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AbstratAn existene result for energeti solutions of rate-independent damageproesses is established. We onsider a body onsisting of a physially lin-early elasti material undergoing in�nitesimally small deformations and par-tial damage. In [TM10℄ an existene result in the small strain setting was ob-tained under the assumption that the damage variable z satis�es z ∈ W 1,r(Ω)with r ∈ (1,∞) for Ω ⊂ Rd. We now over the ase r = 1. The lak of om-patness in W 1,1(Ω) requires to do the analysis in BV (Ω). This setting allowsit to onsider damage variables with values in {0, 1}. We show that suh a brit-tle damage model is obtained as the Γ-limit of funtionals of Modia-Mortolatype.1 IntrodutionDamage means the reation and growth of raks and voids on the miro-level of asolid material. Based on the method of Continuum Damage Mehanis this proessis modeled by an internal variable, the damage variable z : [0, T ]×Ω→ [0, 1], whihis inorporated to the onstitutive law in order to re�et the hanges of the elastibehavior due to damage. As in [MR06, TM10℄ z(t, x) = 1 stands for no damageand z(t, x) = 0 for maximal damage in the material point x of the body Ω ⊂ Rd attime t ∈ [0, T ].The damage proess is treated within the so-alled energeti formulation. Thisansatz solely uses an energy funtional E : [0, T ]×Q → R ∪ {∞} and a dissipationpotential R : Z → [0,∞]. Here, Z denotes the set of damage variables and togetherwith the set of displaements U it de�nes the state spae Q := U × Z, whih hereis a Banah spae. The triple (Q, E ,R) is alled a (rate-independent) system. Therate-independene of (Q, E ,R) is re�eted by the positive-1-homogeneity of R, i.e.
R(0) = 0 and R(αv) = αR(v) for all α > 0 and all v ∈ Z. Moreover, the damageproess is assumed to be unidiretional. With a onstant ̺ > 0 this is modeled by
R being of the following form:

R(v) :=

∫

Ω

R(v(x)) dx , where R(v) :=

{
̺|v| if v ∈ (−∞, 0],
+∞ if v > 0.

(1)With v = ż as the partial time derivative of z, the dissipation potential aounts forthe evolution of the damage proess. Moreover, due to its positive-1-homogeneitythe onvex potential R generates a dissipation distane between all z1, z2 ∈ Z,whih is given by R(v) from (1) with v = z2 − z1, i.e. R(z2 − z1) for all z1, z2 ∈ Z;see e.g. [Mie05℄ for more details. This fat is used within the energeti approah tode�ne a onept of solution that does not involve the partial time derivative of z.These are the so-alled energeti solutions:De�nition 1.1 (Energeti solution) A funtion q = (u, z) : [0, T ] → Q is alledan energeti solution for the system (Q, E ,R), if t 7→ ∂tE(t, q) ∈ L1((0, T )) and iffor all s, t ∈ [0, T ] we have E(t, q(t)) < ∞, global stability (2(S)) and global energybalane (2(E)):for all q̃ = (ũ, z̃) ∈ Q holds : E(t, q(t)) ≤ E(t, q̃) +R(z̃−z(t)) , (2(S))
E(t, q(t)) + DissR(z, [s, t]) = E(s, q(s)) +

∫ t

s
∂ξE(ξ, q(ξ)) dξ (2(E))with DissR(z, [s, t]) := sup

{∑N
j=1R(z(ξj)−z(ξj−1)) | s = ξ0 <. . .<ξN = t, N ∈N

}
.1



In the style of [FN96℄ the energy funtional for our setting is set up as follows:
E(t, u, z) :=

∫

Ω

f(z)e(u+g(t)) :C :e(u+g(t)) dx + G(z) +

∫

Ω

δ[0,1](z) dx . (3)Here, u : Ω → Rd denotes the displaement and e(u) := 1
2 (∇u+∇u⊤) the linearizedstrain tensor. The �rst term in (3) represents the stored elasti energy with thetensor C ∈ R(d×d)×(d×d) being symmetri and positive de�nite. We assume that

f : [0, 1] → [a, b] for onstants 0<a<bis ontinuous and monotonously inreasing on [0, 1].
(4)Moreover, δ[0,1] is the harateristi funtion of the interval [0, 1], i.e. δ[0,1](z) = 0,if z ∈ [0, 1] and δ[0,1](z) = ∞, if z 6∈ [0, 1]. Although z = 0 is allowed, (3) onlymodels partial damage, sine we assume 0 < a < b in (4). Hene, the oerivityof the energy funtional is ensured, so that, in validity of Korn's inequality, thedisplaements are well-de�ned allover in Ω. The damage proess is driven by thetime-dependent external loadings g : [0, T ]×Ω → Rd modeled by a given extensionof time-dependent Dirihlet data. Finally, the term G(z) has regularizing e�ets. Itis used in mathematial literature, see e.g. [FN96℄, but also in engineering ontri-butions [HS03℄, where it is onsidered to aount for mirosopi interations. In[MR06℄ the existene of energeti solutions for the system (Q, E ,R) was proven for

G(z) :=
∫
Ω

κ
r |∇z|r dx with r>d. This restrition was neessary in an essential stepof the proof, namely for the onstrution of a so-alled mutual reovery sequene(MRS), where the ompat embedding W 1,r(Ω) ⋐ C(Ω) was exploited. More pre-isely, the existene of a MRS is used to verify (2(S)) for an energeti solution, seeDef. 2.2. The di�ulties in the onstrution lie in the disontinuity of R and thegradient term G. In [Tho10, TM10℄ the existene result was extended to r∈(1,∞)by introduing a new tehnique for the onstrution of the MRS, whih does notuse the ompat embedding. Instead, the onstrution is based on the hain rule for

