α
2,2 ([0, L]d) and Hα

0 ([0, L]d) are equal with equivalent
norms, where Hα

0 ([0, L]d) is the closure of C∞c ([0, L]d) in Hα(Rd).

Proof. As C∞c ([0, L]d) is dense in Bd,α
2,2 ([0, L]d) (Theorem 4.11) it is sufficient to prove the

equivalence of the norms on C∞c ([0, L]d). Let f ∈ C∞c ([0, L]d). By definition of the Λα2,2 norm,

‖f‖Λα2,2(TdL) = ‖f‖Λα2,2(Rd). As Dβ f̃ = D̃βf we have ‖f̃‖Λα2,2(Td2L) = 2
d
2 ‖f‖Λα2,2(TdL). Because

‖f̃‖Bα2,2(Td2L) = 2
d
2 ‖f‖Bd,α

2,2 ([0,L]d) (by definition), the proof follows by Theorem 4.12. Explaining

the “sufficient” now. Let f ∈ Bd,α
2,2 ([0, L]d) and gn ∈ C∞c ([0, L]d) be such that gn → f in Bd,α

2,2 .
Then by the proved equivalences (gn)n is Cauchy in Hα

0 , hence is converging to f . This extends
the equivalence of norms on C∞c ([0, L]d) to the whole space.

Theorem 4.16. Let p, q ∈ [1,∞] and β, γ ∈ R, γ < β. Then Bβ
p,q(Td2L) is compactly em-

bedded in Bγ
p,q(Td2L), i.e., every bounded set in Bβ

p,q(Td2L) is compact in Bγ
p,q(Td2L). The anal-

ogous statement holds for Bd,β
p,q ([0, L]d) and Bn,β

p,q ([0, L]d) spaces. In particular, the injection
j : Hβ

0 ([0, L]d)→ Hγ
0 ([0, L]d) is a compact operator.

Proof. We consider the underlying space to be Td2L, i.e., periodic boundary conditions; the other
cases follow by Theorem 4.7. Suppose that un ∈ Bβ

p,q and ‖un‖Bβp,q ≤ 1 for all n ∈ N. We

prove that there is a subsequence of (un)n∈N that converges in Bγ
p,q. By [2, Theorem 2.72] there

exists a subsequence of (un)n∈N, which we assume to be the sequence itself, such that un → u
in S ′ and ‖u‖

Bβp,q
≤ 1. As 〈un, ek〉 → 〈u, ek〉 for all k ∈ Zd, we have ‖∆j(un − u)‖Lp → 0

for all j ∈ N−1. Let ε > 0. Choose J ∈ N large enough such that 2(γ−β)J < ε, so that for all
n ∈ N

‖(2γj‖∆j(un − u)‖Lp)∞j=J+1‖`q ≤ 2(γ−β)J‖(2βj‖∆j(un − u)‖Lp)∞j=J+1‖`q

≤ 2(γ−β)J(‖un‖Bβp,q + ‖u‖
Bβp,q

) < 2ε.

Then, by choosing N ∈ N large enough such that ‖(2γj‖∆j(un − u)‖Lp)Jj=−1‖`q < ε for all
n ≥ N , one has with the above bound that ‖un − u‖Bγp,q < 3ε for all n ≥ N .

4.17. Observe that by Lemma 4.3 H0
0 ([0, L]d) = H0

n ([0, L]d) = L2([0, L]d) and ‖ · ‖H0
0
h

‖ · ‖H0
n
h ‖ · ‖L2 .

4.18. By 4.2 we have (a−∆)−1f = σ(D)f for σ(x) = (a+ π2|x|2)−1.
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4.19. For any function ϕ and λ ∈ R we write lλϕ for the function x 7→ ϕ(λx). For a distribution
u we write lλu for the distribution given by 〈lλu, ϕ〉 = λ−d〈u, l 1

λ
ϕ〉. As lλek,2L = λ−

d
2 ek, 2L

λ
,

and 〈lλu, ek, 2L
λ
〉 = λ−

d
2 〈u, ek,2L〉, we have for u ∈ S ′(Td2L)

lλ[σ(λD)u] = σ(D)[lλu]. (35)

Similarly, (35) holds for u ∈ S ′
0([0, L]d) and u ∈ S ′

n([0, L]d) (use e.g. 4.1). If ϕ ∈ S ([0, L]d),
then lλϕ ∈ S ([0, Lλ ]d). If u ∈ S ′([0, L]d), then lλu ∈ S ′([0, Lλ ]d).

lλ[σ(D)w] = lλ[
∑
k∈Zd
〈w, ek〉σ( kL)ek] = λ−

d
2

∑
k∈Zd
〈w, ek〉σ( kL)ek, 2L

λ

σ(D)[lλw] =
∑
k∈Zd
〈lλw, ek, 2L

λ
〉σ(λkL )ek, 2L

λ

Definition 4.20. Let y ∈ Rd, s ∈ (0,∞)d and Γ = y+
∏d
i=1[0, si]. Let l :

∏d
i=1[0, si]→ [0, 1]d

be given by l(x) = (x1s1 , . . . ,
xd
sd

). For a function ϕ we define new functions lϕ and Tyϕ by
lϕ(x) = ϕ ◦ l(x) and Tyϕ(x) = ϕ(x− y) and for a distribution u we define the distributions lu
and Tyu by 〈lu, ϕ〉 = |det l|−1〈u, l−1ϕ〉 and 〈Tyu, ϕ〉 = 〈u,T −1

y ϕ〉. We define

S0(Γ) := Tyl[S0([0, 1]d)], S ′
0(Γ) := Tyl(S

′
0([0, 1]d)),

σ(D)u := Tyl[(lσ)(D)((Tyl)
−1u)] for u ∈ S ′

0(Γ). (36)

Note that the definition of σ(D)u is consistent with (30) by 4.19. Indeed, for u ∈ S ′
0([0, L]d)

we have lLu ∈ S ′
0([0, 1]d), | det lL| = Ld and

‖σ(D)lLu‖Lp([0,1]d) = ‖lL[σ(LD)u]‖Lp([0,1]d) = L
− d
p ‖σ(LD)u‖Lp([0,L]d).

Moreover, we define ∆i = ρi(D) (as in (36)) and

‖u‖Bd,α
p,q

(Γ) := ‖(2iα‖∆iu‖Lp)i∈N−1‖`q .

Similarly, we define Sn(Γ),S ′
n(Γ), Bn,α

p,q (Γ) and ‖ · ‖Bn,α
p,q (Γ).

The following theorem gives a bound on Fourier multipliers, similar as in [2, Theorem 2.78].
However, considering the particular choice Hγ(Td2L) = Bγ

2,2(Td2L) allows us to reduce condition
to control all derivatives of σ to a condition that only controls the growth of σ itself.

Theorem 4.21. Let γ,m ∈ R and M > 0. There exists a C > 0 such that the following
statements hold.

(a) For all bounded σ : Rd → R such that |σ(x)| ≤M(1 + |x|)−m for all x ∈ Rd,

‖σ(D)w‖Hγ+m ≤ C‖w‖Hγ (w ∈ S ′(Td2L)). (37)

By (33), one may replace “H” and “S ′(Td2L)” by “H0” and “S ′
0([0, L]d)” or “Hn” and

“S ′
n([0, L]d)” in (37).
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(b) For all σ : Rd → R which are C∞ on Rd \ {0}, such that |∂ασ(x)| ≤M |x|−m−|α| for all
x ∈ Rd \ {0} and α ∈ Nd0 with |α| ≤ 2b1 + d

2c,

‖σ(D)w‖C γ+m ≤ C‖w‖C γ (w ∈ S ′(Td2L)). (38)

By (33), one may replace “C ” and “S ′(Td2L)” by “Cn” and “C ′n([0, L]d)” in (38).

Proof. Let a > 0 be such that ρ(k) = 0 if |k| < a. Then for j ≥ 0 one has |ρj(k)σ(k)| ≤
M(1 + a2j

L )−mρj(k) ≤MLma−m2−jmρj(k) for all k ∈ Zd. As σ is bounded on the support of
ρ−1, there exists a C > 0 such that for all j ∈ N−1

‖σ(D)∆jw‖L2 =

√∑
k∈Zd
|w(ek)|2|σ( kL)|2|ρj(k)|2 ≤ C2−jm‖∆jw‖L2 .

(38) follows from [2, Lemma 2.2].

4.22. Using the multivariate chain rule (Faà di Bruno’s formula) one can prove that σ(x) =
(1 + π2|x|2)−1 satisfies the conditions in Theorem 4.21 (those needed for (38)).

One other bound that we will refer to is a special case of [2, Proposition 2.71]:

Theorem 4.23. For all α ∈ R there exists a C > 0 such that ‖w‖Cαn ≤ C‖w‖
H
α+ d2
n

for all

w ∈ S ′
n([0, L]d).

Now we consider (para- and resonance-) products between elements of S ′
0([0, L]d) and

S ′
n([0, L]d), and between elements of S ′

n([0, L]d).

4.24. Let w1, w2 ∈ S ′(Td2L) be represented by w1 =
∑

k∈Zd akek and w2 =
∑

l∈Zd blel. Then
formally w1w2 =

∑
m∈Zd cmem, with cm =

∑
k,l∈Zd,k+l=m akbl.

Let us first observe the following.

• If (ak)k∈Zd and (bk)k∈Zd satisfy (26), then so does (cm)m∈Zd . Indeed, by assuming that
a0 = b0 = 0 and using that |kl| ≥ |k+l|

2 for k, l 6= 0 we have for all large enough n ∈ N

|cm| .
∑

k,l∈Zd\{0}
k+l=m

|kl|−n .
∑

k,l∈Zd\{0}
k+l=m

|kl|−
n
2 |k + l|−

n
2 . |m|−

n
2 .

• If (ak)k∈Zd and (bk)k∈Zd satisfy (28), then (cm)m∈Zd as above might not (take ak = bk =
|k|n for some n ∈ N).

Of course this series is not always convergent (e.g. take ak = bk = |k|n for some n ∈ N and see
(28)). But if it does, then due to the identities

(2L)
d
2 d̃knl = (−i)dνl

∑
q,p∈{−1,1}d

(
∏

q)eq◦(k+p◦l) = νl
∑

p∈{−1,1}d
d̃k+p◦l, (39)

(2L)
d
2 d̃kd̃l = (−1)d

∑
q,p∈{−1,1}d

(
∏

p)eq◦(k+p◦l) = (−1)d
∑

p∈{−1,1}d
ν−1
k+p◦l(

∏
p)nk+p◦l, (40)

(2L)
d
2 nknl = νkνl

∑
q,p∈{−1,1}d

eq◦(k+p◦l) =
∑

p∈{−1,1}d

νkνl
νk+p◦l

nk+p◦l, (41)

20



the product obeys the following rules

even× even = even, odd× even = odd, odd× odd = even.

For example, if u ∈ S ′
0 and v ∈ S ′

n and uv exists in a proper sense, then uv ∈ S ′
0.

Definition 4.25. For u ∈ S ′
0([0, L]d) ∪ S ′

n([0, L]d) and v ∈ S ′
n([0, L]d) we write (at least

formally)

u4 v = v 5 u =
∑

i,j∈N−1
i≤j−1

∆iu∆jv, u� v =
∑

i,j∈N−1

|i−j|≤1

∆iu∆jv. (42)

4.26. As d̃knm = d̃knm and nknm = nknm, we have (at least formally)

ũ4 v = ũ4 v, ũ5 v = ũ5 v, ũ� v = ũ� v, (43)

u4 v = u4 v, u5 v = u5 v, u� v = u� v. (44)

With this one can extend the Bony estimates on the (para-/resonance) products on the torus to
Bony estimates between elements of Bd,α

p,q ([0, L]d) and Bn,β
p,q ([0, L]d) and between elements of

Bn,β
p,q ([0, L]d). We list some Bony estimates in Theorem 4.27.

Theorem 4.27. (Bony estimates)

(a) For all α < 0, γ ∈ R, there exists a C > 0 such that for all L > 0

‖f 5 ξ‖Hα+γ
0
≤ C‖f‖Hγ

0
‖ξ‖Cαn (f ∈ S ′

0([0, L]d), ξ ∈ S ′
n([0, L]d)).

(b) For all δ > 0, γ ≥ −δ and β ∈ R there exists a C > 0 such that for all L > 0

‖f 4 ξ‖
Hβ−δ

0
≤ C‖f‖Hγ

0
‖ξ‖

C βn
(f ∈ S ′

0([0, L]d), ξ ∈ S ′
n([0, L]d)).

(c) For all α, γ ∈ R with α+ γ > 0, there exists a C > 0 such that for all L > 0

‖f � ξ‖Hα+γ
0
≤ C‖f‖Hγ

0
‖ξ‖Cαn (f ∈ S ′

0([0, L]d), ξ ∈ S ′
n([0, L]d)),

‖f � ξ‖Cα+γn
≤ C‖f‖C γn ‖ξ‖Cαn (f, ξ ∈ S ′

n([0, L]d)).

(d) For all α, γ ∈ R with α+ γ > 0 and δ > 0 there exists a C > 0 such that for all L > 0

‖fξ‖
Hα∧γ−δ

0
≤ C‖f‖Hγ

0
‖ξ‖Cαn (f ∈ S ′

0([0, L]d), ξ ∈ S ′
n([0, L]d)).

The above statements also hold by simultaneously replacing “H0” and “S ′
0” by “Hn” and

“S ′
n”.

Proof. By 4.26 it is sufficient to consider the analogue statements with periodic boundary con-
ditions, that is, considering the underlying space Td2L. For (a) and (b) see [32, Lemma 2.1] and
[2, Proposition 2.82] where the underlying space is Rd rather than the torus. For (c) see [2,
Proposition 2.85]. (d) follows from the rest.
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The last observation we make is that one can also define Besov spaces with mixed boundary
conditions, to which we refer in Definition 5.2.

4.28 (Besov spaces with mixed boundary conditions). Beside the Dirichlet and Neumann Besov
spaces one can define Besov spaces with mixed boundary conditions as follows. First observe
that for k ∈ Nd0, the function dk,L is the product of the one dimensional functions dki,L, in the
sense that dk,L(x) =

∏d
i=1 dki,L(xi). Similarly, nk,L(x) =

∏d
i=1 nki,L(xi). One could interpret

this as taking Dirichlet (or Neumann) boundary conditions in every direction. Instead one could
for example for d = 2 take the function fk,L(x) = dk1,L(x1)nk2,L(x2) and analogously to
Definition 4.9 define a Besov space with mixed boundary conditions. Moreover, analogous to
Definition 4.25 one can define the para- and resonance products as in (42) and obtain the Bony
estimates as in Theorem 4.27 for elements with “opposite boundary conditions”.

5 The operator ∆ + ξ with Dirichlet boundary conditions

We define the Anderson Hamiltonian with Dirichlet boundary conditions and study its spectral
properties that will be used in the rest of the paper. In this section we assume d = 2, y ∈ R2 and
s ∈ (0,∞)2 and write Γ = y +

∏2
i=1[0, si]. Moreover, we let α ∈ (−4

3 ,−1) and ξ ∈ C α
n (Γ).

We abbreviate C α
n (Γ) by C α

n , Hγ
0 (Γ) by Hγ

0 , etc. We write σ : R2 → (0,∞) for the function
given by

σ(x) =
1

1 + π2|x|2
.

Additional assumptions are given in 5.10. Remember, see 4.18, that σ(D) = (1−∆)−1.

Definition 5.1. For β ∈ R, we define the space of enhanced Neumann distributions, written Xβn ,
to be the closure in C β

n × C 2β+2
n of the set

{(ζ, ζ � σ(D)ζ − c) : ζ ∈ Sn, c ∈ R}.

We equip Xβn with the relative topology with respect to C β
n × C 2β+2

n .

We will now define the Dirichlet domain of the Anderson Hamiltonian analogously to [1] did
on the torus.

Definition 5.2. Let ξ = (ξ,Ξ) ∈ Xαn . For γ ∈ (0, α + 2) we define Dd,γ
ξ = {f ∈ Hγ

0 : f ]ξ ∈
H2γ

0 }, where f ]ξ := f − f 4 σ(D)ξ. Moreover, we define an inner product on Dd,γ
ξ , written

〈·, ·〉Dd,γ
ξ

, by 〈f, g〉Dd,γ
ξ

= 〈f, g〉Hγ
0

+ 〈f ]ξ, g]ξ〉
H2γ

0
.

For γ ∈ (−α
2 , α+ 2) we define the space of strongly paracontrolled distributions by Dd,γ

ξ =

{f ∈ Hγ
0 : f [ξ ∈ H2

0}, where f [ξ := f ]ξ −B(f, ξ) and B(f, ξ) = σ(D)(fΞ + f 5 ξ − ((∆−
1)f) 4 σ(D)ξ − 2

∑d
i=1 ∂xif 4 ∂xiσ(D)ξ) (for the paraproducts under the sum, see 4.28). We

define an inner product on Dd,γ
ξ , written 〈·, ·〉Dd,γ

ξ
, by 〈f, g〉Dd,γ

ξ
= 〈f, g〉Hγ

0
+ 〈f [ξ, g[ξ〉H2

0
. As

in the periodic setting, one has Dd,γ
ξ ⊂ Hα+2−

0 for all γ ∈ (−α
2 , α + 2). We write Dd

ξ = {f ∈
Hα+2−

0 : f [ξ ∈ H2
0}.
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We will define the Anderson Hamiltonian on the Dirichlet domain in a similar sense as is
done on the periodic domain, however we choose to change the sign in front of the Laplacian as
this is more common in literature on the parabolic Anderson model.

Definition 5.3. Let γ ∈ (−α
2 , α+ 2), ξ ∈ Xαn . We define3 the operator Hξ : Dd,γ

ξ → Hγ−2
0 by

Hξf = ∆f + f � ξ,

where f � ξ = f 4 ξ + f ]ξ � ξ + R(f, σ(D)ξ, ξ) + fΞ + f 5 ξ and R(f, g, h) := (f 4 g) �
h− f(g � h).

We state the main results about the spectrum of the Anderson Hamiltonian, on its Dirichlet
domain. These results are analogous to the Anderson Hamiltonian on the torus [1] (one can just
read the theorem below without the Dirichlet and Neumann notations, i.e., the sub- or superscripts
“0,d,n”, and with the spaces interpreted to be defined on a torus). Moreover, they are similar to
the results of [24], which proof is based on the theory of regularity structures.