W 1,r-funtions omposed with Lipshitz funtions and on a anellation argumentfor the resulting terms. Moreover, a model for partial damage without regulariza-tion is treated in [FKS10℄. The absene of the gradient auses a lak of ompatness,so that one resorts to the framework of Young measures.In this ontribution we fous on the limit ase r = 1. In ontrast to r ∈ (1,∞)the spae W 1,1(Ω) laks sequential ompatness. For this reason we extend thefuntionals to the spae BV (Ω) of funtions with bounded variation, whih onsistsof all the funtions z∈L1(Ω), whose distributional derivatives Diz, i=1, . . . , d, anbe represented by a �nite Radon measure in Ω. Hene, with Dz as the distributionalgradient and |Dz|(Ω) as the variation of z in Ω (see e.g. [AFP05, Def. 3.4℄), we set
G(z) := |Dz|(Ω) for all z ∈ BV (Ω) . (5)This overs the intermediate ase inbetween damage evolution in Sobolev spaes[MR06, TM10℄ and the muh weaker ase of damage evolution in terms of Youngmeasures [FKS10℄.In Setion 2 the proof of the existene result in the BV -setting will be arriedout and the MRS will be onstruted in detail by transferring the arguments ofthe ase r ∈ (1,∞) to the BV-setting. This involves results from the theory of

BV-spaes, whih are provided in Setion 2.1. The most important tool is thedeomposability of BV-funtions, see Lemma 2.12 and [AFP05, Th. 3.84℄, whih2



allows it to ompose the elements of the reovery sequene ẑk pieewise in Ω by theelements of the stable sequene zk and a testfuntion ẑ using indiator funtionsof suitable level sets in order to ensure that R(ẑk−zk) < ∞. This onstrutionreplaes the hain rule for the omposition of W 1,r-funtions with the Lipshitz-funtion min : [0, 1]× [0, 1] → [0, 1] used in the setting of Sobolev spaes.In Setion 3 we treat a so-alled brittle damage model, whih aounts for twomaterial states only, the undamaged and a damaged one. This is mathematiallymodeled by onsidering the damage variable as an indiator funtion of a set with�nite perimeter. Due to this assumption the BV-regularization is given by theperimeter P (E, Ω), whih is the variation of the indiator funtion:
P (E, Ω) := |DIE |(Ω) < ∞ . (6)This regularization is oupled to a stored energy whih an be used for the modelingof onrete, see (51). In Setion 3.1 it will be shown that the rate-independentbrittle damage model an be approximated by funtionals of Modia-Mortola type.Having in mind the works [Alb98, MM77℄, where lassial Γ-onvergene of thestati Modia-Mortola energy to the stati perimeter energy term was proven in theontext of phase transitions, this onvergene seems to be obvious on the �rst glane.But one must be aware that the present work deals with Γ-onvergene of rate-independent systems, where the energy funtionals and the dissipation potentialinterplay beause of the onditions (2). In partiular, the proof of the upper Γ-limit gets more involved due to the unidiretionality of the dissipation potential,see Setion 3.2.2.2 Existene of energeti solutions for the BV-modelThe aim of this setion is to prove the existene of energeti solutions for the rate-independent system (Q, E ,R) given by (1), (3) with the regularization (5) in thestate spae

Q = U ×Z with U :=
{
v ∈ H1(Ω, Rd) , v = 0 on ΓD} and Z := BV(Ω) . (7)The proedure to prove our main result is based on the abstrat theory developedin [MM05, Mie05, FM06, MRS08℄. In partiular, the proof an be arried out byverifying the onditions of [Mie09, Th. 3.4℄. Moreover, most of the steps to do aresimilar to the ones in [TM10, Set. 3℄, sine the stored energy density f(z)e : C : eonsidered here is a speial ase of [TM10℄. The main di�erene arises from the

BV-regularization. Of ourse, G de�ned as the variation of BV-funtions is lowersemiontinuous and guarantees sequential ompatness in BV(Ω) with respet tostrong L1(Ω)-onvergene, i.e. there holds
sup
k∈N

(
‖zk‖L1(Ω)+G(zk)

)
≤ c ⇒ ∃ subseq. zk → z in L1(Ω) and z∈BV(Ω) , (8a)

zk → z in L1(Ω) ⇒ G(z) ≤ lim inf
k→∞

G(zk) , (8b)see [AFP05, Rem. 3.5, Th. 3.23℄. The onvergene zk → z in L1(Ω) with G(zk) ≤ cfor all k ∈ N is equivalent to weak∗-onvergene in BV(Ω), denoted by zk
∗
⇀ zin BV(Ω) [AFP05, Prop. 3.13℄. Beause of this, the topology of onvergene is3



spei�ed as follows
(uk, zk)

T
→ (u, z) ⇔

{
uk ⇀ u in H1(Ω, Rd) ,

zk
∗
⇀ z in BV(Ω) .

(9)Properties (8) help to ensure the existene of minimizers at eah time step. Themain di�ulty arises when passing from the time-disretized model to the time-ontinuous one, in partiular, when proving the losedness of stable sets. Similarlyto [TM10, Set. 3.4℄ we thereto onstrut a MRS, whih requires to transfer theansatz used for the W 1,r-regularization for r ∈ (1, d] to the BV-setting. In thefollowing we present the existene result and we brie�y address the nonproblematisteps of the proof. As it is the main issue of the proof, the fous of this setion liesin the onstrution of the MRS. For this, we introdue the relevant tools from thetheory of BV-spaes in Setion 2.1 and establish the MRS in Setion 2.2.Theorem 2.1 (Existene of energeti solutions for the BV-model) Let
(Q, E ,R) be given by (7), (3) and (1) with the regularization (5). Let (4) holdand let the tensor C in (3) be symmetri and positive de�nite, i.e. there are on-stants 0 < cC

1 ≤ cC
2 suh that cC

1 |e|
2 ≤ e : C : e ≤ cC

2 |e|
2. Moreover, assume that

Ω ⊂ Rd is an open, bounded Lipshitz domain, that the Dirihlet boundary ΓD 6= ∅and that the extension g of the Dirihlet-datum satis�es g ∈ C1
(
[0, T ], H1(Ω, Rd)

).Then, for any initial value (u0, z0) ∈ Q, whih satis�es (2(S)) at t = 0, thereexists an energeti solution (u, z) : [0, T ]→ Q for the system (Q, E ,R).Proof: Let W (e, z) := f(z)e : C : e suh that f and C satisfy the assumptions ofTheorem 2.1. Then, W : Rd×d × [0, 1] → R enjoys the following properties(P1) Continuity: W : Rd×d × [0, 1] → R is ontinuous.(P2) Convexity: ∀z ∈ [0, 1] : W (·, z) : Rd×d → R stritly onvex.(P3) Coerivity: ∃ c1, c2 >0 ∀(e, z) ∈ Rd×d × [0, 1] : c1|e|2 ≤ W (e, z) ≤ c2|e|2.(P4) Stress ontrol: ∃ c3 >0 ∀(e, z) ∈ Rd×d × [0, 1] : |∂eW (e, z)| ≤ c3|e|.(P5) Lipshitz ontinuity of the stresses: ∃ c4 > 0 ∀(e1, z), (e2, z) ∈ Rd×d × [0, 1] :
|∂eW (e1, z)− ∂eW (e2, z)| ≤ c4|e1 − e2|.(P6) Monotoniity: ∀(e, z1), (e, z2) ∈ Rd×d × [0, 1] with z1 ≤ z2 :
W (e, z1) ≤ W (e, z2) ≤ b/aW (e, z1).Properties (P1)-(P3) together with (8) imply that E(t, ·, ·) is sequentially lowersemiontinuous and that its sublevels are ompat in the topology T from (9).Hene, the existene of a minimizer (u(tk), z(tk)) for E(tk, ·, ·) + R(· − z(tk−1)) isguaranteed for all 0 ≤ tk−1 < tk ≤ T. For all k ∈ N these minimizers (u(tk), z(tk))satisfy (2(S)) at time tk. Property (P4) together with the assumptions on g enablesus to show the existene of

∂tE(t, u, z) :=

∫

Ω

∂eW (e(u + g(t), z) : e(ġ(t)) dx for all t ∈ [0, T ] . (10)Additionally, it leads to the ontrol of ∂tE(t, u(tk), z(tk)) by E(t, u(tk), z(tk)) uni-formly in [0, T ]. Then, a Gronwall argument yields the boundedness of the energyuniformly in time. This implies that (u(tk), z(tk))k∈N is uniformly bounded in Q.4



As tk → t, i.e. when passing to 0 with the step size of the partitions of the timeinterval [0, T ], we therefore have a subsequene (u(tk), z(tk))
T
→ (ut, zt).Properties (P5) and (P6) are used to prove that ∂tE(t, u(tk), z(tk))→∂tE(t, ut, zt)for every (tk, u(tk), z(tk))

[0,T ]×T
→ (t, ut, zt) with (tk, u(tk), z(tk)) satisfying (2(S)).This allows it to verify the energy balane (2(E)). It remains to show that the limit

(t, ut, zt) satis�es (2(S)), i.e. the losedness of stable sets must be shown. This willbe arried out in detail below.The proof of the losedness of stable sets is not straight forward due to the unidi-retionality of R. Consider (tk, uk, zk)k∈N satisfying (2(S)) with (tk, uk, zk)
[0,T ]×T
→

(t, u, z) and ẑ ∈ Z. Then we have to prove that (t, u, z) satis�es (2(S)) as well. Butsine R(ẑ − zk) = ∞ whenever ẑ > zk on a set of positive Ld-measure, we annotsimply pass to the limit in (2(S)). Instead we use the following ondition.De�nition 2.2 (MRS-ondition) The system (Q, E ,R) satis�es the mutual re-overy sequene ondition if for all sequenes (tk, qk)k∈N = (tk, uk, zk)k∈N with
(tk, qk) satisfying (2(S)) for all k ∈ N and with (tk, qk)

[0,T ]×T
→ (t, q) and for ev-ery q̂ = (û, ẑ) ∈ Q there is a sequene (q̂k)k∈N = (ûk, ẑk)k∈N with q̂k

T
→ q̂ in Q, sothat

lim sup
k→∞

(
E(tk, q̂k) +R(ẑk − zk)− E(tk, qk)

)
≤ E(t, q̂) +R(ẑ − z)− E(t, q) . (11)Note that E(tk, q̂k) +R(ẑk − zk) − E(tk, qk) ≥ 0 for all k ∈ N due to (2(S)) for