Theorem 5.4. For γ ∈ (−α
2 , α+ 2) there exists a C > 0 such that

‖Hξf‖Hγ−2
0
≤ C‖f‖Dd,γ

ξ
(1 + ‖ξ‖Xαn )2 (f ∈ Dd,γ

ξ , ξ ∈ Xαn ). (45)

Hξ(Dd
ξ) ⊂ L2 and Hξ : Dd

ξ → L2 is closed and self-adjoint as an operator on L2, and Dd
ξ is

dense in L2. There exist λ1(Γ, ξ) > λ2(Γ, ξ) ≥ λ3(Γ, ξ) ≥ · · · such that limn→∞ λn(Γ, ξ) =
−∞, σ(Hξ) = σp(Hξ) = {λn(Γ, ξ) : n ∈ N} and #{n ∈ N : λn(Γ, ξ) = λ} = dim ker(λ −
Hξ) <∞ for all λ ∈ σ(Hξ). One has

Dd
ξ =

⊕
λ∈σ(Hξ)

ker(λ−Hξ).

There exists an M > 0 such that for all n ∈ N and ξ,θ ∈ Xαn

|λn(Γ, ξ)− λn(Γ,θ)| ≤M‖ξ − θ‖Xαn (1 + ‖ξ‖Xαn + ‖θ‖Xαn )M . (46)

With the notation @ for “is a linear subspace of”,

λn(Γ, ξ) = sup
F@Dd

ξ

dimF=n

inf
ψ∈F
‖ψ‖L2=1

〈Hξψ,ψ〉L2 (47)

In particular, λ1(Γ, ξ) = supψ∈Dd
ξ:‖ψ‖L2=1〈Hξψ,ψ〉L2 .

Remark 5.5. Let us mention that in an analogous way one can state (and prove) the same state-
ment for the operator with Neumann boundary conditions by replacing “d” by “n” and “H0” by
“Hn”.

3The definition needs of course justification to show Hγ−2
0 is really the codomain, this is shown in Theorem 5.4.

23



Remark 5.6. In [1] it is pointed out that in (47) one may replace Dd
ξ by Dγ

ξ for γ ∈ (2
3 , α+ 2),

and 〈Hξψ,ψ〉L2 by H−γ0
〈Hξψ,ψ〉Hγ

0
, where H−γ0

〈·, ·〉Hγ
0

: H−γ0 × Hγ
0 → R is the continuous

bilinear map (see [2, Theorem 2.76]) given by

H−γ0
〈f, g〉Hγ

0
=

∑
i,j∈N−1

|i−j|≤1

〈∆if,∆jg〉L2 .

This is done for the periodic setting, but the arguments can easily be adapted to our setting.
Indeed, first one shows that Dd

ξ is dense in Dd,γ
ξ : S0 and thus L2 is dense in Hγ−2

0 (see [2,
Theorem 2.74] and Theorem 4.15), therefore for a /∈ σ(Hξ) and Ga = (a−Hξ)−1, Dd

ξ = GaL2

is dense in Dd,γ
ξ = GaH

γ−2
0 . This proves (e).

With this it is sufficient to use the continuity of the map

Dd,γ
ξ ×Dd,γ

ξ → R, (ψ,ϕ) 7→ H−γ0
〈Hξψ,ϕ〉Hγ

0
,

which follows from the following bound (observe that γ − 2 < −γ and use (45))

|H−γ0
〈Hξψ,ϕ〉Hγ

0
| ≤ ‖Hξψ‖Hγ−2

0
‖ϕ‖Hγ

0
. (1 + ‖ξ‖Xα)2‖ψ‖Dd,γ

ξ
‖ϕ‖Dd,γ

ξ
.

5.7. Let η ∈ L2 (which equals H0
n , see 4.17). By Theorem 4.21 σ(D)η ∈ H2

n , which is included
in C 1

n by Theorem 4.23. Then by Theorem 4.27, η � σ(D)η ∈ H1
n . Moreover, if ηε → η in L2,

then ηε � σ(D)ηε → η � σ(D)η in H1
n (by the same theorems). Hence, by Theorem 4.23 we

obtain the following convergence in Xαn for all α ≤ −1

(ηε, ηε � σ(D)ηε)→ (η, η � σ(D)η).

Indeed

‖η � σ(D)η − ηε � σ(D)ηε‖H2
n
. ‖η − ηε‖H0

n
‖η‖H0

n
+ ‖η − ηε‖H0

n
‖ηε‖H0

n
.

We write λn(Γ, η) = λn(Γ, (η, η � σ(D)η)).

By 5.7 and the continuity of ξ 7→ λn(Γ, ξ), see (46) in Theorem 5.4, we obtain the following
lemma.

Lemma 5.8. The map L2(Γ)→ R, η 7→ λn(Γ, η) is continuous.

5.9. Let ζ ∈ S∞
n . Then ζ := (ζ, ζ � σ(D)ζ) ∈ Xβn , f 4 σ(D)ζ ∈ Hβ

0 for all β ∈ R and
B(f, ζ) ∈ H2

0 and f ∈ Hγ
0 with γ ∈ (0, 1) (use Theorems 4.21, 4.22 and 4.27). Clearly

ζ � σ(D)ζ ∈ C 2β−2
n for all β ∈ R as ζ ∈ C α

n for all α ∈ R. We have

‖f 4 σ(D)ζ‖
Hβ

0
. ‖f‖Hγ

0
‖σ(D)ζ‖

C β−δn
. ‖f‖Hγ

0
‖ζ‖

C β−δ−2
n

.
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Let us check each of the individual terms in B:

B(f, ζ) = σ(D)(fζ � σ(D)ζ + f 5 ζ − ((∆− 1)f) 4 σ(D)ζ − 2
d∑
i=1

∂xif 4 ∂xiσ(D)ζ).

f(ζ � σ(D)ζ) ∈ Hγ−δ
0 for all δ > 0, f 5 ζ ∈ Hβ

0 for all β ∈ R, (∆ − 1)f ∈ Hγ−2
0 ,

σ(D)ζ ∈ C β
n for all β ∈ R, therefore ((∆ − 1)f) 4 σ(D)ζ ∈ Hβ

0 for all β ∈ R and similarly
∂xif 4∂xiσ(D)ζ ∈ Hβ

0 for all β ∈ R (observe that ∂xif and ∂xiσ(D)ζ are in Besov spaces with
mixed boundary conditions). Therefore B(f, ζ) ∈ H2+γ−δ

0 , and so if we choose δ small enough
we obtain that B(f, ζ) is an element of H2

0 . Therefore, for all γ ∈ (0, 1), Dd,γ
ζ = H2γ

0 and
Dd,γ

ζ = H2
0 and for f ∈ Hγ

0 , f � ζ = f ]ζ � ζ + R(f, σ(D)ζ, ζ) + f(ζ � σ(D)ζ), so that

Hζf := ∆f + fζ = Hζf. (48)

Now suppose ζ ∈ L∞ ⊂ C∞n . Then ζ := (ζ, ζ � σ(D)ζ) ∈ X0
n, but the Bony estimates give

f 4 σ(D)ζ ∈ H2−
0 (and not ∈ H2

0 ). Nevertheless, by the Kato-Rellich theorem [33, Theorem
X.12] on the domain H2

0 the operator Hζ defined as in (48) is self-adjoint. As the injection map
H2

0 → L2 is compact (see Theorem 4.16), every resolvent is compact. Hence by the Riesz-
Schauder theorem [33, Theorem VI.15] and the Hilbert-Schmidt theorem [33, Theorem VI.16]
there exist λ1(Γ, ζ) ≥ λ2(Γ, ζ) ≥ · · · such that σ(Hζ) = σp(Hζ) = {λn(Γ, ζ) : n ∈ N} and
#{n ∈ N : λn(Γ, ζ) = λ} = dim ker(λ−Hζ) <∞ for all λ ∈ σ(Hζ). Moreover, by Fischer’s
principle [26, Section 28, Theorem 4, p. 318]4 and Lemma A.2

λn(Γ, ζ) = sup
F@H2

0
dimF=n

inf
ψ∈F
‖ψ‖L2=1

〈Hζψ,ψ〉L2

= sup
F@C∞c

dimF=n

inf
ψ∈F
‖ψ‖L2=1

∫
−|∇ψ|2 + ζψ2. (49)

The proof of Theorem 5.4 follows from the results of the Anderson Hamiltonian on the torus
with the help of Lemma 5.12. The proof is written below Lemma 5.12. We may restrict ourselves
to the case Γ = QL.

5.10. For the rest of this section y = 0 and bi = L for all i, i.e., Γ = QL = [0, L]2.

5.11. For q ∈ {−1, 1}d and w ∈ S ′ we write lqw for the element in S ′ given by 〈lqw,ϕ〉 =
〈w,ϕ(q ◦ ·)〉 for ϕ ∈ S . Then w is odd if and only if w = (

∏
q)lqw for all q ∈ {−1, 1}d and w

is even if and only if w = lqw for all q ∈ {−1, 1}d.

Lemma 5.12. Let ξ ∈ Xαn . Let 2
3 < γ < α + 2. Write ξ = (ξ,Ξ), Dγ

ξ
= Dγ

ξ
(Td2L), Dγ

ξ
=

Dγ

ξ
(Td2L).

4In this reference the operator is actually assumed to be compact and symmetric, whereas we apply it to Hξ. But
the compactness is only assumed to guarantee that the spectrum is countable and ordered, so that the arguments still
hold.
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(a) D̃d,γ
ξ = {w ∈ Dγ

ξ
: w is odd}, D̃d,γ

ξ = {w ∈ Dγ

ξ
: w is odd}, H̃ξf = Hξf̃ and ‖f‖Dd,γ

ξ
h

‖f̃‖Dγ

ξ
uniformly for all f ∈ Dd,γ

ξ and ‖f‖Dd,γ
ξ

h ‖f̃‖Dγ
ξ

uniformly for all f ∈ Dd,γ
ξ .

(b) Hξ(Dd,γ
ξ ) ⊂ Hγ−2

0 , Hξ(Dd,γ
ξ ) ⊂ L2.

(c) Hξ(lqf) = lqHξf for all f ∈ Dγ

ξ
and q ∈ {−1, 1}2.

(d) σ(Hξ) ⊂ σ(Hξ) (for the operators either on the D or D domains) and for all a ∈
C \ σ(Hξ) the inverse of a−Hξ : Dd

ξ → L2 is self-adjoint and compact.

(e) Dd
ξ is dense in Dd,γ

ξ and Dd,γ
ξ is dense in L2.

Proof. (a) follows from the identities (43), f̃ ]ξ = f̃ ]ξ, B̃(f, ξ) = B(f̃ , ξ), f̃ [ξ = f̃ [ξ and
because ‖g̃‖Hγ h ‖g‖Hγ

0
for all γ ∈ R and g ∈ Hγ

0 ([0, L]d) (indeed, ‖g‖Bd,γ
2,2

= ‖g̃‖Bγ2,2 by

definition and ‖ · ‖Hγ
0
h ‖ · ‖Bd,γ

2,2
and ‖ · ‖Bγ2,2 h ‖ · ‖Hγ by Theorems 4.12 and 4.15).

(b) follows from (a) as Hξ(Dγ

ξ
) ⊂ Hγ−2 and Hξ(Dξ) ⊂ H0 (see [1]).

(c) follows by a straightforward calculation; use that F (lqf) = lqF (f), lqρi = ρi, lqξ = ξ
and lqΞ = Ξ for q ∈ {−1, 1}2.

(d) Let a ∈ C be such that a −Hξ has a bounded inverse Ra. By (c) (a −Hξ)f is odd
if and only if f is odd, indeed, if (a −Hξ)f is odd, then (a −Hξ)[f − (

∏
q)lqf ] = 0 (see

5.11) and thus f = (
∏

q)lqf . Hence a−Hξ has a bounded inverse Rd
a such that R̃d

ah = Rah̃.
From the fact that Ra is self-adjoint and compact it follows that Rd

a is too. Because when A is
closed/open, then Ã is closed/open.

S0 and thus L2 is dense in Hγ−2
0 (see [2, Theorem 2.74] and Theorem 4.15), therefore for

a /∈ σ(Hξ) and Ga = (a−Hξ)−1, Dd
ξ = GaL2 is dense in Dd,γ

ξ = GaH
γ−2
0 . That Dd,γ

ξ is dense
in L2 follows from the periodic counterpart, which is proven in [1, Lemma 4.12]. This proves
(e).

Proof of Theorem 5.4. By Lemma 5.12 it follows that Hξ is a closed densely defined symmetric
operator and that σ(Hξ) ⊂ σ(Hξ) so that Hξ is indeed self-adjoint (see [9, Theorem X.2.9]).
As the resolvents are compact, the statements in Theorem 5.4 up to (46) follow by the Riesz-
Schauder theorem [33, Theorem VI.15] and the Hilbert-Schmidt theorem [33, Theorem VI.16]
because of the following identity, where Rµ = (µ−Hξ)−1,

σ(Hξ) = σp(Hξ) = {µ− 1
λ : λ ∈ σp(Rµ) \ {0}},

this means that λ−Rµ is boundedly invertible (or injective) if and only if µ− 1
λ −Hξ is, and in

turn follows from the identity

λ(µ− 1
λ −Hξ) = λ(µ−Hξ)− 1 = (λ−Rµ)(µ−Hξ)

= (µ−Hξ)λ− 1 = (µ−Hξ)(λ−Rµ).

As every eigenvalue of Hξ is an eigenvalue of Hξ which is locally lipschitz in the analogues
sense of (46), also (46) holds by the equivalences of norms in Lemma 5.12(a). (47) follows from
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Fischer’s principle [26, Section 28, Theorem 4, p. 318]. See also Theorem C.1. That λ1 > λ2,
or in other words, that the first eigenvalue is simple, follows from [34, Theorem XIII.44]. The
only condition to prove for that theorem is that the semigroup etHξ is positivity improving,
or differently called the strong maximum principle for etHξ . The strategy to obtain this we
borrow from [4, Theorem 5.1]. With ut := etHξu0, the map (t, x) 7→ ut(x) is the solution
to the parabolic Anderson model ∂tu = ∆u + u � ξ, hence satisfies sups∈[0,t] ‖us‖Bd,1−ε

∞,∞
<

∞ for all u0 ∈ Bd,1−ε
∞,∞ and ε > 0 (see [17], the extension to Dirichlet boundary conditions

follows similar as the extension of the operator) and ut = Ptu0 +
∫ t

0 Pt−s(us � ξ) ds, where

Ptu0(x) = pt ∗ u0(x) and pt the standard heat kernel pt(x) = (2πt)−
d
2 e−

|x|2
2t . First let us

observe that etHξ is positivity preserving for all t > 0. For all ε > 0, the operator et(Hξε−cε) is
positivity preserving; this because the solution to the regular parabolic Anderson model ∂tu =
∆u + u · (ξε − cε) can not only be represented by et(Hξε−cε)u0 but also by the Feynman-Kac
formula Ex[exp(

∫ t
0 ξε(Bs) ds − tcε)u0(Bt)1[B[0,t]⊂QL ] where B[0,t] = {Bs : s ∈ [0, t]} and

(Bt)t∈[0,∞) is a Brownian motion with B0 = x almost surely under the measure Ex (see for
example [14, 21, 39]): From this it follows that if u0 ∈ L2 and u0 ≥ 0 almost surely, then
et(Hξε−cε)u0 ≥ 0 almost surely. Therefore, et(Hξε−cε) is positivity preserving for all t > 0.
Consequently, see [34, Proposition on p.204] the resolvents (a − Hξε − cε)

−1 are positivity
preserving for all a ≥ supσ(Hξε − cε). As Hξε − cε converges to Hξ in the resolvent sense
(see for example [1, Lemma 4.15]), it follows that (a −H −1

ξ u0 = limε↓0(a −Hξε − cε)−1u0

in L2 and thus that (a −H −1
ξ is positivity preserving for all a ≥ supσ(Hξ). Again by [34,

Proposition on p.204] then follows that etHξ is positivity preserving for all t > 0. Now we
show that it is even positivity improving. Let u0 ∈ L2, u0 ≥ 0 almost everywhere and u0 6= 0.
Then there exists a ϕ ∈ C∞c , ϕ ≥ 0, ϕ 6= 0 such that u0 − ϕ ≥ 0 almost everywhere. As
etHξ(u0 − ϕ) ≥ 0 almost everywhere, it is sufficient to show that etHξϕ is strictly positive
almost everywhere. Or differently said, we may as well assume that u0 ∈ L2 ∩Bd,1−ε

∞,∞ ; and thus
that sups∈[0,t] ‖us‖Bd,1−ε

∞,∞
< ∞. The next step is to prove that Ptu0 is larger than the supremum

norm of
∫ t

0 Pt−s(us � ξ) ds. In [4] it is shown that for all ρ > 0 there exists a tρ such that
Pt1B(x,δ) ≥ 1

41B(x,δ+ρt) for t ∈ (0, tρ]. First observe that Pt1B(x,δ)(z) =
∫
B(x,δ) pt(z−y) dy =∫

B(z−x,δ) pt(y) dy, and thus (with e1 the unit vector with 1 at the first coordinate)

inf
z∈B(x,δ+t)

Pt(1B(x,δ))(z) = inf
z∈B(0,δ+t)

Pt(1B(0,δ))(z)

= Pt(1B(0,δ))
(
(δ + t)e1

)
=

∫
B
(
δ+t√
t
e1,

δ√
t

) p1(y) dy
t↓0−−→

∫
(0,∞)×R

p1(y) dy =
1

2
.

because B
(
δ+t√
t
e, δ√

t

)
↑ (0,∞) × R as t ↓ 0. On the other hand, one can prove that for

ε ∈ (0, 1) there exists a C > 0 such that ‖
∫ t

0 Pt−s(us � ξ) ds‖Bd,ε
∞,∞
≤ Ct1−ε. Indeed, with [17,
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Lemma A.7]

‖
∫ t

0
Pt−s(us � ξ) ds‖∞ ≤

∫ t

0
‖Pt−s(us � ξ)‖Bd,ε

∞,∞
ds

.
∫ t

0
(t− s)−ε‖us � ξ‖Bd,−1−ε

∞,∞
ds

. t1−ε
∫ 1

0
(1− s)−ε ds sup

s∈[0,t]
‖us‖Bd,1−ε

∞,∞
‖ξ‖X−1−ε

n
.