(tk, qk). Hene the MRS-ondition implies (2(S)) for (t, q).The property R(ẑk−zk)<∞ requires that 0≤ ẑk≤ zk Ld-a.e. in Ω. In [TM10,Set. 3.2.5℄ for the setting of W 1,r-funtions this was ahieved by the ansatz ẑk :=
max{0, min{ẑ − δk, zk}} using that the superposition of the Lipshitz ontinuousfuntion min with a W 1,r-funtion generates a W 1,r-funtion and its gradient anbe alulated by a hain rule. Then, the proof of inequality (11) exploited theanellation of G(ẑk) − G(zk) on the subsets [zk ≤ ẑ − δk], where δk → 0 wasdetermined suh that Ld([zk ≤ ẑ− δk]) → 0. In the BV-setting we also want to takeadvantage of this anellation argument. A hain rule for BV-funtions superposedwith Lipshitz ontinuous funtions was established in [ADM90℄. Sine it mayhappen that a Lipshitz ontinuous funtion l is nowhere di�erentiable on the rangeof a BV-funtion z this general hain rule involves a tangential di�erential of l tothe range of z. However, for our problem we an replae the superposition usingindiator funtions of suitable level sets, i.e. ẑk := (ẑ−δk)IAk

+zkIBk
+0·ICk

, where
Ak := [0 ≤ ẑ−δk ≤ zk], Bk := [0 ≤ zk < ẑ−δk] and Ck := Ω\(Ak ∪Bk). Intuitively(but sloppily), the distributional gradient Dẑk is given by Dẑ in Ak, by Dzk in Bkand additionally by the jumps aross the (redued) boundaries of these sets. Inorder to ensure that |Dẑk|(Ω) < ∞, i.e. that ẑk omposed in this way indeed is a
BV-funtion, requires that Ak and Bk have �nite perimeter and that the traes ofthe funtions ẑ and zk on the (redued) boundaries of Ak and Bk are wellde�nedand bounded. This relation is stated by the theorem on the deomposability of
BV-funtions [AFP05, Th. 3.84℄ (Lemma 2.12, here). For our problem, this anbe ahieved by hoosing δk suitably, whih is possible due to the oarea formula.Moreover, δk → 0 an be determined suh that Ld(Bk) → 0. But this does notimply that also P (Bk, Ω) → 0, whih would make the jump parts onverge suitably.Therefore, we have to evaluate the BV-traes of ẑ and ẑk arefully on the redued5



boundaries of Ak and Bk. In order to make the onvergene proof of the MRSas readable as possible all the required BV-terminology is provided beforehand inSetion 2.1. The MRS is then established in Setion 2.2.2.1 Tools from BV-spaes for the onstrution of the MRSThis setion is a olletion of tools from the theory of BV-spaes, whih are usedfor the onstrution of the MRS in Setion 2.2. The notation and the results aretaken from [AFP05, Set. 3℄ and readers who are familiar with BV-theory may skipthis present setion.Proposition 1 ([AFP05, Prop. 3.38℄ Properties of the perimeter)1. The mapping E 7→ P (E, Ω) is lower semiontinuous with respet to loal on-vergene in measure in Ω.2. The mapping E 7→ P (E, Ω) is loal, i.e. P (E, Ω) = P (F, Ω) whenever
Ld(Ω ∩

(
(E\F ) ∪ (F\E)

)
)) = 0.3. It holds P (E, Ω) = P (Rd\E, Ω) and

P (E ∪ F, Ω) + P (E ∩ F, Ω) ≤ P (E, Ω) + P (F, Ω) . (12)Theorem 2.3 ([AFP05, Th. 3.40℄ Coarea formula in BV ) For any open set
Ω ⊂ Rd and v ∈ L1

loc(Ω) one has
|Dv|(Ω) :=

∫ ∞

−∞

P ({x ∈ Ω | v(x) > t}, Ω)dt . (13)If v ∈ BV (Ω) the set {v > t} has �nite perimeter for L1-a.e. t ∈ R and
|Dv|(B) =

∫ ∞

−∞

|DI{v>t}|(B) dt , Dv(B) =

∫ ∞

−∞

DI{v>t}(B) dt (14)for any Borel set B ⊂ Ω.De�nition 2.4 ([AFP05, Def. 3.54℄ Redued boundary) Let E be an Ld-mea-surable subset of Rd and Ω the largest open set suh that E is loally of �niteperimeter in Ω. The redued boundary FE is de�ned as the olletion of all points
x ∈ supp |DIE | ∩ Ω suh that the limit

νE(x) := lim
̺→0

DIE(B̺(x))

|DIE |(B̺(x))
(15)exists in Rd and satis�es νE(x)=1. The funtion νE : FE → Sd−1 is alled thegeneralized inner normal to E.De�nition 2.5 ([AFP05, Def. 3.60℄Points of density t, essential boundary)For all t ∈ [0, 1] and every Ld-measurable set E ⊂ Rd we introdue

Et :=

{
x ∈ Rd

∣∣ lim
̺→0

Ld(E ∩B̺(x))

Ld(B̺(x))
= t

} and ∂∗E := Rd\(E0 ∪E1) . (16)
Et denotes the set of all points where E has density t and ∂∗E is the essentialboundary of E. Moreover, E1 an be onsidered as the measure theoreti interiorand E0 as the measure theoreti exterior of the set E.6



The next properties of the measure theoreti interior diretly follow from (16).Corollary 1 The measure theoreti interior has the following properties:1. Let N ⊂ Ω with Ld(N) = 0. Then N1 = ∅ and (Ω\N)1 = Ω1.2. Let A ⊂ B ⊂ Ω. Then A1 ⊂ B1 ⊂ Ω1.The next theorem, whih is due to Federer, states that FE is the important part ofthe boundary, sine Ω\(E0 ∪ FE ∪ E1) is a Hd−1-negligible set.Theorem 2.6 ([AFP05, Th. 3.61℄ Federer) Let E be a set of �nite perimeterin Ω. Then
FE ∩Ω ⊂ E1/2 ⊂ ∂∗E and Hd−1(Ω\(E0 ∪ FE ∪ E1)) = 0 . (17)In partiular, E has density either 0 or 1/2 or 1 at Hd−1-a.e. x ∈ Ω and Hd−1-a.e.

x ∈ ∂∗E ∩ Ω belongs to FE.De�nition 2.7 ([AFP05, Def. 3.63℄ Approximate limit) Let v ∈ L1
loc(Ω)d.We say that v has an approximate limit at x ∈ Ω if there exists v̄ ∈ Rd suhthat

lim
̺→0

∫

B̺(x)

|v(y)− v̄| dy = 0 . (18)The set Sv of points where this property does not hold is alled the approximatedisontinuity set. For any x ∈ Ω\Sv the vetor v̄, uniquely determined by (18), isalled approximate limit of v at x and denoted by ṽ(x).De�nition 2.8 ([AFP05, Def. 3.67℄ Approximate jump points) Let
B±

̺ (x, ν) := {y ∈ B̺(x) | ± 〈y − x, ν〉 > 0} . (19)Let v ∈ L1
loc(Ω)d and x ∈ Ω. We say that x is an approximate jump point of v ifthere exist a, b ∈ Rd and ν ∈ Sd−1 suh that a 6= b and
lim
̺→0

∫

B+
̺ (x,ν)

|v(y)− a| dy = 0 , lim
̺→0

∫

B−̺ (x,ν)

|v(y)− b| dy = 0 . (20)The triple (a, b, ν), uniquely determined by (20) up to a permutation of (a, b) anda hange of sign of ν, is denoted by (v+, v−, νv(x)). The set of approximate jumppoints of v is denoted by Jv.De�nition 2.9 ([AFP05, Def. 2.57℄ Reti�able sets) Let E ⊂ Rd be an Hk-measurable set. We say that E is ountably k-reti�able if there exists ountablymany Lipshitz funtions fi : Rk → Rd suh that
E ⊂ ∪∞i=0fi(R

k) . (21)We say that E is ountably Hk-reti�able if there exists ountably many Lipshitzfuntions fi : Rk → Rd suh that
Hk

(
E\ ∪∞i=0 fi(R

k)
)

= 0 . (22)Clearly, k-reti�ability implies Hk-reti�ability.7



Theorem 2.10 ([AFP05, Th. 3.59℄ De Giorgi) Let E be an Ld-measurable sub-set of Rd. Then FE is ountably (d−1)-reti�able and |DIE | = Hd−1⌊FE.Due to Th. 2.10 the perimeter of E an be omputed by
P (E, Ω) = Hd−1(Ω ∩ ∂∗E) = Hd−1(Ω ∩ E1/2) . (23)This an be used to rewrite the oarea formula (13) using the essential boundary oflevel sets

|Du|(B) =

∫ ∞

−∞

Hd−1
(
B ∩ ∂∗{u > t}

)
dt for all Borel sets B ⊂ Ω . (24)Theorem 2.11 ([AFP05, Th. 3.77℄ Traes on interior reti�able sets) Let

v be a funtion in BV (Ω)d and let Γ ⊂ Ω be a ountably Hd−1-reti�able set orientedby ν. Then, for Hd−1-a.e. x ∈ Γ there exist v+
Γ (x), v−Γ (x) ∈ Rd suh that

lim
̺→0

∫

B+
̺ (x,ν(x))

|v(y)− v+
Γ (x)| dy = 0 , lim

̺→0

∫

B−̺ (x,ν(x))

|v(y)− v−Γ (x)| dy = 0 .(25)Moreover, Dv⌊Γ = (v+
Γ − v−Γ )⊗ νHd−1⌊Γ.2.2 Existene of mutual reovery sequenesThe onstrution of a MRS in the BV -setting will be based on the following lemmaon the deomposability of BV-funtions. Using omplete indution, it an deduedfrom [AFP05, Th. 3.84℄, whih gives the statement of the lemma for N = 2.Lemma 2.12 (Deomposability of BV-funtions) For all i ∈ {1, . . . , N}, N ∈

N, let vi ∈ BV (Ω) and Ai ⊂ Ω with �nite perimeter and the generalized innernormal νi to the redued boundary FAi, suh that ∪N
i=1Ai = Ω and Ai ∩Aj = ∅ forall i 6= j. For all i ∈ {1, . . . , N} and all j ∈ {i+1, . . . , N} let FAi∩FAj be orientedby νi. Let IAi

denote the indiator funtion of the set Ai and vi
±
FAi

the traes on
FAi. Then

w :=

N∑

i=1

viIAi
∈ BV (Ω) ⇐⇒

N∑

i=1
j=i+1

∫

FAi∩FAj∩Ω

|vi
+
FAi

− vj
−
FAj

| dHd−1 < ∞ . (26)If w ∈ BV (Ω), the measure Dw is representable by
Dw :=

N∑

i=1

(
Dvi⌊A

1
i +

N∑

j=i+1

(vi
+
FAi

− vj
−
FAj

)⊗ νiH
d−1⌊(FAi ∩ FAj ∩ Ω)

)
, (27)where A1

i is the measure theoreti interior of Ai, as in Def. 2.5.Moreover, we will exploit that the BV-traes of a funtion, whih is bounded Ld-a.e.,are bounded Hd−1-a.e. by the same onstants. This an be proven by ontraditionusing formula (25).Corollary 2 Let v ∈ BV (Ω) with a ≤ v ≤ b Ld-a.e. in Ω for onstants a, b ∈ R.assume that Γ is a Hd−1-reti�able set oriented by ν. Then a ≤ v±Γ (x) ≤ b for
Hd−1-a.e. x ∈ Ω. 8