Now observe that for ε ∈ (0, 1) the integral
∫ 1

0 (1 − s)−ε ds equals (1 − ε)−1. Hence we can
choose t0 ∈ (0, tρ) such that ‖

∫ tρ
0 Pt1−s(us � ξ) ds‖∞ ≤ Ct1−ε0 ≤ 1

8 . This implies that ut ≥ 1
8

on B(x, δ + ρt0). Let T, ρ > 0, by choosing n such that T
n ≤ t0, by repeating the argument

we have uT ≥ (1
8)n on B(x, δ + ρT ). As this holds for arbitrary ρ > 0, this implies that UT is

strictly positive everywhere.

6 Enhanced white noise

In this section we prove Theorem 6.4; we first recall a definition and introduce notation.

Definition 6.1. A white noise on Rd is a random variable W : Ω → S ′(Rd,R) such that for
all f ∈ S (Rd,R) the random variable 〈W, f〉 is a centered Gaussian random variable with
E[〈W, f〉〈W, g〉] = 〈f, g〉L2 for f, g ∈ S (Rd,R).

6.2. Because ‖〈W, f〉‖L2(Ω,P) = ‖f‖L2(Rd), the function f 7→ 〈W, f〉 extends to a bounded linear
operator W : L2(Rd) → L2(Ω,P) such that for all f ∈ L2(Rd), W f is a complex Gaussian
random variable, W f = W f and E[W fW g] = 〈f, g〉L2 for all f, g ∈ L2(Rd).

6.3. Let W be a white noise on R2 and W be as in 6.2. For the rest of this section we fix
L > 0. Unless mentioned otherwise τ ∈ C∞c (Rd, [0, 1]) is an even function that is equal to 1 on
a neighbourhood of 0. Define ξL,ε ∈ Sn([0, L]d) by (for 〈W , nk,L〉, we interpret nk,L to be the
function in L2(Rd) being equal to nk,L on [0, L]d and equal to 0 elsewhere)

ξL,ε =
∑
k∈Nd0

τ( εLk)〈W , nk,L〉nk,L. (50)

For k ∈ Nd0 define Zk := 〈W , nk,L〉. Then Zk is a (real) normal random variable with

E[Zk] = 0, E[ZkZl] = δk,l. (51)

Before we state the convergence to the enhanced white noise, let us discuss our choice of
regularization (50). We use the regularisation by means of a Fourier multiplier, as in [1]. This
basically means we ‘project’ the white noise on the Neumann space on the box and then take
the regularisation corresponding to a Fourier multiplier. Another option is to consider mollified
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white noise on the full space by convolution and then project the white noise on the Neumann
space. In a future work by König, Perkowski and van Zuijlen, it will be shown that both choices
lead to the same limiting object (up to a constant, by using techniques from Section 11). This also
confirms that our construction of the Anderson Hamiltonian with enhanced white noise agrees
with the construction of the Anderson Hamiltonian in [24], where the Anderson Hamiltonian is
considered a limit of the operators with mollified white noise as potentials.

Theorem 6.4. Let d = 2. For all α < −1 there exists a ξL ∈ Xαn such that the following
convergence holds almost surely in Xαn , i.e., on a measurable set ΩL with P(ΩL) = 1

lim
ε↓0,ε∈Q∩(0,∞)

(ξL,ε, ξL,ε � σ(D)ξL,ε − cε) = ξL, (52)

where cε = 1
2π log(1

ε ) + cτ ∈ R and cτ only depends on τ . ξL does not depend on the choice
of τ . ξL is a white noise in the sense that for ϕ,ψ ∈ Sn(QL), ξL(ϕ) and ξL(ψ) are Gaussian
random variables with

E[ξL(ϕ)] = 0, E[ξL(ϕ)ξL(ψ)] = 〈ϕ,ψ〉L2([0,L]d). (53)

Moreover, for ϕ ∈ C∞c (QL) one has almost surely (i.e., on ΩL)

〈ξL, ϕ〉 = lim
ε↓0
〈ξL,ε, ϕ〉 =

∑
k∈Nd0

〈W , nk,L〉〈nk,L, ϕ〉 = 〈W,ϕ〉.

Hence, for every L > 0 the W viewed as an element of D ′(QL) extends almost surely uniquely
to a ξL in C α

n .

Instead of taking QL as an underlying space, we can also take a shift of the box, i.e., y+QL:

6.5. For y ∈ Rd we define

ξyL,ε = Ty

[ ∑
k∈Nd0

τ( εLk)〈T −1
y W , nk,L〉nk,L

]
.

If d = 2, by Theorem 6.4 there exists a ξyL = (ξyL,Ξ
y
L) ∈ Xαn (y +QL) such that almost surely

lim
ε↓0,ε∈Q∩(0,∞)

(ξyL,ε, ξ
y
L,ε � σ(D)ξyL,ε −

1
2π log(1

ε )) = ξyL, (54)

and such that ξyL is a white noise in the sense described in Theorem 6.4 (i.e. T−yξ
y
L satisfies

(53)).

For the rest of this section we fix L > 0 and drop the subindex L; we write ξε = ξL,ε
and nk = nk,L.

Definition 6.6. Define Ξε ∈ Sn(QL) by

Ξε(x) = ξε � σ(D)ξε(x)− E[ξε � σ(D)ξε(x)]. (55)

29



The strategy of the proof of the following theorem is rather similar to the proof on the torus
in [1], but due to the differences of the Dirichlet setting and for the sake of self-containedness we
provide the proof.

Theorem 6.7. For all α < −d
2 , ξε converges almost surely as ε ↓ 0 in C α

n , to the white noise ξL
(as in Theorem 6.4). Moreover, for d = 2 and all α < −1, Ξε converges almost surely as ε ↓ 0
in C 2α+2

n ; the limit is independent of the choice of τ .

Proof. The proof relies on the Kolmogorov-Chentsov theorem (Theorem 6.8). Lemma 6.10(a)
shows that the required bound for this theorem can be reduced to bounds on the second moments
of ∆i(ξε− ξδ)(x) and ∆i(Ξε−Ξδ)(x), given in 6.11 (the proofs of these bounds are lengthy and
therefore postponed to Section 11). (53) follows from

E[〈ξε, ϕ〉〈ξε, ψ〉] =
∑
k∈Nd0

τ(εk)2〈ϕ, nk〉〈ψ, nk〉
ε↓0−−→

∑
k∈Nd0

〈ϕ, nk〉〈ψ, nk〉 = 〈ϕ,ψ〉.

That the limit of Ξε is independent of the choice of τ , follows from Theorem 11.2 (a).

Theorem 6.8 (Kolmogorov-Chentsov theorem). Let ζε be a random variable with values in a
Banach space X for all ε > 0. Suppose there exist a, b, C > 0 such that for all ε, δ > 0,

E [‖ζε − ζδ‖aX] ≤ C|ε− δ|1+b.

Then there exists a random variable ζ with values in X such that in La(Ω,X) and almost surely
limε↓0,ε∈Q∩(0,∞) ζε = ζ.

Proof. This follows from the proof of [20, Theorem 2.23]. First note that ζε is Cauchy in
La(Ω,X), so that limε↓0 ζε = ζ0 exists as a limit in this space. Then ζt for t ∈ [0, 1] is as
in the Kolmogorov-Chentsov theorem. Therefore it has a continuous modification ζ̃t. So for
countably many ε ∈ (0, 1] we have ζε = ζ̃ε on a full probability set and thus ζε → ζ̃0 almost
surely.

In Lemma 6.10(a) we show how we obtainLp bounds on the Cn norm from bounds on squares
of the Littlewood-Paley blocks. Lemma 6.10(b) follows from (a) and will be used in Section 8 to
prove Theorem 8.8.

To prove Lemma 6.10 we use the following auxiliary lemma. It is generally known that the
p-th moment of a centered Gaussian random variable Z can be bounded by its second moment,
as E[|Z|p] = (p − 1)!!E[|Z|2]

p
2 (see [30, p.110]). We will use the generalisation of this bound,

which is a consequence of the so-called hypercontractivity.

Lemma 6.9. [29, Theorem 1.4.1 and equation (1.71)] Suppose that Zn for n ∈ N are inde-
pendent standard Gaussian random variables. If Z is a random variable in the first or second
Wiener chaos, which means it is of the form

∑
n∈N anZn or

∑
n,m∈N an,m(ZnZm − E[ZnZm])

with an, an,m ∈ C, then for p > 1

E[|Z|p] ≤ ppE[|Z|2]
p
2 .
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Lemma 6.10. Let A > 0 and a ∈ R.

(a) Suppose ζ is a random variable with values in S ′
n([0, L]d) such that ∆iζ(x) is a random

variable of the form as Z is, as in Lemma 6.9 for all i ∈ N−1 and x ∈ [0, L]d. Suppose
that for all i ∈ N−1, x ∈ [0, L]d

E[|∆iζ(x)|2] ≤ A2ai. (56)

Then for all κ > 0 there exists a C > 0 independent of ζ such that for all p ≥ 1

E[‖ζ‖p
C
−a2−κ−

2
p

n

] ≤ CppLdA
p
2 . (57)

(b) Suppose that (ζε)ε>0 is a family of such random variables for which (56) holds for all
i ∈ N−1 and x ∈ [0, L]d, and that for all k ∈ Nd0

E[|〈ζε, nk,L〉|2]→ 0. (58)

Then for all κ > 0 and p > 1

E[‖ζε‖p
C
−a2−κ−

2
p

n

]→ 0.

Consequently, we have ζε
P−→ 0 (convergence in probability) in C

−a
2
−κ− 2

p
n ([0, L]d).

Proof. (a) For κ > 0, by Lemma 6.9, with Cκ =
∑∞

i=−1 2−κi,

E[‖ζ‖p
B

n,−a2−κ
p,p

] =
∞∑

i=−1

2(−a
2
−κ)piE

[
‖∆iζ‖pLp

]
≤ ppLd

( ∞∑
i=−1

2−pκi
)
A
p
2 ≤ CκppLdA

p
2 .

Using the embedding property of Besov spaces [2, Proposition 2.71], which implies the existence
of a C > 0 such that ‖ · ‖

C
−a2−κ−

2
p

n

≤ C‖ · ‖
B

n,−a2−κ
p,p

, one obtains (57).

(b) By Lemma 6.9 (and Fubini)

E[‖∆iζε‖pLp ] =

∫
E[|∆iζε(x)|p] dx

≤ pp
∫

E[|∆iζε(x)|2]
p
2 dx . ppLd

( ∑
k∈Nd0

ρi(
k
L)2E[|〈ζε, nk〉|2]

) p
2
.

and so

E[‖ζε‖p
B

n,−a2−κ
p,p

] =
∞∑

i=−1

2(−a
2
−κ)piE

[
‖∆iζε‖pLp

]

≤ ppLd

 I∑
i=−1

2(−a
2
−κ)pi

∑
k∈Nd0

ρi(
k
L)2E[|〈ζε, nk〉|2]


p
2

+A
p
2

∑
i≥I+1

2−κi

 .

The latter becomes arbitrarily small by choosing I large and subsequently ε small.
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6.11. The following two statements are proved in Section 11.

(a) (Lemma 11.4) For all γ ∈ (0, 1) there exists a C > 0 such that for all i ∈ N−1, ε, δ > 0,
x ∈ [0, L]d

E[|∆i(ξε − ξδ)(x)|2] ≤ C2(d+2γ)i|ε− δ|γ .

(b) (Lemma 11.11) Let d = 2. For all γ ∈ (0, 1) there exists aC > 0 such that for all i ∈ N−1,
ε, δ > 0, x ∈ QL

E[|∆i(Ξε − Ξδ)(x)|2] ≤ C22γi|ε− δ|γ .

Definition 6.12. Define cε,L ∈ R by

cε,L =
1

4L2

∑
k∈Z2

τ( εLk)2

1 + π2

L2 |k|2
. (59)

In the periodic setting one has that with ξε defined as in [1], E[ξε � σ(D)ξε(x)] = cε,L.
Observe that it is independent of x. In our setting, the Dirichlet setting, we have (remember (51)
and use that

∑
i,j∈N−1,|i−j|≤1 ρi(

k
L)ρj(

k
L) = 1)

E[ξε � σ(D)ξε(x)] =
∑

i,j∈N−1

|i−j|≤1

∑
k∈N2

0

ρi(
k
L)ρj(

k
L)

τ( εLk)2

1 + π2

L2 |k|2
nk(x)2 =

∑
k∈N2

0

τ( εLk)2

1 + π2

L2 |k|2
nk(x)2.

(60)

By (41), as n0(x) = 2
Lν0 = 1

L and ν2k = νk,

nk(x)2 =
1

2L

∑
p∈{−1,1}2

ν2
k

νk+p◦k
nk+p◦k(x)

=
1

2L

ν2
k

ν2k
nk+p◦k(x) +

1

2L

ν2
k

ν(k1,0)
n(2k1,0)(x) +

1

2L

ν2
k

ν(0,k2)
n(0,2k2)(x) +

1

2L

ν2
k

ν0
n0(x)

=
1

2L
νkn2k(x) +

1

2L

ν2
k

ν(k1,0)
n(2k1,0)(x) +

1

2L

ν2
k

ν(0,k2)
n(0,2k2)(x) +

ν2
k

L2
. (61)

Note that as nk(0) = 2νkL

cε,L =
∑
k∈N2

0

τ( εLk)2

1 + π2

L2 |k|2
ν2
k

L2
=

1

4
E[ξε � σ(D)ξε(0)]. (62)

4ν2
k = 22−#{i:ki=0} =


1 k = 0,

2 k1 = 0, k2 6= 0 or k1 6= 0, k2 = 0,

4 k ∈ N2.

Lemma 6.15 deals with this x dependence of E[ξε � σ(D)ξε(x)].
The following observations will be used multiple times.
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6.13. As 0 ≤ ρi ≤ 1 and there is a b ≥ 1 such that ρi is supported in a ball of radius 2ib for all
i ∈ N−1, one has for all i ∈ N−1, x ∈ Rd and γ > 0

ρi(x) ≤
(

2b
2i

1 + |x|

)γ
. (63)

Theorem 6.14. Let τ : R2 → [0, 1] be a compactly supported even function that equals 1 on a
neighbourhood of 0. There exists a C > 0 such that for all γ ∈ R, L > 0 and h ∈ Hγ

n (QL) we
have ‖h− τ(εD)h‖Hγ

n
→ 0 and for β < γ

‖h− τ(εD)h‖
Hβ

n
≤ Cεγ−β‖h‖Hγ

n
.

Proof. By assumption on τ there exists an a > 0 such that τ = 1 on B(0, a). Then{
1− τ( εLk) = 0 |k| < La

ε ,

(1 + | kL |
2)β−γ . ε2(γ−β) |k| ≥ La

ε .

If |k| ≥ La
ε , then | kL | ≥

a
ε and thus(

1 + | k
L
|2
)−1

≤
(

1 + (
a

ε
)2
)−1
≤ ε2

a2
.

By the following bounds the theorem is proved; by Theorem 4.14

‖h− τ(εD)h‖
Hβ

n
.
√∑
k∈Nd0

(1 + | kL |2)β(1− τ( εLk))2〈h, nk〉2 . εγ−β‖h‖Hγ
n
.

Lemma 6.15. Let τ : R2 → [0, 1] be a compactly supported even function that equals 1 on a
neighbourhood of 0. Then x 7→ E[ξε � σ(D)ξε(x)] − cε,L converges in C−γn to a limit that is
independent of τ as ε ↓ 0 for all γ > 0.

Proof. Let γ > 0. As there are only finitely many k ∈ N2
0 for which τ( εLk) 6= 0, x 7→ E[ξε �

σ(D)ξε(x)] − cε,L is smooth. We can rewrite (61) and find uniformly bounded ak, bk such that

nk(x)2 − ν2k
L2 = 1

2L [nk + akn(k1,0) + bkn(0,k2)](2x). By (62) this means that E[ξε � σ(D)ξε(x)]
(see (60)) can be decomposed into three sums.

For the first sum (by taking the part with “nk”), as δ0 ∈ H−1
n and 〈δ0, nk〉 = 2

L for all k ∈ N2
0

1

2L

∑
k∈N2

0

τ( εLk)2

1 + π2

L2 |k|2
nk(2x) = 1

4 [τ(εD)2σ(D)δ0](2x).

By Theorem 4.21 σ(D)δ0 ∈ H1
n , so that by Theorem 6.14 τ(εD)2σ(D)δ0 → σ(D)δ0 in H1−γ

n

and thus in C−γn (by [2, Theorem 2.71]). This convergence is ‘stable’ under ‘multiplying the
argument by 2’ (see also 4.19).
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Now let us show the convergence of the other sums. We only consider the sum with “akn(k1,0)”
in it, as the sum with “bkn(0,k2)” follows similarly. Let us write hε for

hε(x) =
∑
k∈N2

0

τ( εLk)2

1 + π2

L2 |k|2
akn(k1,0)(x) =

∑
l,m∈N0

τ( εL(l,m))2

1 + π2

L2 (l2 +m2)
a(l,m)n(l,0)(x).

Then

∆ihε =
∑
l∈N0

ρi(
l
L , 0)

∑
m∈N0

τ( εL(l,m))2

1 + π2

L2 (l2 +m2)
a(l,m)n(l,0).

With (63) ‖∆in(l,0)‖L∞ . |ρi( lL , 0)| . 2γi(1 + l2

L2 )−γ . Hence

sup
i∈N−1

2−γi‖∆i(hε − h0)‖L∞ .
∑

l,m∈N0

(1 + l2

L2 )−γ
∣∣τ( εL(l,m))2 − 1

∣∣
1 + π2

L2 (l2 +m2)
.

By Lebesgue’s dominated convergence theorem and the next bound it follows that h0 ∈ C−γn

and hε → h0 in C−γn . By using that 1 + l2 +m2 ≥ (1 + l)1− γ
2 (1 +m)1+ γ

2 ,

∑
l,m∈N0

(1 + l2

L2 )−γ

1 + π2

L2 (l2 +m2)
.