With these tools at hand we are in a position to verify the MRS-ondition.Lemma 2.13 Let the assumptions of Theorem 2.1 hold. Then (Q, E ,R) satis�esthe MRS-ondition from De�nition 2.2.Proof: Let (tk, uk, zk)k∈N ⊂ [0, T ] × Q with (tk, uk, zk)
[0,T ]×T
→ (t, u, z). Choosenow q̂ = (û, ẑ) ∈ Q suh that E(t, q̂) < E for some E ∈ R, otherwise (11) triviallyholds. Now we distinguish between the following two ases:Case A: Let q̂ = (û, ẑ) ∈ Q be suh that there exists a Ld-measurable set B ⊂ Ωwith Ld(B) > 0 and ẑ > z on B. Then R(ẑ − z) = ∞ and (11) holds.Case B: Let q̂ = (û, ẑ)∈Q so that ẑ≤ z a.e. in Ω. Then R(ẑ−z) is �nite, i.e.

R(ẑ−z)=
∫
Ω
̺(z−ẑ)dx<∞. To onstrut a MRS we set ûk := û for every k ∈ N and

ẑk := (ẑ−δk)IAk
+ zkIBk

+ 0·ICk
, where (28)

Ak := [0 ≤ ẑ−δk ≤ zk] , Bk := [0 ≤ zk < ẑ−δk] , Ck = Ω\(Ak ∪Bk) . (29)With this hoie we ensure that 0 ≤ ẑk ≤ zk a.e. in Ω. We show now that thesequene δk
R
→ 0 an be determined in suh a way that ẑk ∈ BV (Ω), so that (27)is appliable, suh that (

Ld(Bk)+Ld(Ck)
)
→ 0 and ẑk → ẑ in L1(Ω) as k → ∞.Beause of ẑ ≤ z in Ω we obtain

Bk ⊂ [zk < ẑ−δk] ⊂ [zk < z−δk] ⊂ [δk < |z−zk|] . (30)Using Markov's inequality (M) in the last estimate of (31) below we onlude
Ld(Bk) ≤ Ld([δk < |z−zk|])

(M)
≤ δ−1

k ‖z−zk‖L1(Ω) (31)and to ensure that the right-hand side of (31) tends to 0, we may e.g. hoose any
δk ∈ [m

1/2
k , m

1/4
k ] with mk := max{k−1, ‖z−zk‖L1(Ω)}.Moreover, to make Cor. 2.12 appliable we have to hoose δk ∈ [m

1/2
k , m

1/4
k ] suhthat the sets Ak, Bk and Ck have �nite perimeter and that the right-hand side of(26) is �nite for all k ∈ N. For this, we rewrite Ak = [δk ≤ ẑ] ∩ [−δk ≤ zk− ẑ] and

Bk = [0 ≤ zk] ∩ [δk < ẑ−zk] as the intersetions of levels sets of the funtions ẑ,
(zk− ẑ), zk and (ẑ−zk) ∈ BV (Ω). By formula (12) and the oarea formulas (13),(24) we onlude that δk ∈ [m

1/2
k , m

1/4
k ] an be hosen suh that Ak, Bk and Ckhave �nite perimeter. It remains us to verify that the right-hand side of (26) is�nite. Coarea formula (24) yields Hd−1(FAk ∩ FBk ∩ Ω) ≤ 3|Dẑ|(Ω) + 3|Dzk|(Ω),

Hd−1(FAk ∩ FCk ∩Ω) ≤ 3|Dẑ|(Ω) + |Dzk|(Ω) and thirdly Hd−1(FBk ∩ FCk ∩Ω) ≤
2|Dẑ|(Ω) + 2|Dzk|(Ω), where |Dzk|(Ω) ≤ C for all k ∈ N by the properties of stablesequenes. Additionally, Cor. 2 implies that |ẑ±−δk−z±k | ≤ 1−δk, |ẑ±−δk| ≤ 1−δkas well as |z±k | ≤ 1 Hd−1-a.e. on the respetive redued boundaries. Hene, theright-hand side of (26) is �nite and Cor. 2.12 an be applied.Now we verify that ẑk → ẑ in L1(Ω). For this we use that

Ck = [ẑ − δk < 0] ∪ [zk < 0] , (32)where the seond set is Ld-negligible. Moreover, we have [ẑ − δk < 0] → [ẑ < 0]pointwise Ld-a.e., whih again is an Ld-negligible set. This shows that Ld(Ck) → 0and together with (31) we have obtained that (
Ld(Bk)+Ld(Ck)

)
→ 0 as k → ∞.From this, we infer

‖ẑk − ẑ‖L1(Ω) = δkL
d(Ak) + ‖zk − ẑ‖L1(Bk) + ‖ẑ‖L1(Ck)

≤ δkL
d(Ω) + Ld(Bk) + Ld(Ck) → 0 as δk → 0.