∑
l,m∈N0

1

(1 + l)1+ γ
2 (1 +m)1+ γ

2

<∞.

By these convergences and by plugging in the factor 2 also here the convergence is proved.

Before we give the proof of Theorem 6.4, we study the behaviour of cε,L.

Lemma 6.16. Let τ : R2 → [0, 1] be almost everywhere continuous, be equal to 1 on B(0, a)
and zero outside B(0, b) for some a, b with 0 < a < b. There exist a cτ ∈ R that only depends on

τ , and (CL)L≥1 in R that do not depend on τ withCL
L→∞−−−−→ 0 such that cε,L− 1

2π log 1
ε−cτ

ε↓0−−→
CL for all L ≥ 1.

Proof. We define byc = (by1c, by2c) and hL(y) = (L2 + π2|y|2)−1 for y ∈ R2. Then 4cε,L =∑
k∈Z2

τ( ε
L
k)2

L2+π2|k|2 =
∫
R2 τ( εLbyc)

2hL(byc) dy.We first show that 4cε,L−
∫
R2 τ( εLy)2hL(y) dy →

0. Write A(s, t) for the annulus {y ∈ R2 : s ≤ |y| ≤ t}. To shorten notation, we write δ = ε
L .

As |byc − y| ≤
√

2

4cε,L −
∫
R2

τ( εLy)2hL(y) dy =

∫
B(0,a

δ
−
√

2)
hL(byc)− hL(y) dy

+

∫
A(a

δ
−
√

2, b
δ

+
√

2)
τ(δbyc)2hL(byc)− τ(δy)2hL(y) dy.

As hL(byc) − hL(y) = hL(byc)hL(y)(|y|2 − |byc|2), hL(byc) . hL(y) and (|y|2 − |byc|2) .
1+ |y|, we have hL(byc)−hL(y) . (1+ |y|)hL(y)2. As the latter function is integrable over R2,
it follows by Lebesgue’s dominated convergence theorem that

∫
B(0,a

δ
−
√

2) hL(byc) − hL(y) dy
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converges in R to a CL for which CL
L→∞−−−−→ 0. On the other hand, the integral over the annulus

can be written as ∫
A(a−

√
2δ,b+

√
2δ)

τ(δbxδ c)
2

δ2L2 + π2δ2|bxδ c|2
− τ(x)2

δ2L2 + π2|x|2
dx. (64)

Again by a domination argument (note that 1
|x|2 is integrable over annuli), using that |xδ |

2 ≤
(|bxδ c|+

√
2)2 ≤ 4 + 2|bxδ c|

2 ≤ 4(L2 + |bxδ c|
2), so that∣∣∣∣ τ(δbxδ c)
2

δ2L2 + π2δ2|bxδ c|2

∣∣∣∣ ≤ 4

π2|x|2
.

we conclude that (64) converges to 0. Observe that∫
A(a−

√
2δ,b+

√
2δ)

τ(x)2

δ2L2 + π2|x|2
dx

δ↓0−−→
∫
A(a,b)

τ(x)2

π2|x|2
dx.

By some substitutions (remember δ = ε
L ), for ε < a

1

2π

∫
B(0,a

δ
−
√

2)
hL(y) dy =

∫ a
δ
−
√

2

0

x

L2 + π2x2
dx =

∫ a
ε
−
√
2
L

0

y

1 + π2y2
dy

=

∫ 1

0

y

1 + π2y2
dy +

∫ a
ε

0

y

1 + π2y2
dy +

∫ a
ε

a
ε
−
√
2
L

y

1 + π2y2
dy

=

∫ 1

0

s

1 + π2s2
ds+

∫ a
ε

1

s

1 + π2s2
ds−

∫ a

a−
√
2ε
L

s

ε2 + π2s2
ds.

The last integral converges as ε ↓ 0 to zero. For the second integral we consider∫ a
ε

1

s

1 + π2s2
− 1

π2s
ds =

∫ a
ε

1

−1

π2s(1 + π2s2)
ds,

∫ a
ε

1

1

π2s
ds =

1

π2
log(

a

ε
).

Observe that if a ≤ 1 then
∫
A(a,1)

1
π2|x|2 dx = − 2

π log a and if a ≥ 1 then
∫
A(1,a)

1
π2|x|2 dx =

2
π log a. Therefore, with

cτ =

∫
A(a∧1,b)

τ(x)2

π2|x|2
dx−

∫
A(a∧1,1)

1

π2|x|2
dx+

∫ 1

0

2πs

1 + π2s2
ds−

∫ ∞
1

2

πs(1 + π2s2)
ds.

we obtain that cε,L − 1
2π log 1

ε −CL − cτ
ε↓0−−→ 0. Observe that cτ does not depend on the choice

of a, b (such that τ = 1 on B(0, a) and τ = 0 outside B(0, b)).

Proof of Theorem 6.4. This is a consequence of Theorem 6.7 and Lemmas 6.15 and 6.16. Indeed,
we can decompose ξε � σ(D)ξε − cε into the sum of Ξε (which converges by Theorem 6.7),
E[ξε � σ(D)ξε] − cε,L (which converges by Lemma 6.15) and cε,L − cε (which converges by
Lemma 6.16). So

lim
ε↓0

ξε � σ(D)ξε − cε = lim
ε↓0

Ξε + lim
ε↓0

(
E[ξε � σ(D)ξε]− cε,L

)
+ CL.
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7 Scaling and translation

In this section we prove the scaling properties of the eigenvalues, by scaling the size of the box
and the noise. In this section we fix L > 0 and n ∈ N.

Lemma 7.1. Suppose that V ∈ L∞([0, L]d). For all β > 0

λn([0, L]d, V ) = 1
β2λn([0, Lβ ]d, β2V (β·)).

Proof. Fix n ∈ N and write λ = λn([0, L]d, V ). Suppose that g ∈ H2
0 (see 5.9) is an eigenfunc-

tion for λ of ∆ + V . With gβ(x) := g(βx) we have for almost all x

∆gβ(x) + β2V (βx) = β2(∆g)(βx) + β2V (βx) = β2λgβ(x).

So that β2λ is an eigenvalue of ∆ + β2V (β·) on [0, Lβ ]d. As the multiplicities of the eigenvalues
on [0, L]d and [0, Lβ ]d are the same, β2λ = λn([0, Lβ ]d, β2V (β·)).

7.2. For y ∈ R2, L > 0 and β ∈ R we write

λn(y +QL, β) = λn(y +QL, (βξ
y
L, β

2ΞyL)), λn(y +QL) = λn(y +QL, 1),

where ξyL = (ξyL,Ξ
y
L) is as in 6.5.

Lemma 7.3. For α, β > 0

λn (QL, β)
d
= 1

α2λn(QL
α
, αβ) + 1

2π logα.

Proof. For simplicity we take β = 1. αlαξL is a white noise on QL
α

, so that 〈αlαξL, nk〉
d
=

〈ξL
α
, nk〉 for all k ∈ N2

0 and thus 1
αξLα

d
= lαξL. By 4.19 lαξL,ε = τ( εαD)[lαξL]

d
= 1

αξLα ,
ε
α
. So that

by Lemma 7.1

λn
(
QL, (ξL,ε, ξL,ε � σ(D)ξL,ε − 1

2π log(1
ε ))
)

= λn (QL, ξL,ε)− 1
2π log(1

ε )

d
= 1

α2λn

(
QL

α
, αξL

α
, ε
α

)
− 1

2π log(1
ε )

d
= 1

α2λn

(
QL

α
, (αξL

α
, ε
α
, α2

[
ξL
α
, ε
α
� σ(D)ξL

α
, ε
α
− 1

2π log(αε )
]
)
)

+ 1
2π logα.

Now we can subtract cτ from both sides and take the limit ε ↓ 0.

Lemma 7.4. For y ∈ R2 and β > 0

λn(QL, β)
d
= λn(y +QL, β).

Moreover, if y +Q◦L ∩Q◦L = ∅, then λn(QL, β) and λn(y +QL, β) are independent.

Proof. As (see also Definition 4.20, in particular (36)) HξyL
f = Ty(HT−yξ

y
L
(T−yf)), it is

sufficient to show ξL
d
= T−yξ

y
L. As T−yW

d
= W , we have T−yξ

y
L,ε

d
= ξL,ε and hence obtain

ξL
d
= T−yξ

y
L by (52) and (54).

For the “moreover”; note that (〈T −1
y W , nk,L〉)k∈N2

0
and (〈W , nk,L〉)k∈N2

0
are independent

when y +Q◦L ∩Q◦L = ∅ (as E[〈T −1
y W , nk,L〉〈W , nm,L〉] = 〈Tynk,L, nk,L〉 = 0).
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8 Comparing eigenvalues on boxes of different size

8.1 Bounded potentials

In this section we prove the bounds comparing eigenvalues on large boxes with eigenvalues on
smaller boxes for bounded potentials, see Lemma 8.1, Theorem 8.4 and Theorem 8.6. In Section
8.2, Theorem 8.7, we extend this for white noise potentials. We fix d ∈ N and use the notation
|k|∞ = maxi∈{1,...,d} |ki|.

Lemma 8.1. Let L > r > 0 and ζ ∈ L∞([0, L]d). For all y ∈ R2 such that y+[0, r]d ⊂ [0, L]d,
we have

λn(y + [0, r]d, ζ) ≤ λn([0, L]d, ζ).

Proof. This follows from (49) as one can identify a finite dimensional F @ H2
0 (y+ [0, r]d) with

a linear subspace of H2
0 ([0, L]d) with the same dimension.

We will now prove an upper bound for λn(QL, ζ) in terms of a maximum over smaller boxes.
For this we cover QL by smaller boxes that overlap and correct the potential with a function that
takes into account the overlaps. We use the following lemma.

Lemma 8.2. Let r > a > 0. There exists a smooth function η : Rd → [0, 1] with η = 1 on
[0, r − a]d and supp η ⊂ [−a, r]d such that ‖∇η‖∞ ≤ K

a for some K > 0 that does not depend
on r and a, and ∑

k∈Zd
η(x− rk)2 = 1 (x ∈ Rd). (65)

Proof. We adapt the proof of [16, Proposition 1] and [3, Lemma 4.6]. Let ϕ : R → [0, 1] be
smooth, ϕ = 0 on (−∞,−1] and ϕ = 1 on [1,∞) for all x ∈ R. One has

ϕ(2x
a + 1) =

{
1 x ∈ [0,∞),

0 x ∈ (−∞,−a],
ϕ(2(x−r)

a + 1) =

{
1 x ∈ [r,∞),

0 x ∈ (−∞, r − a],

Let

ζ(x) =

√
ϕ(2x

a + 1)(1− ϕ(2(x−r)
a + 1))

Then ζ = 0 outside [−a, r], ζ = 1 on [0, r − a] and
∑

k∈Z ζ(x− rk)2 = 1. Indeed, we have for
x ∈ [r − a, r] that

ϕ(2x
a + 1)(1− ϕ(2(x−r)

a + 1)) + ϕ(2(x−r)
a + 1)(1− ϕ(2(x−2r)

a + 1)) = 1,

as ϕ(2x
a + 1) = 1 and (1−ϕ(2(x−2r)

a + 1)) = 1 (because x− 2r < −a). Furthermore, note that

ζ ′(x) =
2

a

√
(1− ϕ(2(x−r)

a + 1))
d

du

√
ϕ(u)

∣∣∣
u= 2x

a
+1

+
2

a

√
ϕ(2x

a + 1)
d

du

√
1− ϕ(u)

∣∣∣
u=

2(x−r)
a

+1
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Moreover, ‖ζ ′‖∞ ≤ 2
a [‖√ϕ′‖∞ + ‖

√
1− ϕ′‖∞]. Hence with η : Rd → [0, 1] defined by

η(x) =
∏d
i=1 ζ(xi) we have (65) and ‖∇η‖∞ ≤ C

a for some C > 0.

8.3 (IMS formula). Write ηk(x) = η(x− rk). Then

η2
k∆ψ + ∆(η2

kψ)− 2ηk∆(ηkψ)

= 2η2
k∆ψ + ψ∆(η2

k) +∇ψ · ∇(η2
k)− 2ηk(ηk∆ψ +∇ηk · ∇ψ + ψ∆ηk)

= 2η2
k∆ψ + 2ψηk∆ηk + ψ|∇ηk|2 + 2ηk∇ψ · ∇ηk − 2ηk(ηk∆ψ +∇ηk · ∇ψ + ψ∆ηk)

= ψ|∇ηk|2.

Consequently,

∆ψ =
1

2

∑
k∈Zd

η2
k∆ψ + ∆(η2

kψ) =
∑
k∈Zd

ηk∆(ηkψ) + Φψ,

and thus with Hkψ = ηkH (ηkψ) (where H = Hζ) and Φ =
∑

k∈Zd |∇ηk|2

H − Φ =
∑
k∈Zd

Hk. (66)

(66) is also called the IMS-formula, see also [37, Lemma 3.1] with references to first works in
which it appears. The technique to prove [16, Proposition 1], which we slightly generalize, is
basically the IMS-formula.

Theorem 8.4. For all r > a > 0 there is a smooth function Φa,r : Rd → [0,∞) whose support
is contained in the a-neighbourhood of the grid rZd + ∂[0, r]d, is periodic in each coordinate
with period r, with ‖Φa,r‖∞ ≤ K

a2
for some K > 0 that does not depend on a and r, such that

ζ ∈ L∞(Rd) and L > r

λ([0, L]d, ζ)− K
a2
≤ λ([0, L]d, ζ − Φa,r) ≤ max

k∈Nd0,|k|∞<
L
r

+1
λ(rk + [−a, r]d, ζ). (67)

Proof. Let η be as in Lemma 8.2, ηk(x) = η(x − rk) and Φa,r = Φ =
∑

k∈Zd |∇ηk|2. By
Lemma 8.2 it follows that ‖Φ‖∞ ≤ K

a for some K > 0 that does not depend on a and r.
Observe that

∑
k∈Nd0:|k|∞<L

r
+1 η

2
k equals 1 on [0, L]d. With Hk as in 8.3, Hk is self-adjoint

and Hk ≤ λ(rk + [−a, r]d)η2
k for all k ∈ Zd. Hence we have by the IMS-formula (66) on

H2
0 ([0, L]d)

H − Φ ≤
∑

k∈Nd0,|k|∞<
L
r

+1

λ(rk + [−a, r]d)η2
k ≤ max

k∈Nd0,|k|∞<
L
r

+1
λ(rk + [−a, r]d).

∑
k∈Nd0:|k|∞<L

r
+1 η

2
k indeed equals 1 on [0, L]d: Let us check this for d = 1. This is the case

when for m = max{k ∈ N0 : k < L
r + 1} one has L ≤ r(m+ 1)− a. As a < r, this is the case

when L
r ≤ m, which is the case by definition of m.
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8.5. An alternative way of proving (67) without (49) is as follows:
By the IMS-formula (66) we have for allψ ∈ C∞c (QL) with ‖ψ‖L2 = 1, using

∑
k∈Nd0:|k|∞≤Lr +1 ‖ψk‖

2
L2 =

1 for the second inequality and writing ψ̌k = ψk
‖ψk‖L2

when ψk 6= 0 and ψ̌k = 0 otherwise,∫
Rd
−|∇ψ|2 + (ζ − Φ)ψ2 =

∑
k∈Nd0:|k|∞≤Lr +1

∫
Rd
−|∇ψk|2 + ζψ2

k

=
∑

k∈Nd0:|k|∞≤Lr +1

‖ψk‖2L2

∫
Rd
−|∇ψ̌k|2 + ζψ̌2

k. (68)

Therefore the bound (67) follows by (49).

Theorem 8.6. Let ζ ∈ L∞(Rd). Let x, y1, . . . , yn ∈ Rd, L > r > 0 be such that (yi+[0, r]d)ni=1

are pairwise disjoint subsets of x+ [0, L]d. Then

λn(x+ [0, L]d, ζ) ≥ min
i∈{1,...,n}

λ(yi + [0, r]d, ζ). (69)

Proof. By (49) (see also (114))

λn(x+ [0, L]d, ζ) ≥ sup
f1,...,fn,

fi∈C∞c (yi+[0,r]d),‖fi‖L2=1

inf
ψ=

∑n
i=1 αifi

αi∈[0,1],
∑n
i=1 α

2
i=1

∫
−|∇ψ|2 + ζψ2

≥ sup
f1,...,fn,

fi∈C∞c (yi+[0,r]d),‖fi‖L2=1

min
i∈{1,...,n}

∫
−|∇fi|2 + ζf2

i ,

which proves (69) by (49) with n = 1.

8.2 White noise as potential

In this section we prove analogous bounds to those in Lemma 8.1, Theorem 8.4 and Theorem 8.6
by replacing the bounded potential ζ by white noise, i.e., we prove Theorem 8.7.

Theorem 8.7. Let L ≥ r ≥ 1.

(a) For all κ > 0 and x, y ∈ R2 such that y +Qr ⊂ x+QL

λn(y +Qr, κ) ≤ λn(x+QL, κ) a.s. (70)

(b) There exists a K > 0 such that for all κ > 0, x ∈ R2 and a ∈ (0, r),

λ(x+QL, κ) ≤ max
k∈N2

0,|k|∞<
L
r

+1
λ(x+ rk +Qr+a, κ) + K

a2
a.s. (71)

(c) For κ > 0 and x, y1, . . . , yn ∈ R2 such that (yi +Qr)
n
i=1 are pairwise disjoint subsets of

x+QL

λn(x+QL, κ) ≥ min
i∈{1,...,n}

λ(yi +Qr, κ) a.s. (72)
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Let us describe how the proof of Theorem 8.7 follows from the following theorem. Let
L ≥ r ≥ 1, κ > 0. By performing a translation over x we may assume x = 0.

It is sufficient to show that for all y ∈ R2 and r > 0 such that y + Qr ⊂ QL one has the
following convergences in probability (and thus almost surely along a sequence (εn)n∈N in (0, 1)
that converges to 0)

λn(y +Qr, κ(ξ′L,ε − c′ε))
P−→ λn(y +Qr, κ), (73)

for the right choices ξ′L,ε and c′ε. Indeed, for (70) and (72) this is clearly sufficient. For (71) this
is sufficient by “replacing L” in (73) by “3L” and “replacing r” by either “L” or “r + a”.