(33)9



Now we are in a position to verify the lim sup estimate (11). For this we usethat
lim sup

k→∞
(E(tk, q̂k) +R(ẑk − zk)− E(tk, qk))

≤ lim sup
k→∞

I(t, q̂k)− lim inf
k→∞

I(t, qk)

+ lim sup
k→∞

(
|Dẑk|(Ω)−|Dzk|(Ω)

)
+ lim sup

k→∞
R(ẑk−zk) ,

(34)where, we introdued I(t, q) :=
∫
Ω f(z)e(u+g(t)) : C : e(u+g(t)) dx for q = (u, z).In the following, we estimate the di�erent terms in (34) separately.Due to the strong L1-onvergene obtained in (33) and the fat that ẑk ≤ zk forall k ∈ N by onstrution we onlude that

R(ẑk − zk) →R(ẑ − z) as k →∞ . (35)Moreover, sine ûk = û and ẑk ≤ ẑ for all k ∈ N by onstrution we infer fromthe monotoniity of f : [0, 1] → [a, b] together with the ontinuity of the given data
g ∈ C1([0, T ], H1(Ω, Rd)) that

lim sup
k→∞

I(tk, q̂k) ≤ lim sup
k→∞

I(tk, q̂) = I(t, q̂) . (36)Furthermore, the weak sequential lower semiontinuity of I implies that
− lim inf

k→∞
I(t, qk) ≤ −I(t, q) . (37)Thus, it remains to show that

lim sup
k→∞

(
|Dẑk|(Ω)−|Dzk|(Ω)

)
≤ |Dẑ|(Ω)−|Dz|(Ω) . (38)For this, we use ẑk = (ẑ−δk)IAk

+ zkIBk
+0·ICk

as well as zk = zk(IAk
+ IBk

+ ICk
)and we express their derivatives with the aid of formula (27). Hene, we obtain

|Dẑk|(Ω) =|Dẑ|(A1
k) + |Dzk|(B

1
k) +

∫

FAk∩FBk∩Ω

|ẑ+−δk−z−k | dH
d−1

+

∫

FAk∩FCk∩Ω

|ẑ+−δk| dH
d−1 +

∫

FBk∩FCk∩Ω

|z+
k | dH

d−1 ,

(39)where we applied Cor. 2 to determine the traes ẑ±k on the di�erent parts of theredued boundaries. Similarly we �nd
−|Dzk|(Ω) =− |Dzk|(A

1
k)− |Dzk|(B

1
k)− |Dzk|(C

1
k)−

∫

FAk∩FBk∩Ω

|z+
k −z−k | dH

d−1

−

∫

FAk∩FCk∩Ω

|z+
k −z−k | dH

d−1 −

∫

FBk∩FCk∩Ω

|z+
k −z−k | dH

d−1 .

(40)We note that |Dẑk|(B1
k)−|Dzk|(B1

k) anels out in (38). Moreover, −|Dzk|(C1
k) ≤ 0in (40). Thus, to establish (38) we have to show− lim infk→∞ |Dzk|(A1

k) ≤ −|Dz|(Ω)10



and that the boundary terms in (39)+(40) an be estimated as follows for all k ∈ N:
∫

FAk∩FBk∩Ω

|ẑ+−δk−z−k | dH
d−1 +

∫

FAk∩FCk∩Ω

|ẑ+−δk| dH
d−1 +

∫

FBk∩FCk∩Ω

|z+
k | dH

d−1

−

∫

FAk∩FBk∩Ω

|z+
k −z−k | dH

d−1 −

∫

FAk∩FCk∩Ω

|z+
k −z−k | dH

d−1 −

∫

FBk∩FCk∩Ω

|z+
k −z−k | dH

d−1

≤

( ∫

FAk∩FBk∩Ω

+

∫

FAk∩FCk∩Ω

+

∫

FBk∩FCk∩Ω

)
|ẑ+ − ẑ−| dHd−1 .

(41)To verify estimate (41) we use the information on the traes stated in Cor. 2 anddistinguish between all possible relations. On FAk∩FBk∩Ω it holds 0 ≤ ẑ+−δk ≤ z+
kand 0 ≤ z−k < ẑ−−δk Hd−1-a.e.. Hene, for Hd−1-a.e. x ∈ FAk ∩ FBk ∩ Ω with

z+
k ≤ z−k it is ẑ+−δk ≤ z+

k ≤ z−k < ẑ−−δk, i.e. |ẑ+−δk−z−k | ≤ |ẑ+−ẑ−| ,

z+
k > z−k it is either ẑ+−δk ≤ z−k < z+

k ≤ ẑ−−δk, i.e. |ẑ+−δk−z−k | ≤ |ẑ+−ẑ−| ,or ẑ+−δk ≤ z−k < ẑ−−δk ≤ z+
k , i.e. |ẑ+−δk−z−k | ≤ |ẑ+−ẑ−| ,or z−k < ẑ−−δk ≤ ẑ+−δk ≤ z+
k , i.e. |ẑ+−δk−z−k | ≤ |z+

k −z−k | ,or z−k < ẑ+−δk ≤ z+
k ≤ ẑ−−δk, i.e. |ẑ+−δk−z−k | ≤ |z+

k −z−k | ,or z−k < ẑ+−δk < ẑ−−δk ≤ z+
k , i.e. |ẑ+−δk−z−k | ≤ |z+

k −z−k | .Using these estimates and denoting the set of points, where one of the last threerelations holds by E, we �nd that
∫

FAk∩FBk∩Ω

|ẑ+−δk−z−k | dH
d−1 −

∫

FAk∩FBk∩Ω

|z+
k −z−k | dH

d−1 ≤

∫

FAk∩FBk∩Ω\E

|ẑ+−ẑ−| dHd−1 − 0

≤

∫

FAk∩FBk∩Ω

|ẑ+−ẑ−| dHd−1 .