In this case, we choose ξ′L,ε like ξL,ε in (50) but with τ ′ = 1(−1,1)2 instead of τ and c′ε =
1

2π log 1
ε + cτ ′ (the choice of τ ′ = 1(−1,1)2 is convenient for calculations in Section 12). Observe

that

λn(y +Qr, κξ
′
L,ε) = λn(y +Qr, κθ

y
ε ) = λn(y +Qr, (κθ

y
ε , κ

2θyε � σ(D)θyε )),

for θyε (which equals ξL,ε|y+Qr in L2(y +Qr)) given by

θyε =
∑
k∈N2

0

〈ξL,ε,Tynk,r〉L2(y+Qr)Tynk,r

=
∑
k∈N2

0

∑
m∈N2

0

1(−1,1)2( εLm)〈W , nm,L〉〈nm,L,Tynk,r〉L2(y+Qr)Tynk,r. (74)

Therefore the following theorem resembles the missing part of the proof. Observe that θyε �
σ(D)θyε ∈ H1

n ⊂ C 0
n as θyε ∈ L2 = H0

n (see also 5.7).

Theorem 8.8. Let L > r ≥ 1 and x, y ∈ R2 be such that y + Qr ⊂ x + QL. Let θyε be as in
(74). Then (ξ′L,ε, ξ

′
L,ε � σ(D)ξ′L,ε − c′ε)

P−→ ξL in Xαn (QL) and (θyε , θ
y
ε � σ(D)θyε − c′ε)

P−→ ξyr in
Xαn (y +Qr).

We prove Theorem 8.8 in Section 11: it follows from Theorem 11.3.

9 Large deviation principle of the enhancement of white noise

In this section we assume L > 0 and write ξ = (ξ,Ξ) for the limit ξL as in Theorem 6.4. We
prove the following theorem.

Theorem 9.1. (
√
εξ, εΞ) satisfies the large deviation principle with rate ε and rate function

Xαn → [0,∞], (ψ1, ψ2) 7→ 1
2‖ψ1‖2L2 .

Remark 9.2. Analogously, by some lines of the proof in a straightforward way, the statement
in Theorem 9.1 holds with underlying space the torus and (ξ,Ξ) being the analogue limit as in
Theorem 6.4 as is considered in [1].

As a direct consequence of this large deviation principle and the continuity of the eigenvalues
in the (enhanced) noise (see (46)), we obtain the following by an application of the contraction
principle (see [10, Theorem 4.2.1]).
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Corollary 9.3. λn(QL, ε) = λn(QL, (εξL, ε
2ΞL)) satisfies the large deviation principle with

rate ε2 and rate function IL,n : R→ [0,∞] given by

IL,n(x) = inf
V ∈L2(QL)

λn(QL,V )=x

1
2‖V ‖

2
L2 . (75)

Theorem 9.1 is an extension of the following theorem. A proof can be given by using [11,
Theorem 3.4.5], but as our proof is rather simple and – to our knowledge – different from proofs
in literature, we include it.

Theorem 9.4.
√
εξ satisfies the large deviation principle with rate function C α

n ([0, L]d) →
[0,∞] given by ψ 7→ 1

2‖ψ‖
2
L2 .

Proof. We use the Dawson-Gärtner projective limit theorem [10, Theorem 4.6.1] and the inverse
contraction principle [10, Theorem 4.2.4]. Let J = N with its natural ordering. Let Yi = Ri for
all i ∈ J . Let pij be the projection Yj → Yi on the first i-coordinates. Let Y be the projective
limit lim←Yj (see [10, above Theorem 4.6.1], it is a subset of

∏
j∈J Yj). Let pj : Y → Yi be

the canonical projection.
Let s : N → Nd0 be a bijection. Write d′n = ds(n). Let Φ : C α

n ([0, L]d) → Y be given by
Φ(u) = (〈u, d′1〉, . . . , 〈u, d′n〉)n∈N. This Φ is continuous and injective. We first prove that Φ ◦ ξ
satisfies the large deviation principle.

For every n ∈ N the vector (〈ξ, d′1〉, . . . , 〈ξ, d′n〉) is an n-dimensional standard normal vari-
able, whence

√
ε(〈ξ, d′1〉, . . . , 〈ξ, d′n〉) = (〈

√
εξ, d′1〉, . . . , 〈

√
εξ, d′n〉) satisfies a large deviation

principle on Rn with rate function given by In(y) := 1
2 |y|

2 = 1
2

∑n
i=1 y

2
i . By the Dawson-Gärt-

ner projective limit theorem the sequence
√
ε(〈ξ, d′1〉, . . . , 〈ξ, d′n〉)n∈N satisfies the large devia-

tion principle on Y with rate function

I((y1, . . . , yn)n∈N) = sup
n∈N

In(y1, . . . , yn) = sup
n∈N

1

2

n∑
i=1

y2
i .

The image of C α
n under Φ is measurable, which follows from the following identity

Φ(C α
n ) =

{
(a1, . . . , an)n∈N : sup

i∈N−1

∥∥∥∑
n∈N

ρi(
s(n)
L )and

′
n

∥∥∥
∞
<∞

}
.

Indeed,

(a1, . . . , an)n∈N 7→
∥∥∥∑
n∈N

ρi(
s(n)
L )and

′
n

∥∥∥
∞

is continuous as ρi(
s(n)
L ) 6= 0 for only finitely many n. As P(Φ(

√
εξ) ∈ Φ(C α

n )) = 1, and the
domain on which I is finite is contained in Φ(C α

n ), i.e., {y ∈ Y : I(y) < ∞} ⊂ Φ(C α
n ), by

[10, Theorem 4.1.5] Φ(
√
εξ) satisfies the large deviation principle on Φ(C α

n ) with rate function
I (restricted to Φ(C α

n )).
Now we apply the inverse contraction principle. Φ : C α

n → Φ(C α
n ) is a continuous bijection.

Also I ◦ Φ(ψ) = 1
2‖ψ‖

2
L2 (by Parseval’s identity). Hence the proof is finished by showing that

41



√
εξ is exponentially tight in C α

n . Let m > 0 and Km := {ψ ∈ C α
n : I ◦ Φ(ψ) ≤ m}. As L2 is

compactly embedded in Hα+1
n by Theorem 4.16, which is continuously embedded in C α

n (by [2,
Theorem 2.71], Km is relatively compact in C α

n . By the large deviation principle of Φ(
√
εξ) on

Φ(C α
n ), and because Km

c ⊂ Kc
m, it follows that

lim sup
ε↓0

ε logP(
√
εξ ∈ Km

c
) ≤ lim sup

ε↓0
ε logP(

√
εξ ∈ Kc

m)

= lim sup
ε↓0

ε logP(Φ(
√
εξ) ∈ {y ∈ Y : I ≤ m}c) ≤ −m.

This proves the exponential tightness of
√
εξ in C α

n , which finishes the proof.

To prove Theorem 9.1 we use Theorem 9.4 and the extension of the contraction principle:

Theorem 9.5. [10, Theorem 4.2.23] Let X be a Hausdorff space and (Y , d) be a metric space.
Suppose that (ηε)ε>0 are random variables with values in X that satisfy the large deviation
principle with (rate ε and) rate function I : X → [0,∞]. Suppose furthermore that Fδ : X →
Y is a continuous map for all δ > 0, F : X → Y is measurable and that for all q ∈ [0,∞)

lim
δ↓0

sup
x∈X :I(x)≤q

d(Fδ(x), F (x)) = 0, (76)

and that Fδ(ηε) are exponential good approximations for F (ηε), i.e., if for all κ > 0

lim
δ↓0

lim sup
ε↓0

ε logP(d(Fδ(ηε), F (ηε)) > κ) = −∞. (77)

Then F (ηε) satisfies the large deviation principle with rate function Y → [0,∞] given by

y 7→ inf
x∈X :F (x)=y

I(x).

Lemma 9.6. Let α ∈ (−4
3 ,−1). Let τ : R2 → [0, 1] be a compactly supported function that

equals 1 on a neighbourhood of 0. Write hδ = τ(δD)h. There exists a C > 0 such that for all
δ > 0 and h ∈ L2

‖hδ � σ(D)hδ − h� σ(D)h‖C 2α+2
n

≤ Cδ−α−1‖h‖2L2 . (78)

Proof. This follows by Theorem 4.27 (note 2α+ 4 > 0), Theorem 4.23 (also using ‖hδ‖Hα+1
n

.
‖h‖Hα+1

n
. ‖h‖L2 ; see also 4.17) and Theorem 6.14:

‖hδ � σ(D)hδ − h� σ(D)h‖C 2α+2
n

≤ ‖(h− hδ) � σ(D)hδ‖H2α+4
n

+ ‖h� σ(D)(hδ − h)‖H2α+4
n

. ‖h− hδ‖Hα+1
n
‖h‖Hα+1

n
. δ−α−1‖h‖2L2 .
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Proof of Theorem 9.1. For δ > 0 we write hδ = τ(δD)h for τ as in 6.3 and define Fδ :
C α
n (QL)→ Xαn (QL) by

Fδ(h) = (h, hδ � σ(D)hδ).

We define F : C α
n (QL) → Xαn (QL) as follows. If for h ∈ C α

n (QL) the function hδ � σ(D)hδ
converges in C 2α+2

n , then F (h) = limδ↓0(h, hδ � σ(D)hδ); if hδ � σ(D)hδ does not converge,
but hδ � σ(D)hδ − cδ does (where cδ = 1

2π log(1
δ ) + cτ ), then define F (h) = limδ↓0(h, hδ �

σ(D)hδ − cδ); whereas if hδ � σ(D)hδ − cδ also does not converge, then F (h) = 0.
With X = C α

n (QL) and Y = Xαn (QL) and ηε =
√
εξ, by Theorem 9.4 and Theorem 9.5 it

is sufficient to prove that (76) and (77) hold because when F (φ) = (ψ1, ψ2) 6= 0 then φ = ψ1.
• First we check (76). By Lemma 9.6 we have (F (h) = (h, h� σ(D)h) and)

sup
h∈Cαn (QL):‖h‖L2≤q

‖Fδ(h)− F (h)‖Xαn . δ−α−1q2,

for all q ≥ 0, i.e., (76) holds.
• Now we check (77). Let κ > 0. We have that Ξ := limδ↓0 ξδ � σ(D)ξδ − cδ exists almost

surely by Theorem 6.4. Hence, for p > 1

P
(
‖Fδ(
√
εξ)− F (

√
εξ)‖Xαn > κ

)
≤ εp

κp
E
[
‖ξδ � σ(D)ξδ − Ξ‖p

C 2α+2
n

]
≤ εp2p

κp
(cpδ + E

[
‖ξδ � σ(D)ξδ − cδ − Ξ‖p

C 2α+2
n

]
)

Let η = −(2α + 2). By Lemmas 6.10, 6.15, 6.16 and 11.11 there exists a C > 0 such that for
all p > 1

E
[
‖ξδ � σ(D)ξδ − cδ − Ξ‖p

C 2α+2
n

]
≤ Cpppδηp.

Therefore (using that ap + bp ≤ (a+ b)p)

P
(
‖Fδ(
√
εξ)− F (

√
εξ)‖Xαn > κ

)
≤
[

2ε

κ
(cδ + Cpδη)

]p
Hence with p = 1

ε we obtain

lim sup
ε↓0

ε logP
(
‖Fδ(
√
εξ)− F (

√
εξ)‖Xαn > κ

)
≤ lim sup

ε↓0
log
[

2
κ(εcδ + Cδη)

]
≤ log(2C

κ δ
η).

So that

lim
δ↓0

lim sup
ε↓0

ε logP
(
‖Fδ(
√
εξ)− F (

√
εξ)‖Xαn > κ

)
= −∞,

i.e., (77) holds.
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10 Infima over the large deviation rate function

In this section we consider infima over sets of the rate function IL,n as in (75). We prove the
results summarized in Theorem 2.6.

Lemma 10.1. For a, b ∈ R and all δ > 0

(1− δ) inf IL,n[b,∞) + 1
2(1− 1

δ )L2a2 ≤ inf IL,n[b+ a,∞)

≤ (1 + δ) inf IL,n[b,∞) + 1
2(1 + 1

δ )L2a2.

Consequently, for (aL)L>0 in R with limL→∞ LaL = 0,

lim
L→∞

inf IL,n[b,∞) = lim
L→∞

inf IL,n[b+ aL,∞)

= lim
L→∞

inf IL,n(b+ aL,∞) = lim
L→∞

inf IL,n(b,∞).

Proof. As λn(QL, V )+a = λn(QL, V +a1QL), ‖a1QL‖L2 = aL, and 2〈V, a1QL〉 ≤ δ‖V ‖2L2+
1
δa

2L2 for all δ > 0;

inf IL,n[b+ a,∞) = inf
V ∈L2(QL)

λn(QL,V−a1QL )≥b

1
2‖V ‖

2
L2(QL)

= inf
V ∈L2(QL)

λn(QL,V )≥b

1
2‖V + a1QL‖

2
L2(QL)

≤ (1 + δ) inf
V ∈L2(QL)

λn(QL,V )≥b

1
2‖V ‖

2
L2(QL) + 1

2(1 + 1
δ )a2L2.

The lower bound can be proven similarly.

We define

µL,n := inf IL,n[1,∞), %n := inf
L>0

µL,n. (79)

We prove that %n is bounded away from 0 uniformly in n (Lemma 10.4) and give an alternative
variational formula for %n (Lemma 10.5) from which we conclude Theorem 2.6.

Lemma 10.2. µL,n = inf IL,n(1,∞) = inf V ∈C∞c (QL)

λn(QL,V )≥1

1
2‖V ‖

2
L2 .

Proof. The first equality follows by Lemma 10.1. The second follows by Lemma 5.8.

We will use Ladyzhenskaya’s inequality [25], which is a special case of the Gagliardo– Niren-
berg interpolation inequality [28].

Lemma 10.3 (Ladyzhenskaya’s inequality). There exists a C > 0 such that for f ∈ H1(R2),

‖f‖4L4 ≤ C‖∇f‖2L2‖f‖2L2 . (80)
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Lemma 10.4. Let C > 0 be as in Lemma 10.3. Then %n ≥ 2
C for all n ∈ N.

Proof. Let n ∈ N. Let L > 0 and ε > 0. Let V ∈ C∞c (QL) be such that λn(QL, V ) ≥ 1 and
1
2‖V ‖

2
L2 ≤ µL,n + ε. By (49) there is a ψ ∈ C∞c (QL) with ‖ψ‖L2 = 1 such that (by integration

by parts)

1− ε ≤ −‖∇ψ‖2L2 +

∫
V ψ2 ≤ −‖∇ψ‖2L2 + ‖V ‖L2‖ψ‖2L4 .

Hence by using Ladyzhenskaya’s inequality (80), which implies ‖∇ψ‖2L2 ≥ 1
C ‖ψ‖

4
L4 ,

‖V ‖L2 ≥
1− ε+ ‖∇ψ‖2L2

‖ψ‖2
L4

≥ 1− ε
‖ψ‖2

L4

+
1

C
‖ψ‖2L4

As a2 + b2 ≥ 2ab we have

‖V ‖L2 ≥ 2

√
1− ε
C

,

and thus µL,n + ε ≥ 1
2‖V ‖

2
L2 ≥ 21−ε

C . As this holds for all ε > 0 we conclude that µL,n ≥ 2
C

for all L > 0. Hence %n ≥ 2
C .

Lemma 10.5. For all n ∈ N, a > 0,

inf
L>0

inf
V ∈C∞c (QL)

λn(QL,V )≥a

1
2‖V ‖

2
L2(QL) = inf

L>0
inf

V ∈C∞c (QL)

‖V ‖2
L2≤

1
a

1
2λn(QL,V ) . (81)

Moreover, µL,n is decreasing in L, and one could replace “infL>0” in (81) by “limL→∞”. In
particular, %n = limL→∞ µL,n.

Proof. With W = L2V (L·) we have W ∈ C∞c (Q1), ‖W‖2L2(Q1) = L2‖V ‖2L2(QL) and by
Theorem 7.1 λn(QL, V ) = λn(QL,

1
L2W ( 1

L ·)) = 1
L2λn(Q1,W ). Therefore

inf
V ∈C∞c (QL)

λn(QL,V )≥a

1
2‖V ‖

2
L2(QL) = inf

W∈C∞c (Q1)

λn(Q1,W )≥aL2

1
2

1
L2 ‖W‖2L2(Q1), (82)

inf
V ∈C∞c (QL)

‖V ‖2
L2≤

1
a

1
2λn(QL,V ) = inf

W∈C∞c (Q1)

‖W‖2
L2≤

L2

a

L2

2λn(Q1,W ) . (83)

With this, (81) follows directly from Lemma 10.6. That µL,n and the left-hand side of (83) are
decreasing in L follows from Lemma 8.1.

Lemma 10.6. Let Y be a topological space and f, g : Y → R be continuous functions. Let
a > 0 and suppose that % := infL>0 infw∈Y :f(w)≥aL

g(w)
L > 0. Then

inf
L>0

inf
w∈Y

f(w)≥aL

g(w)

L
= inf

L>0
inf
w∈Y

g(w)≤L
a

L

f(w)
.
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Proof. By definition we have ∀L > 0 ∀w ∈ Y : 1
Lg(w) < % =⇒ f(w) < aL, by continuity of

f and g we obtain (by taking K = L%a)

∀K > 0 ∀w ∈ Y : g(w) ≤ K

a
=⇒ f(w)

K
≤ 1

%
.

Let ε > 0. Then there exists an L > 0 and wL ∈ Y such that f(wL) ≥ aL and 1
Lg(wL) ≤ %+ε.

Then with K = La(% + ε) we have for w = wL that g(w)
K ≤ 1

a and f(w)
K ≥ 1

%+ε . So that

supK>0 sup w∈Y

g(w)≤K
a

f(w)
K = 1

% .

Proof of Theorem 2.6. By (49) and Lemma 10.5 (for a = 1) we have

2

%n
= sup

L>0
sup

V ∈C∞c (QL)

‖V ‖2
L2≤1

4λn(QL, V )

= 4 sup
L>0

sup
V ∈C∞c (QL)

‖V ‖2
L2≤1

sup
F@C∞c (QL)

dimF=n

inf
ψ∈F

‖ψ‖2
L2=1

∫
QL

−|∇ψ|2 + V ψ2,

from which (1) follows. By Cauchy-Schwarz, for ψ ∈ C∞c (R2), the supremum of
∫
V ψ2 with

respect to V ∈ C∞c (R2) with L2 norm equal to 1 is attained at V = ψ2

‖ψ2‖L2
; therefore this

supremum equals ‖ψ‖2L4 and hence we derive the first equality in (2). In Lemma 10.4 we have
already seen that 2

ρ1
≤ χ. For the other inequality, we refer to [6, Theorem C.1] (basically

the trick is to replace “ψ” by “λf(λ·)” and optimise over λ > 0 first, then over f ∈ L2 with
‖f‖L2 = 1). First, let us check that the L2 norm of the rescaled function equals the L2 norm of
the original function.

‖λ
d
2 f(λ·)‖2L2 =

∫
λd|f(λx)|2 dx =

∫
|f(y)|2 dy = ‖f‖L2 .

Therefore

2

%1
= 4 sup

L>0
sup

V ∈C∞c (QL)

‖V ‖2
L2≤1

sup
ψ∈F

‖ψ‖2
L2=1

∫
QL

−|∇ψ|2 + V ψ2,

= 4 sup
ψ∈C∞c (R2)
‖ψ‖2

L2=1

‖ψ‖2L4 −
∫
R2

|∇ψ|2

= 4 sup
f∈C∞c (R2)
‖ψ‖2

L2=1

sup
λ>0

(∫
R2

λ4|f(λx)|4 dx

) 1
2

−
∫
R2

λ4|∇f(λx)|2 dx

= 4 sup
f∈C∞c (R2)
‖ψ‖2

L2=1

sup
λ>0

λ

(∫
R2

|f(y)|4 dy

) 1
2

− λ2

∫
R2

|∇f(y)|2 dy.
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The concave function aλ − bλ2 attains its maximum where the derivative equals 0: At λ = a
2b .

Hence the maximum equals a2

2b −
a2

4b = a2

4b .
Hence

2

%1
= sup

f∈C∞c (R2)
‖ψ‖2

L2=1

‖f‖4L4

‖∇f‖2
L2

.

11 Convergence of Gaussians

In this section we prove the convergence of Gaussians mentioned in Section 6 and Section 8. We
bundle the proofs together in a general setting as they rely on similar techniques.

For r ≥ 1 we let Xε
k,r and Y ε

k,r be centered Gaussian variables for k ∈ Nd0, ε > 0 such that
every finite subset of {Y ε

k,r : k ∈ Nd0, ε > 0} ∪ {Xε
k,r : k ∈ Nd0, ε > 0} is jointly Gaussian for all

r ≥ 1. We write

ξr,ε =
∑
k∈Nd0

Y ε
k,rnk,r, θr,ε =

∑
k∈Nd0

Xε
k,rnk,r. (84)

Also, we introduce the notation

ρ� : Rd × Rd → R, ρ�(x, y) =
∑

i,j∈N−1

|i−j|≤1

ρi(x)ρj(y),

Θr,ε = θr,ε � σ(D)θr,ε − E[θr,ε � σ(D)θr,ε],

Ξr,ε = ξr,ε � σ(D)ξr,ε − E[ξr,ε � σ(D)ξr,ε].

Lemma 11.1. Let d = 2. Write Fr,ε(k, l) = E[Xε
k,rX

ε
l,r]. Let I ⊂ [1,∞). Suppose that

∀δ > 0 ∃C > 0 ∀r ∈ I ∀k, l ∈ N2
0 ∀ε > 0 :

|Fr,ε(k, l)| ≤ C
d∏
i=1

(1 + |ki − li|)δ−1. (85)

For all γ ∈ (0, 1) there exists a C > 0 such that for all r ∈ I , i ∈ N−1, ε > 0, x ∈ Qr

E[|∆iθr,ε|(x)2] ≤ Cr2γ2(2+γ)i, E[|∆iΘr,ε|(x)2] ≤ Cr2γ2γi. (86)

Proof. This follows from Lemma 11.5 and Lemma 11.12.

Observe that

θr,ε � σ(D)θr,ε − ξr,ε � σ(D)ξr,ε =
∑
k,l∈N2

0

ρ�(kr ,
l
r )

1 + π2

r2
|l|2

nk,rnl,r[X
ε
k,rX

ε
l,r − Y ε

k,rY
ε
l,r]. (87)
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Theorem 11.2. Let d = 2, I ⊂ [1,∞). We write R = {(k, l) ∈ N2
0 × N2

0 : k1 6= l1, k2 6= l2}.
Let Gr,ε(k, l) = E[Xε

k,rX
ε
l,r − Y ε

k,rY
ε
l,r]. Consider the following conditions.

∀k ∈ N2
0 ∀r ∈ I; E[|Xε

k,r − Y ε
k,r|2]

ε↓0−−→ 0, (88)

∀r ∈ I ∀δ > 0 ∃C > 0 ∃ε0 > 0 ∀ε ∈ (0, ε0) ∀k, l ∈ N2
0 :

|Gr,ε(k, l)| ≤ C


∏2
i=1

1
1+|ki− rε |)1−δ

+ 1
1+|li− rε |)1−δ

(k, l) ∈ R,∑2
i=1

1
1+|ki− rε |)1−δ

+ 1
1+|li− rε |)1−δ

(k, l) ∈ N2
0 × N2

0 \R.
(89)

(a) Suppose that (88) holds and that (85) holds forFr,ε(k, l) being either E[Xε
k,rX

ε
l,r],E[Xε

k,rY
ε
l,r]

or E[Y ε
k,rY

ε
l,r]. Then for r ∈ I , α < −1, in Xαn we have

(θr,ε − ξr,ε,Θr,ε − Ξr,ε)
P−→ 0.

(b) Suppose (89) holds. Then E[θr,ε � σ(D)θr,ε − ξr,ε � σ(D)ξr,ε]→ 0 in C−γn for all γ > 0
and r ∈ I .

Consequently, if the above assumptions in (a) and (b) hold, then with c = 0, for r ∈ I , α < −1,
in Xαn

(θr,ε − ξr,ε, θr,ε � σ(D)θr,ε − ξr,ε � σ(D)ξr,ε)
P−→ (0, c). (90)

Proof. (a) We use Lemma 6.10(b). By Lemma 11.1 we obtain (56) for ζ = θr,ε − ξr,ε with
a = 2 + γ and for ζ = Θr,ε − Ξr,ε with a = 2γ for γ ∈ (0, 1). (88) implies that E[|〈θr,ε −
ξr,ε, nk,r〉|2] → 0, i.e., (58) holds for ζε = θr,ε − ξr,ε. In Lemma 11.13 we show that (58) holds
for ζε = Θr,ε − Ξr,ε.

(b) is shown in Lemma 11.14.

Theorem 11.3. Let τ ∈ C∞c (R2, [0, 1]) and τ ′ : R2 → [0, 1] be compactly supported functions.
Suppose τ and τ ′ are equal to 1 on a neighbourhood of 0.

(a) For all r ≥ 1 (90) holds with c = cτ ′ − cτ in case Xε
k,r = τ ′( εrk)Zk and Yk,r = τ( εrk)Zk.

(b) Let L > r ≥ 1 and y ∈ R2 be such that y +Qr ⊂ QL. With W as in 6.2, for

Zm = 〈W , nm,L〉, Zk = 〈W ,Tynk,r〉 =
∑
m∈N2

0

Zm〈nm,L,Tynk,r〉L2(Qr),

Xε
k,r =

∑
m∈N2

0

1(−1,1)2( εLm)Zm〈nm,L,Tynk,r〉L2(Qr), Y ε
k,r = 1(−1,1)2( εrk)Zk.

(90) holds with c = 0.

Proof. (a) That (88) holds is clear. As |E[Xε
k,rX

ε
l,r]| ∨ |E[Xε

k,rY
ε
l,r]| ∨ |E[Y ε

k,rY
ε
l,r]| ≤ 2δk,l,

also (85) holds for each of those expectations and thus the conditions of Theorem 11.2(a) hold.
Therefore it is sufficient to show that E[θr,ε�σ(D)θr,ε− ξr,ε�σ(D)ξr,ε]

P−→ cτ ′ − cτ in C−γn for
all γ > 0. This follows by Lemma 6.15 and Lemma 6.16 as they show that E[θr,ε � σ(D)θr,ε]−
cε − cτ ′ and E[ξr,ε � σ(D)ξr,ε]− cε − cτ converge to the same limit in C−γn .

(b) We prove this in Theorem 12.1.
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11.1 Terms in the first Wiener chaos

Lemma 11.4. Consider the setting of 6.3, i.e., Y ε
k,r = τ( εrk)Zk for i.i.d. standard normal random

variables (Zk)k∈Nd0
and τ ∈ C∞c (R2, [0, 1]). For all γ ∈ (0, 1) there exists a C > 0 such that

for all r ≥ 1, i ∈ N−1, ε, δ > 0, x ∈ Qr

E[|∆i(ξr,ε − ξr,δ)(x)|2] ≤ C2(d+2γ)i|ε− δ|γ . (91)

Proof. Let γ ∈ (0, 1). As ∆i(ξr,ε − ξr,δ)(x) =
∑

k∈N2
0
ρi(

k
r )(τ(εkr ) − τ(δ kr ))Zknk,r(x), and

‖nk,r‖2∞ ≤ (2
r )d,

E[|∆i(ξr,ε − ξr,δ)(x)|2] ≤ (2
r )d

∑
k∈ 1

r
Nd0

ρi(k)2(τ(εk)− τ(δk))2

by (63) we have

E[|∆i(ξr,ε − ξr,δ)(x)|2] . r−d2(d+2γ)i
∑
k∈ 1

r
Nd0

(τ(εk)− τ(δk))2

(1 + |k|)d+2γ
.

As |τ(εk)− τ(δk)| ≤ ‖∇τ‖∞|ε− δ||k| and ‖τ‖∞ = 1,

(τ(εk)− τ(δk))2 . ‖∇τ‖γ∞|ε− δ|γ |k|γ . (92)

Therefore, as
∑

k∈ 1
r
Zd r

−d |k|γ
(1+|k|)d+2γ < ∞ , we obtain (91). Indeed the sum is bounded by a

constant not depending on r: For k ∈ Zd and x ∈ Rd with |x− k|∞ ≤ 1
2 we have |x− k| ≤

√
d

2 ,∑
k∈ 1

r
Nd0

1

(1 + |k|)d+η
r−d ≤

∫
Rd

1

(1 + 1√
d
|bxr c|)d+η

r−d dx ≤
∫
Rd

1

(1
2 + 1√

d
|xr |)d+η

r−d dx

=

∫
Rd

1

(1
2 + 1√

d
|y|)d+η

dy <∞.

Lemma 11.5. Suppose that (85) holds for Fr,ε(k, l) = E[Xε
k,rX

ε
l,r]. For all γ ∈ (0, 1) there

exists a C > 0 (independent of r) such that for all i ∈ N−1, ε > 0, x ∈ Qr

E[|∆iθr,ε(x)|2] ≤ Crdγ2(d+γ)i. (93)

Proof. By (63) 2−βi‖∆ink,r‖L∞ . r−
d
2 (1 + |kr |)

−β ≤ r−
d
2
∏d
i=1(1

r + ki
r )−

β
d . Let δ > 0 be

such that δ < γ (so that in particular δ < 1+γ
2 ). As |E[Xε

k,rX
ε
l,r]| .

∏d
i=1(1 + |ki − li|)δ−1 =
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∏d
i=1 r

δ−1(1
r + |kir −

li
r |)

δ−1, we have by using Lemma 11.7

2−(d+dγ)iE[|∆iθr,ε(x)|2L∞ ] . r−d
∑
k,l∈Nd0

1

(1 + |kr |)
d+dγ

2

1

(1 + | lr |)
d+dγ

2

|E[Xε
k,rX

ε
l,r]|

.
( ∑
k,l∈ 1

r
N0

1

(1
r + k)

1+γ
2

1

(1
r + l)

1+γ
2

rδ−2

(1
r + |k − l|)1−δ

)d
.
( ∑
k∈ 1

r
N0

rδ−1

(1
r + k)

1+γ
2

1

(1
r + k)

1+γ
2
−δ

)d
.
(
rδ(1

r )δ−γ
)d

. rdγ .

In the following two lemmas we present tools to bound sums by integrals, which will be
frequently used.

Lemma 11.6. Let M ∈ N and f : [0,M ] → R be a decreasing measurable function. Then∑M
m=1 f(m) ≤

∫M
0 f(x) dx ≤

∑M−1
m=0 f(m). If f instead is increasing, then

∑M−1
m=0 f(m) ≤∫M

0 f(x) dx ≤
∑M

m=1 f(m).

Lemma 11.7. Let γ, δ > 0 be such that δ < γ < 1. There exists a C > 0 such that for all r ≥ 1,
b > 0 and u, v ∈ R,∑

k∈N0

1

r

1

(b+ |kr − u|)γ
1

(b+ |kr − v|)1−δ
≤ C(b+ |u− v|)δ−γ . (94)

and for all l ∈ R2

∑
k∈ 1

r
N2
0

1

r2

ρ�(k, l)

(1 + |k − l|)γ
≤ C(1 + |l|)2−γ . (95)

Proof. We can bound both sums by “their corresponding integral” by observing the following.
For k ∈ Zd and x ∈ Rd with |x− k

r |∞ < 1
2r and thus |x− k

r | ≤
√
d

2r , for u ∈ Rd∣∣x− u∣∣ ≤ ∣∣kr − u∣∣+
∣∣x− k

r

∣∣ ≤ ∣∣kr − u∣∣+
√
d

2r . (96)

So that

1

(b+ |kr − u|)γ
≤

(b+
√
d

2r )γ

(b+
√
d

2r + |kr − u|)γ
≤

(b+
√
d

2 )γ

(b+ |x− u|)γ
.

Then (94) follows by Lemma B.1 and by Lemma 11.9 we have
∑

k∈ 1
r
N2
0

1
r2

ρ�(k,l)
(1+|k−l|)γ . 1 +

2π
∫ c|l|

1
c
|l|

x
(1+|x−|l||)γ dx . (1 + |l|)2−γ .

50



11.2 Terms in the second Wiener chaos

In order to bound terms in the second Wiener chaos, i.e., Ξr,ε, Θr,ε and E[θr,ε�σ(D)θr,ε−ξr,ε�
σ(D)ξr,ε], we start by presenting auxiliary lemma’s and observations.

Theorem 11.8 (Wick’s theorem). [19, Theorem 1.28] Let A,B,C,D be jointly Gaussian ran-
dom variables. Then

E[ABCD] = E[AB]E[CD] + E[AC]E[BD] + E[AD]E[BC].

Lemma 11.9. There exist b > 0 and c > 1 such that

supp ρ� ⊂ B(0, b)2 ∪ {(x, y) ∈ Rd × Rd : 1
c |x| ≤ |y| ≤ c|x|}

Consequently, uniformly in x, y ∈ Rd

ρ�(x, y)

(1 + |x|2)
h

ρ�(x, y)

(1 + |y|2)
. (97)

Proof. Let 0 < a < b be such that supp ρ0 ⊂ {x ∈ Rd : a ≤ |x| ≤ b} and supp ρ−1 ⊂ B(0, b).
Let i, j ∈ N−1 and x, y ∈ R2 be such that ρi(x)ρj(y) 6= 0. If i, j ∈ {−1, 0}, then x, y ∈ B(0, b).
Suppose i, j ≥ 0 and |i − j| ≤ 1. Then |x| ∈ [2ia, 2ib] and |y| ∈ [2ja, 2jb] ⊂ [2i−1a, 2i+1b].
This in turn implies

a
2b |x| ≤

a
2b2

ib = 2i−1a ≤ |y| ≤ 2i+1b ≤ 2b
a 2ia ≤ 2b

a |x|.

For x ∈ B(0, b) one has 1 + |x|2 ≤ 1 + b2 ≤ (1 + b2)(1 + |y|2) and for (x, y) ∈ Rd × Rd with
1
c |x| ≤ |y| ≤ c|x| one has 1 + |x|2 . 1 + c2|y|2 ≤ c2(1 + |x|2).

11.10. Let k, l, z ∈ Nd0. We write nk = nk,r here. By (41) (and using (29)) and as nq◦k = nk for
all q ∈ {−1, 1}d,

〈nknl, nz〉L2(Qr) = 2−d〈nknl, nz〉L2(Qr) = 2−d(2r)−
d
2

∑
p∈{−1,1}d

νkνl
νk+p◦l

〈nk+p◦l, nz〉L2(Qr)

= (2r)−
d
2

∑
p∈{−1,1}d

νkνl
νk+p◦l

〈nk+p◦l, nz〉L2(Qr)

= (2r)−
d
2

∑
p,q∈{−1,1}d

νkνl
νk+q◦p◦l

δq◦k+p◦l,z. (98)

By combining this with (63), using that |nk(x)| ≤ (2
r )−

d
2 , we have for x ∈ (0, r)d and γ > 0

rd|∆i(nknl)(x)| .
∑

p,q∈{−1,1}d
ρi

(q ◦ k + p ◦ l
r

) 2γi

(1 + |kr −
l
r |)γ

. (99)

Lemma 11.11. Let d = 2. Consider the setting of 6.3 as we did in Lemma 11.4. For all γ ∈ (0, 1)
there exists a C > 0 (independent of r) such that for all i ∈ N−1, ε, δ > 0, x ∈ Qr

E[|∆i(Ξr,ε − Ξr,δ)(x)|2] ≤ C|ε− δ|γ22γi. (100)
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Proof. First observe Ξr,ε =
∑

k,l∈N2
0
ρ�(kr ,

l
r )
τ(ε k

r
)τ(ε l

r
)

1+π2

r2
|l|2

[ZkZl − δk,l]nknl. By Theorem 11.8

and (99) (as both contributions δk,mδl,n and δk,nδm,l can be bounded by the same expression by
Lemma 11.9)

2−2γiE[|∆i(Ξr,ε − Ξr,δ)(x)|]

.
∑

k,l∈ 1
r
N2
0

1

r4

ρ�(k, l)2

(1 + π2|l|2)2

[τ(εk)τ(εl)− τ(δk)τ(δl)]2

(1 + |k − l|)2γ
.

As 2(ab− cd) = (a− c)(b+ d) + (a+ c)(b− d)

(a− c)(b+ d) + (a+ c)(b− d) = ab+ ad− cb− cd+ ab− ad+ cb− cd

we use this as follows:

2[τ(εk)τ(εl)− τ(δk)τ(δl)]

=
(
τ(εk)− τ(δk)

)(
τ(εl) + τ(δl)

)
+
(
τ(εk) + τ(δk)

)(
τ(εl)− τ(δl)

)
,

similar to (92) as in the proof of Lemma 11.4 we obtain

|τ(εk)τ(εl)− τ(δk)τ(δl)|2 ≤ 4‖∇τ‖γ∞|ε− δ|γ(|k|γ + |l|γ).

Using Lemma 11.9 and (95) we obtain

2−2γiE[‖∆i(Ξr,ε − Ξr,δ)‖2L∞ ] . |ε− δ|γ
∑
l∈ 1
r
N2
0

r−4

(1 + |l|)4−γ

∑
k∈ 1

r
N2
0

ρ�(k, l)2

(1 + |k − l|)2γ

. |ε− δ|γ
∑
l∈ 1
r
N2
0

r−2

(1 + |l|)2+γ
.

Lemma 11.12. Suppose that (85) holds for Fr,ε(k, l) = E[Xε
k,rX

ε
l,r]. For all γ ∈ (0,∞) there

exists a C > 0 (independent of r) such that for all i ∈ N−1, ε > 0

E[|∆iΘr,ε(x)|2] ≤ Cr2γ2γi. (101)

Proof. First note that Θr,ε =
∑

k,l∈N2
0

ρ�( k
r
, l
r

)

1+π2| l
r
|2nk,rnl,r[X

ε
k,rX

ε
l,r − E[Xε

k,rX
ε
l,r]]. By Theorem

11.8

E
(
[Xε

k,rX
ε
l,r − E[Xε

k,rX
ε
l,r]][X

ε
m,rX

ε
n,r − E[Xε

m,rX
ε
n,r]]

)
= E[Xε

k,rX
ε
m,r]E[Xε

l,rX
ε
n,r] + E[Xε

k,rX
ε
n,r]E[Xε

l,rX
ε
m,r].

By exploiting symmetries using Lemma 11.9 and by (99) we have

2−2γiE[|∆iΘr,ε(x)|2] .
∑

k,l,m,n∈ 1
r
N2
0

r−4ρ�(k, l)ρ�(m,n)|E[Xε
rkX

ε
rm]E[Xε

rlX
ε
rn]|

(1 + |k − l|)γ(1 + |m− n|)γ(1 + |l|2)(1 + |m|2)
.
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We will bound the ρ� function by 1, use the bound (85) for some δ > 0 (will be chosen small
enough later) and we ‘separate the dimensions’ by using that 1 + |k|2 & (1 + k1)(1 + k2) and
(1 + |k − l|)γ & (1

r + |k1 − l1|)
γ
2 (1

r + |k2 − l2|)
γ
2 and obtain

2−2γiE[|∆iΘr,ε(x)|2] .

( ∑
k,l,m,n∈ 1

r
N0

r2δ−4(1
r + |k −m|)δ−1(1

r + |l − n|)δ−1

(1
r + |k − l|)

γ
2 (1

r + |m− n|)
γ
2 (1

r + l)(1
r +m)

)2

.

(102)

For δ < γ
2 we have by Lemma 11.7∑

n∈ 1
r
N0

r−1(1
r + |l − n|)δ−1

(1
r + |m− n|)

γ
2

∨
∑
k∈ 1

r
N0

r−1(1
r + |k −m|)δ−1

(1
r + |k − l|)

γ
2

.
1

(1
r + |m− l|)

γ
2
−δ ,

and for δ < γ
4 the square root of the right-hand side of (102) can be bounded by∑

m,l∈ 1
r
N0

r2δ−2

(1
r + |m− l|)γ−2δ

1
1
r +m

1
1
r + l

.
∑
l∈ 1
r
N0

r2δ−1

(1
r + l)γ−3δ

1
1
r + l

. rγ−2δ . rγ .

Hence we obtain (101).

Lemma 11.13. Suppose that (88) holds and that (85) holds forFr,ε(k, l) being either E[Xε
k,rX

ε
l,r],

E[Xε
k,rY

ε
l,r] or E[Y ε

k,rY
ε
l,r]. Then E[|〈Θr,ε − Ξr,ε, nz〉|2]→ 0 for all z ∈ N2

0.

Proof. Fix z ∈ N2
0. Given a function H : (N2

0)4 → R let us use the following (formal) notation

S(H) =
∑

k,l,m,n∈N2
0

ρ�(k, l)

1 + π2

r2
|l|2

ρ�(m,n)

1 + π2

r2
|n|2

∑
p,r,q,s∈{−1,1}2

δr◦k+p◦l,zδs◦m+q◦n,zH(k, l,m, n).

By (98), as 1
4 ≤ νk ≤ 1 for all k ∈ N2

0,

E[|〈Θr,ε − Ξr,ε, nz〉|2] . S(Eε),

where

Eε(k, l,m, n) = E
(
[Xε

k,rX
ε
l,r − Y ε

k,rY
ε
l,r][X

ε
m,rX

ε
n,r − Y ε

m,rY
ε
n,r]
)

− E[Xε
k,rX

ε
l,r − Y ε

k,rY
ε
l,r]E[Xε

m,rX
ε
n,r − Y ε

m,rY
ε
n,r].

We decomposeEε using Wick’s theorem (Theorem 11.8). Let us for a few lines writeAk = Xε
k,r

and Bk = Y ε
k,r, then we obtain

E ([AkAl −BkBl][AmAn −BmBn])− E[AkAl −BkBl]E[AmAn −BmBn]

= E[AkAlAmAn]− E[AkAlBmBn]− E[BkBlAmAn] + E[BkBlBmBn]

− (E[AkAl]− E[BkBl])(E[AmAn]− E[BmBn])

= E[AkAm]E[AlAn]− E[AkBm]E[AlBn]− E[BkAm]E[BlAn] + E[BkBm]E[BlBn]

+ E[AkAn]E[AmAl]− E[AkBn]E[BmAl]− E[BkAn]E[AmBl] + E[BkBn]E[BmBl].
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Observe that

E[AkAm]E[AlAn]− E[AkBm]E[AlBn]

= E[AkAm]E[AlAn]− E[Ak(Bm −Am)]E[AlBn]− E[AkAm]E[AlBn]

= E[AkAm]E[AlAn]− E[Ak(Bm −Am)]E[Al(Bn −An)]

− E[Ak(Bm −Am)]E[AlAn]− E[AkAm]E[AlBn]

= E[AkAm]E[Al(An −Bn)]− E[Ak(Bm −Am)]E[Al(Bn −An)]

− E[Ak(Bm −Am)]E[AlAn].

Hence, as E[|Ak − Bk|2] = E[|Xε
k,r − Y ε

k,r|2] → 0 by (88), we have Eε(k, l,m, n) → 0 for all
k, l,m, n ∈ N2

0. We show that S(Eε) converges to zero by a dominated convergence argument.
Let us write

J(k, l,m, n) :=
2∏
i=1

(1 + |ki −mi|)δ−1(1 + |li − ni|)δ−1,

and J̃(k, l,m, n) = J(k, l, n,m). Then by (85) we have Eε ≤ J + J̃ and by the symmetries
obtained by Lemma 11.9 S(J̃) . S(J). Moreover, by “merging the p, q, r, s and k, l,m, n
variables” (in the sense of summing over k ∈ Z2 instead of q ◦ k with q ∈ {−1, 1}2 and k ∈ N2

0)
we have

S(J) .
∑

k,l,m,n∈Z2

δk+l,z

1 + π2

r2
|l|2

δm+n,z

1 + π2

r2
|n|2

2∏
i=1

(1 + |ki −mi|)δ−1(1 + |li − ni|)δ−1

.
∑
l,n∈Z2

1

1 + π2

r2
|l|2

1

1 + π2

r2
|n|2

2∏
i=1

(1 + |li − ni|)2δ−2

which is finite by Lemma 11.7.

Lemma 11.14. If (89) holds, then E[θr,ε � σ(D)θr,ε − ξr,ε � σ(D)ξr,ε] → 0 in C−γn for all
γ > 0.

Proof. Let us abbreviate Gr,ε(k, l) = E[Xε
k,rX

ε
l,r − Y ε

k,rY
ε
l,r]. By (87) and (99)

sup
i∈N−1

2−γi‖∆iE[θr,ε � σ(D)θr,ε − ξr,ε � σ(D)ξr,ε]‖∞ .
∑
k,l∈N2

0

ρ�(k, l)

(1 + |l|2)

|Gr,ε(k, l)|
(1 + |k − l|)γ

.

We use (89) and consider the sums over R and N2
0 × N2

0 \R as in Theorem 11.2 separately.
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• [Sum over R] By exploiting symmetries using Lemma 11.9∑
(k,l)∈R

ρ�(k, l)

(1 + |l|2)

|Gr,ε(k, l)|
(1 + |k − l|)γ

. Sε,1 + Sε,2,

Sε,1 =
∑
k,l∈N2

0

ρ�(k, l)

(1 + |l|2)

1

(1 + |k − l|)γ
1

(1 + | rε − l1|)1−δ
1

(1 + | rε − l2|)1−δ

Sε,2 =
∑
k,l∈N2

0

ρ�(k, l)

(1 + |l|2)

1

(1 + |k − l|)γ
1

(1 + | rε − l1|)1−δ
1

(1 + | rε − k2|)1−δ .

By (95), by using that (1 + |l|2) ≥ (1 + l1)(1 + l2) and by using (94) with δ < γ

Sε,1 .

∑
l∈N0

1

(1 + l)
γ
2

1

(1 + | rε − l|)1−δ

2

. (1 + r
ε)δ−γ . εγ−δ.

For Sε,2 by Lemma 11.9 there exist b > 0, c > 1 such that (using that |k − l| ≥ |k1 − l1|)∑
k∈N2

0

ρ�(k, l)

(1 + |k − l|)γ
1

(1 + | rε − k2|)1−δ

.
∑
k∈N2

0
|k|≤b

1

(1 + | rε − k2|)1−δ +
∑
k1∈N0
k1≤c|l|

1

(1 + |k1 − l1|)γ
∑
k2∈N0
k2≤c|l|

1

(1 + | rε − k2|)1−δ .

We will bound the second sum on the right-hand side by its corresponding integrals (see Lemma
11.6) and will bound these to get a bound on the sum over k. Straightforward calculations show∫ c|l|

0

1

(1 + |x− l1|)γ
dx . (1 + |l|)1−γ .

Indeed ∫ c|l|

l1

1

(1 + |x− l1|)γ
dx =

1

1− γ
(1 + x− l1)1−γ |c|l|l1 . (1 + |l|)1−γ ,∫ l1

0

1

(1 + |x− l1|)γ
dx =

−1

1− γ
(1 + l1 − x)1−γ |l10 . (1 + |l|)1−γ ,

On the other hand, for δ > 0 and z > 0∫ z

0

1

1 + | rε − x|
dx . log(1 + r

ε)2(1 + z) . (1 + r
ε)2δ(1 + z)δ.
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Indeed, ∫ z

0

1

1 + | rε − x|
dx = − log(1 + r

ε − x)|z0 ≤ log(1 + r
ε) for z ≤ r

ε ,∫ z

r
ε

1

1 + | rε − x|
dx = log(1 + x− r

ε)|zr
ε

= log(1 + z − r
ε) for z ≥ r

ε .

Hence for all z ≥ 0∫ z

0

1

1 + | rε − x|
dx . log(1 + r

ε) + log(1 + |z − r
ε |)

= log(1 + r
ε)(1 + |z − r

ε |) . log(1 + r
ε)2(1 + z).

Hence for all δ > 0 (we use (94) for the last inequality)

Sε,2 .
∑
l∈N2

0

1

(1 + |l|2)

1

(1 + | rε − l1|)1−δ (1 + l1 + l2)1−γ+δ(1 + 1
ε )2δ

.
∑
l∈N2

0

1

(1 + l1 + l2)1+γ−δ
1

(1 + | rε − l1|)1−δ (1 + 1
ε )2δ

.
∑
l2∈N0

1

(1 + l2)1+δ

∑
l1∈N0

1

(1 + l1)γ−2δ

1

(1 + | rε − l1|)1−δ (1 + 1
ε )2δ . (1 + 1

ε )5δ−γ .

Therefore, by choosing δ < γ
5 we obtain also Sε,2 → 0.

• [Sum over N2
0 × N2

0 \R] Observe that N2
0 × N2

0 \R = {(k, l) ∈ N2
0 × N2

0 : ∃i ∈ {1, 2} :
ki = li}. Therefore, again by exploiting symmetries using Lemma 11.9 (we bound the sum over
N2

0 × N2
0 \R by the sum over all l ∈ N2

0, k2 ∈ N0 and take k1 = l1), using (94) for δ < γ
2∑

(k,l)∈N2
0×N2

0\R

ρ�(k, l)

(1 + |l|2)

|Gr,ε(k, l)|
(1 + |k − l|)γ

.
∑
l∈N2

0

1

(1 + |l|2)

∑
k2∈N0

1

(1 + |k2 − l2|)γ
1

1 + | rε − k2|

.
∑
l∈N2

0

1

(1 + l1)1+δ

1

(1 + l2)1−δ
1

(1 + | rε − l2|)γ−δ
. (1 + 1

ε )2δ−γ .

12 Proof of Theorem 11.3(b)

In this section we consider d = 2, L > r ≥ 1 and y ∈ R2 such that y + Qr ⊂ QL. We write
τ = 1(−1,1)2 . We considerXε

k,r and Y ε
k,r as in Theorem 11.3(b). Form, l ∈ N0 and z ∈ [0, L−r]

we write

bzm,l = 〈nm,L,Tznl,r〉L2([0,r]). (103)
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Then we have

Xε
k,r =

∑
m∈N2

0

τ( εLm)Zm

2∏
i=1

byimi,ki , Y ε
k,r = τ( εrk)

∑
m∈N2

0

Zm

2∏
i=1

byimi,ki .

And so with Gr,ε(k, l) = E[Xε
k,rX

ε
l,r − Y ε

k,rY
ε
l,r] as in Theorem 11.2

Gr,ε(k, l) =
∑
m∈N2

0

( 2∏
i=1

byimi,kib
yi
mi,li

)
[τ( εLm)2 − τ( εrk)δk,l]. (104)

Theorem 12.1. (88), (85) and (89) hold (for I = [1, L])

Proof. For (88), we have

E[|〈θr,ε − ξr,ε, nk〉|2] = E[|Xε
k,r − Y ε

k,r|2] .
∑
m∈Nd0

(τ( εLm)− τ( εrk))2
2∏
i=1

(byimi,ki)
2.

By Lebesgue’s dominated convergence theorem this converges to zero. (85) follows by The-
orem 12.4 by observing that E[Xε

k,rY
ε
l,r] = τ( εrk)E[Xε

k,rX
ε
l,r], E[Y ε

k,rY
ε
l,r] ≤ 2δk,l and that

|E[Xε
k,rX

ε
l,r]| ≤

∏2
i=1(

∑
m∈N0

|byim,kib
yi
m,li
|). (89) follows by Lemma 12.7.

12.2. The estimates (85) and (89) will rely on bounds on bzm,l for m, l ∈ N0 and z ∈ [0, L − r].
Let us calculate bzm,l here. For notational convenience we put sin(πx)

x and 1−cos(πx)
x for x = 0

equal to 1 here. By using some trigonometric rules, one can compute that

bzm,l = 〈nm,L,Tznl,r〉L2([0,r]) =
√

r
L

1
πνmνl[fm,l cos( πLmz) + gm,l sin( πLmz)], (105)

where

fm,l =
∑

p∈{−1,1}

sin(π( rLm+ pl))
r
Lm+ pl

, gm,l =
∑

p∈{−1,1}

1− cos(π( rLm+ pl))
r
Lm+ pl

.

Let us demonstrate (105) in the easier case z = 0. Due to the identities 2 cos(a) cos(b) =∑
p∈{−1,1} cos(a+ pb) and sin(π(a± l)) = (−1)l sin(πa) for a, b ∈ R and l ∈ Z, we obtain

〈nm,L, nl,r〉L2([0,r]) =
2√
Lr
νmνl

∫ r

0
cos( πLmx) cos(πr lx) dx

=

√
r

L

1

π
νmνl

∑
p∈{−1,1}

sin(π(mrL + pl))
mr
L + pl

. (106)

1

r

∫ r

0
2 cos(ax) cos(bx) dx =

1

r

∫ r

0
cos((a− b)x) + cos((a+ b)x) dx

=
1

r

[
sin((a− b)x)

a− b
+

sin((a+ b)x)

a+ b

]r
0

=

[
sin((a− b)r)

(a− b)r
+

sin((a+ b)r)

(a+ b)r

]
.
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For general z ∈ [0, L− r]. First observe that

〈nm,L,Tznl,r〉L2(R) =

∫
z+[0,r]∩[0,L]

nm,L(x)nl,r(x− z) dx

=

∫ r

0
nm,L(x+ z)nl,r(x) dx.

Using the trigonometric identities for cos(a± b) and sin(a± b) we have

2 cos(a+ d) cos(b) = cos(a+ d− b) + cos(a+ d+ b)

= cos(a− b) cos(d)− sin(a− b) sin(d) + cos(a+ b) cos(d)− sin(a+ b) sin(d)

=
∑

p∈{−1,1}

cos(d) cos(a+ pb)− sin(d) sin(a+ pb),

Hence ∫ r

0
2 cos( πLmx+ π

Lmz) cos(πr lx) dx

=
∑

p∈{−1,1}

sin(π(mL + p lr )r)

π(mL + p lr )
cos( πLmz)

+
∑

p∈{−1,1}

1− cos(πr(mL + p lr ))

π(mL + p lr )
sin( πLmz),

from which we deduce (105).

As a consequence we obtain the following.

Lemma 12.3. There exists a C > 0 (independent of r and L) such that for all z ∈ [0, L− r] and
m, l ∈ N0,

|bzm,l| ≤ C
√

r
L

1
1+| r

L
m−l| . (107)

Proof. This follows from the expression (105) by using that | sin(πx)
x | . 1

1+|x| and 1−cos(πx)
x .

1
1+|x| . The bounds sin(πx)

x ≤ π
1+x and 1−cos(πx)

x ≤ 2
1+x hold for x ≥ 1, whereas for x ∈ (0, 1)

we can use that sin(πx) ≤ πx and that 1 − cos(πx) ≤ 1 − cos(πx)2 = sin(πx)2 ≤ sin(πx).

Theorem 12.4. For all δ > 0 there exists a C > 0 (independent of L and r) such that for all
k, l ∈ N0 and z ∈ [0, L− r] ∑

m∈N0

|bzm,kbzm,l| ≤ C(1 + |k − l|)δ−1. (108)
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Proof. This follows by Lemma 12.3 and by (94) as 1 + | rLm − u| ≥ (1 + | rLm − u|)
1− δ

2 for
δ > 0. With C as in Lemma 12.3∑

m∈N0

|bzm,kbzm,l| ≤ C2 r

L

1

1 + | rLm− k|
1

1 + | rLm− l|

≤ C2
∑
m∈N0

r

L

1

(1 + | rLm− k|)
1− δ

2

1

(1 + | rLm− l|)
1− δ

2

.

Now apply (94).

12.5. Let C > 0 be as in Lemma 12.3.

(a) For all z ∈ [0, L− r] and M,k, l ∈ N0 such that r
LM ≤ l ≤ k, by Lemma 11.6

|bzm,k| ∨ |bzm,l| ≤ C
1

1 + l − r
Lm

,

and thus
M−1∑
m=0

|bzm,kbzm,l| ≤ C2
M−1∑
m=0

1

1 + (l − r
Lm)2

≤ C2

∫ M

0

1

(1 + l − r
Lx)2

dx ≤ C2 1

1 + |l − r
LM |

,

(b) Similarly, for all z ∈ [0, L− r] and M,k, l ∈ N0 such that l ≤ k ≤ r
LM ,

|bzm,k| ∨ |bzm,l| ≤ C
1

1 + r
Lm− k

,

and thus
∞∑

m=M

|bzm,kbzm,l| ≤ C2
∞∑

m=M+1

1

1 + r
Lm− k

+
1

(1 + r
LM − k)2

≤ C2

∫ ∞
M

1

(1 + r
Lx− k)2

dx+
1

1 + | rLM − k|

≤ (C2 + 1)
1

1 + |k − r
LM |

.

As a consequence of the above and
∑

m∈N0
bzm,kb

z
m,l = δk,l we obtain the following lemma.

Lemma 12.6. There exists a C > 0 such that for all z ∈ [0, L− r], M ∈ [0,∞) and k, l ∈ N0:
If either k 6= l or k = l ≤ r

LM , then

1

C

∣∣∣ ∑
m∈N0,m≥M

bzm,kb
z
m,l

∣∣∣ ≤ 1

(1 + |k − r
LM |)1−δ +

1

(1 + |l − r
LM |)1−δ , (109)

and if either k 6= l or k = l ≥ r
LM

1

C

∣∣∣ ∑
m∈N0,m<M

bzm,kb
z
m,l

∣∣∣ ≤ 1

(1 + |k − r
LM |)1−δ +

1

(1 + |l − r
LM |)1−δ . (110)
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Proof. By (107) we may assume M ∈ N0. The statements for k = l follow immediately by
the bounds in 12.5. For k 6= l we have

∑
m∈N0,m<M

bzm,kb
z
m,l =

∑
m∈N0,m≥M bzm,kb

z
m,l so that

the rest follows by 12.5 and by observing that if l ≤ r
LM ≤ k that |

∑
m∈N0,m<M

bzm,kb
z
m,l| .

1
(1+|k−l|)1−δ by Theorem 12.4, which is less than the right-hand side of both (109) and (110).

Lemma 12.7. Write Gr,ε(k, l) = E[Xε
k,rX

ε
l,r − Y ε

k,rY
ε
l,r]. There exists a C > 0 such that for all

ε > 0 and k, l ∈ N2
0

1

C
|Gr,ε(k, l)| ≤



∏2
i=1

1
(1+|ki− rε |)1−δ

+ 1
(1+|li− rε |)1−δ

if for i ∈ {1, 2} either ki 6= li

or ki = li ≥ r
ε ,

1
(1+|ki− rε |)1−δ

+ 1
(1+|li− rε |)1−δ

if either ki 6= li or ki = li ≥ r
ε

and k3−i = l3−i <
r
ε ,

1
(1+|k1− rε |)1−δ

+ 1
(1+|k2− rε |)1−δ

ki = li <
r
ε for i ∈ {1, 2}.

(111)

Proof. Let (k, l) ∈ N2
0 × N2

0 be such that k = l with |k|∞ < r
ε . Then (see (104))

|Gr,ε(k, l)| =
∣∣∣ ∑
m∈N2

0

2∏
i=1

byimi,kib
yi
mi,li

[τ( εLm)2 − 1]
∣∣∣

=
∣∣∣ ∑
m∈N2

0:|m|∞≥Lε

2∏
i=1

byimi,kib
yi
mi,li

∣∣∣ . ∣∣∣ ∑
m∈N0,m≥Lε

(by1m,k1)2
∣∣∣+
∣∣∣ ∑
m∈N0,m≥Lε

(by2m,k2)2
∣∣∣.

If k and l are not like that, then

Gr,ε(k, l) =
( ∑
m∈N0,m<

L
ε

by1m,k1b
y1
m,l1

)( ∑
m∈N0,m<

L
ε

by2m,k2b
y2
m,l2

)
.

So that the bound (111) follows from Lemma 12.6.

A The min-max formula for smooth potentials

Lemma A.1. Let f1, . . . , fn be pairwise orthogonal in H2
0 . There exist pairwise orthogonal

f1,k, . . . , fn,k in C∞c for k ∈ N such that for all i

fi,k
k→∞−−−→ fi in H2

0 . (112)

Proof. Let gi,k ∈ C∞c be such that gi,k → fi inH2
0 for all i. By doing a Gram-Schmidt procedure

on g1,k, . . . , gn,k we can give the proof by induction. We prove the induction step, assuming that
f1,k = g1,k, . . . , fn−1,k = gn−1,k are pairwise independent. We define

fn,k = gn,k −
n−1∑
i=1

〈gn,k, fi,k〉
〈fi,k, fi,k〉

fi,k.
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Then fn,k is pairwise independent from f1,k, . . . , fn−1,k. As for i ∈ {1, . . . , n− 1} we have

〈gn,k, fi,k〉 → 〈fn, fi〉 = 0,

it follows that fn,k → fn.

Lemma A.2. Let ζ ∈ L∞, n ∈ N and L > 0. Then (for notation see 5.4)

λn(QL, ζ) = sup
F@H2

0
dimF=n

inf
ψ∈F
‖ψ‖L2=1

〈Hζψ,ψ〉 = sup
F@C∞c

dimF=n

inf
ψ∈F
‖ψ‖L2=1

〈Hζψ,ψ〉. (113)

Proof. First observe that

λn(QL, ζ) = sup
f1,...,fn∈H2

0
〈fi,fj〉H2

0
=δij

inf
ψ=

∑n
i=1 αifi

αi∈[0,1],
∑n
i=1 α

2
i=1

〈Hζψ,ψ〉.

Let f1, . . . , fn ∈ H2
0 with 〈fi, fj〉H2

0
= δij . By Lemma A.1 there exist f1,k, . . . , fn,k in C∞c with

〈fi,k, fj,k〉H2
0

= δij (by renormalising) such that (112) holds. Then∣∣∣∣∣∣∣ inf
ψ=

∑n
i=1 αifi

αi∈[0,1],
∑n
i=1 α

2
i=1

〈Hζψ,ψ〉 − inf
ψ=

∑n
i=1 αifi,k

αi∈[0,1],
∑n
i=1 α

2
i=1

〈Hζψ,ψ〉

∣∣∣∣∣∣∣
≤ sup

ψ=
∑n
i=1 αifi,ϕ=

∑n
i=1 αifi,k

αi∈[0,1],
∑n
i=1 α

2
i=1

|〈Hζψ,ψ〉L2 − 〈Hζϕ,ϕ〉L2 |

. sup
αi∈[0,1],

∑n
i=1 α

2
i=1

∥∥∥∥∥
n∑
i=1

αifi −
n∑
i=1

αifi,k

∥∥∥∥∥
H2

0

≤
n∑
i=1

‖fi − fi,k‖H2
0
→ 0.

We used

|〈Hζψ,ψ〉L2 − 〈Hζϕ,ϕ〉L2 | = |〈Hζ(ψ − ϕ), ψ〉L2 + 〈Hζϕ,ψ − ϕ〉L2 |

and |〈Hζf, g〉L2 | ≤ ‖Hζf‖L2‖g‖L2 . ‖f‖H2
0
‖g‖H2

0
. This proves

λn(QL, ζ) = sup
f1,...,fn∈C∞c
〈fi,fj〉H2

0
=δij

inf
ψ=

∑n
i=1 αifi

αi∈[0,1],
∑n
i=1 α

2
i=1

〈Hζψ,ψ〉, (114)

and therefore (113).

B Useful bound on an integral

Lemma B.1. Let γ, θ ∈ (0, 1) and γ + θ > 1. There exists a C > 0 such that for all b > 0 and
u ∈ R ∫ ∞

0

1

(b+ |x− u|)γ
1

(b+ x)θ
dx ≤ C(b+ |u|)1−γ−θ. (115)
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Consequently, there exists a C > 0 such that for all b > 0 and u, v ∈ R∫
R

1

(b+ |x− u|)γ
1

(b+ |x− v|)θ
dx ≤ C(b+ |u− v|)1−γ−θ. (116)

Proof. By a simple substitution argument we may assume b = 1. Indeed, by substituting y = 1
bx

we have (assuming (115) holds for b = 1)∫ ∞
0

1

(b+ |x− u|)γ
1

(b+ x)θ
dx =

∫ ∞
0

b

(b+ |by − u|)γ(b(1 + y))θ
dy

= b1−γ−θ
∫ ∞

0

1

(1 + |y − u
b |)γ((1 + y))θ

dy

≤ Cb1−γ−θ(1 + |u
b
|)1−γ−θ = C(b+ |u|)1−γ−θ.

We have uniformly in a ∈ (0, 1)∫ ∞
0

1

(a+ x)γ
1

(1 + x)θ
dx ≤

∫ ∞
1

1

xγ+θ
dx+

∫ 1

0

1

(a+ x)γ
dx . 1 + (1 + a)1−γ . 1.

Hence for all u ≥ 0∫ ∞
u

1

(1 + x− u)γ
1

(1 + x)θ
dx =

∫ ∞
0

1

(1 + x)γ
1

(1 + u+ x)θ
dx

= (1 + u)1−γ−θ
∫ ∞

0

1

( 1
1+u + x)γ

1

(1 + x)θ
dx . (1 + u)1−γ−θ. (117)

On the other hand we have∫ u
2

0

1

(1 + u− x)γ
1

(1 + x)θ
dx ≤ (1 +

u

2
)−γ

∫ u
2

0

1

(1 + x)θ
dx . (1 + u)1−γ−θ,

and similarly
∫ u
u
2

1
(1+u−x)γ

1
(1+x)θ

dx . (1 + u)1−γ−θ. In case u is negative, the bound is already
proved in (117) (by interchanging θ and γ).

For (116) it is sufficient to observe that∫ ∞
v

1

(1 + |x− u|)γ
1

(1 + |x− v|)θ
dx =

∫ ∞
0

1

(1 + |x+ v − u|)γ
1

(1 + x)θ
dx,∫ v

−∞

1

(1 + |x− u|)γ
1

(1 + |x− v|)θ
dx =

∫ ∞
0

1

(1 + |x+ u− v|)γ
1

(1 + x)θ
dx.
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C Spectrum of an operator with compact resolvents

Let H be a Hilbert space. Let A : D → H be a linear operator, where D is a linear subspace of
H . ρ(A) denotes the resolvent set of A, σ(A) the spectrum and σp(A) the point spectrum, i.e.,
the set of eigenvalues.

Theorem C.1. Suppose H is infinite dimensional. Let α > 0. Suppose µ ∈ (−∞, α] ⊂ ρ(A)
and write Rµ = (µ − A)−1. Suppose that Rµ is a self-adjoint compact operator as a map
H → H . Then

σ(A) = σp(A) = {µ− 1
λ : λ ∈ σp(Rµ) \ {0}}. (118)

Suppose moreover that A is a closed symmetric (densely defined) operator. Then A is self-
adjoint and has an (at most) countable spectrum without accumulation points. For all λ ∈ σ(A),
ker(λ−A) is finite dimensional and

D =
⊕

λ∈σ(A)

ker(λ−A), (119)

Let λ1 ≤ λ2 ≤ · · · be such that σ(A) = {λn : n ∈ N} and such that #{n ∈ N : λn = λ} =
dim ker(λ−A) for all λ ∈ σ(A). Then with the notation @ for “is a linear subspace of”

λn = inf
F@D

dimF=n

sup
v∈F
‖v‖H=1

〈Av, v〉, (120)

1

µ− λn
= sup

F@H
dimF=n

inf
v∈F
‖v‖H=1

〈Rµv, v〉. (121)

Theorem C.2. [22, Theorem 6.29] Let A be a closed operator and µ ∈ ρ(A). If Rµ is compact,
then σ(A) consists of countably many eigenvalues with finite multiplicities and has no accumu-
lation points. Moreover Rλ is compact for all λ ∈ ρ(A).

Theorem C.3 (F. Riesz). [35, Theorem 4.25] [9, Theorem VI.7.1] Let R : H → H be a compact
operator. Then σ(R) \ {0} = σp(R), σ(R) is countable and has at most one limit point, namely
0. If dim(H) =∞, then 0 ∈ σ(R).

Theorem C.4 (Riesz-Schauder theorem). [33, Theorem VI.15] Let A be a compact operator
on H . Then σ(A) is countable with no accumulation point except possibly 0. Further, every
λ ∈ σ(A) \ {0} is an eigenvalue of finite multiplicity.

Theorem C.5. [35, Theorem 12.29] If T : H → H is a normal operator and σ(T ) is countable,
then H =

⊕
λ∈σ(T ) ker(λ− T ).
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Lemma C.6 (Fischer’s principle). [26, Section 28, Theorem 4, p. 318]5 Suppose that σp(A) =
{λn : n ∈ N} and #{n ∈ N : λn = λ} = dim ker(λ − A) for all λ ∈ σ(A). If λn ≤ λn+1 for
all n ∈ N, then

λn = inf
F@D

dimF=n

sup
v∈F
‖v‖H=1

〈Av, v〉.

If λn ≥ λn+1 for all n ∈ N, then

λn = sup
F@D

dimF=n

inf
v∈F
‖v‖H=1

〈Av, v〉.

These theorems can be used to give a short proof of Theorem C.1.

Proof of Theorem C.1. For the most statements one can combine Theorems C.2 and C.3. (118)
follows from

λ(µ− 1
λ −A) = λ(µ−A)− 1 = (λ−Rµ)(µ−A)

= (µ−A)λ− 1 = (µ−A)(λ−Rµ),

as this implies that λ − Rµ is boundedly invertible (or injective) if and only if µ − 1
λ − A is. If

Q is an inverse for µ− 1
λ −A then

1

λ
Q(λ−Rµ)(µ−A) = (λ−Rµ)(µ−A)

1

λ
Q = I

Therefore 1
λ(µ−A)Q is an inverse of λ−Rµ, as

1

λ
(µ−A)Q(λ−Ru) =

1

λ
(µ−A)Q(λ−Ru)(µ−A)Rµ

= (µ−A)(λ−Ru)(µ−A)
1

λ
QRµ = (µ−A)IRµ = I.

Vice versa if Q is an inverse λ − Rµ, then λQRµ is an inverse for µ − 1
λ − A. Moreover,

ker(µ − 1
λ − A) = ker(λ − Rµ). Then (119) follows by applying Theorem C.5 to Rµ and

observing that 0 ∈ σ(Rµ) because dim(H) = ∞ and (kerRµ)⊥ = ran(Rµ) = D . (120) and
(121) follow from Lemma C.6.

Definition C.7. Let A : D(A)→ H and B : D(B)→ H be densely defined operators. We say
that B is A-bounded when

(a) D(A) ⊂ D(B),

(b) There exist a, b ≥ 0 such that for all ϕ ∈ D(A)

‖Bϕ‖ ≤ a‖Aϕ‖+ b‖ϕ‖. (122)
5In this reference the operator is actually assumed to be compact and symmetric, but this is only done to guarantee

that the spectrum is countable and ordered.
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The infimum of such a is called the relative bound of B with respect to A. If the relative bound
equals 0, we say that B is infinitesimally small with respect to A.

Theorem C.8 (Hilbert-Schmidt theorem). [33, Theorem VI.16] Let A be a self-adjoint compact
operator on H . Then there is a complete orthonormal basis (φn)n∈N for H such that Aφn =
λnφn and λn → 0.

Theorem C.9 (The Kato-Rellich theorem). [33, Theorem X.12] Suppose A is self-adjoint, B is
symmetric and B is A-bounded with relative bound a < 1. Then A+B is self-adjoint on D(A).
Furthermore, if σ(A) ⊂ [M,∞), then σ(A+B) ⊂ [M −max{ b

1−a , a|M |+ b},∞) (where a, b
are as in (122)).

D Errata

• Immanuel Zachhuber pointed out that the proof Theorem 5.4 where we prove that the
principal eigenvalue is simple, needs further clarification about the positivity improving.
We clarify this by first showing that the semigroup is positivity preserving, see the text in
red.

• Franz Haniel pointed out a few mistakes:
In Definition 6.1 the covariance of the white noise was missing.
In Theorem 8.4 twice K

a should be K
a2

.
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