(42)On FAk ∩FCk ∩Ω it holds 0 ≤ ẑ+−δk ≤ z+
k and ẑ−−δk < 0 ≤ z−k Hd−1-a.e.. Thus,for Hd−1-a.e. x ∈ FAk ∩ FCk ∩ Ω with

z+
k ≤ z−k it is ẑ−−δk <0 ≤ ẑ+−δk ≤ z+

k ≤ z−k , i.e. |ẑ+−δk| ≤ |ẑ+−ẑ−| ,

z+
k > z−k it is either ẑ−−δk <0 ≤ z−k ≤ ẑ+−δk ≤ z+

k , i.e. |ẑ+−δk| ≤ |ẑ+−ẑ−| ,or ẑ−−δk <0 ≤ ẑ+−δk ≤ z−k ≤ z+
k , i.e. |ẑ+−δk| ≤ |ẑ+−ẑ−| .Thus, we have

∫

FAk∩FCk∩Ω

|ẑ+−δk| dH
d−1 −

∫

FAk∩FCk∩Ω

|z+
k −z−k | dH

d−1 ≤

∫

FAk∩FCk∩Ω

|ẑ+−ẑ−| dHd−1 − 0 . (43)On FBk∩FCk∩Ω it holds 0 ≤ z+
k < ẑ+−δk and ẑ−−δk < 0 ≤ z−k Hd−1-a.e.. Hene,for Hd−1-a.e. x ∈ FBk ∩ FCk ∩Ω with

z+
k ≤ z−k it is either ẑ−−δk <0 ≤ z+

k ≤ ẑ+−δk ≤ z−k , i.e. |ẑ+−δk| ≤ |ẑ+−ẑ−| ,or ẑ−−δk <0 ≤ z+
k ≤ z−k ≤ ẑ+−δk, i.e. |ẑ+−δk| ≤ |ẑ+−ẑ−| ,

z+
k > z−k it is ẑ−−δk <0 ≤ z−k ≤ z+

k ≤ ẑ+−δk, i.e. |ẑ+−δk| ≤ |ẑ+−ẑ−| ,11



whih yields
∫

FBk∩FCk∩Ω

|z+
k | dH

d−1 −

∫

FBk∩FCk∩Ω

|z+
k −z−k | dH

d−1 ≤

∫

FBk∩FCk∩Ω

|ẑ+−ẑ−| dHd−1 − 0 . (44)Thus, estimate (41) holds. In total we have up to now obtained that the left-handside of (38) an be estimated by
lim sup

k→∞

(
|Dẑk|(Ω)− |Dzk|(Ω)

)

≤ lim sup
k→∞

(
|Dẑ|(A1

k) +

∫

((FAk∩FBk)∪(FAk∩FCk)∪(FBk∩FCk))∩Ω

|ẑ+ − ẑ−| dHd−1

+ |Dẑ|(B1
k) + |Dẑ|(C1

k)− |Dzk|(A
1
k)

)

≤ |Dẑ|(Ω)− lim inf
k→∞

|Dzk|(A
1
k)

(45)To show that − lim infk→∞ |Dzk|(A1
k) ≤ −|Dz|(Ω) in (45) we �rst hoose a subse-quene (zk)k∈N suh that the lim inf is attained. Then, we introdue the sets

Un :=
∞⋃

k=n

(Bk ∪ Ck) . (46)Sine both Ld(Bk) → 0 and Ld(Ck) → 0 as k → ∞ we may hoose a furthersubsequene in suh a way that ∑∞
k=1 L

d(Bk) +Ld(Ck) < ∞. For this subsequene
Ld(Un) < ∞ and Ld(Un) → 0 as n →∞ . (47)We set limn→∞ Un = N and put Ωn := Ω\Un, whih satis�es Ωn ⊂ An for all

k ≥ n. Then, also Ω1
n ⊂ A1

k as well as Ω1
n ⊆ Ω1

n+1 ⊂ Ω1 for all n ∈ N by Cor. 1, 2.).Sine Ld(N) = 0 we onlude that (Ω\N)1 = Ω1 by Cor. 1, 1.). This proves that
Ω1

n → Ω1. Note that Ω ⊂ Rd is an open set, hene Ω1 = Ω.Keep n ∈ N �xed. Then the sets Ω1
n ⊂ A1

k an be used to �x a set independentof k ≥ n, so that the lower semiontinuity of the variation an be exploited on Ω1
nfor the sequene zk

∗
⇀ z in BV (Ω) and we have ensured that Ω1

n → Ω. For all k ≥ nwe have
− lim inf

k→∞
|Dzk|(A

1
k) ≤ − lim inf

k→∞
|Dzk|(Ω

1
n) ≤ −|Dz|(Ω1

n) → −|Dz|(Ω) as n →∞ .This �nishes the proof of estimate (45), so that it is shown that the MRS (ûk, ẑk)k∈Ngiven by ûk = û and ẑk from (28) satis�es the lim sup-estimate (11).3 A brittle damage model and its Modia-MortolaapproximationAs an example for the model with BV -regularization we now disuss the speialase, when the damage variable attains the values 1 or 0, only. This means thatthe damage variable z : Ω → {0, 1} only distinguishes between the two situations:loally unbroken for z(x) = 1 and loally broken for z(x) = 0. For this reason itis alled brittle damage, see [FG06, GL09℄, or brutal damage in [FM93℄. In this12



setting, the set Z of admissible damage variables an be onsidered as the subsetof BV(Ω) onsisting of the indiator funtions of sets of �nite perimeter, i.e.
ZB := {IZ : Ω → {0, 1} indiator funtion of Z ⊂ Ω, P (Z, Ω) < ∞} . (48)Compatness properties of ZB are disussed in Remark 1 below. Sine an indiatorfuntion IZ of suh a set Z is simply a jump funtion, its variation in Ω redues tothe jump part, whih is exatly the perimeter of Z in Ω, i.e. |DIZ |(Ω) = P (Z, Ω).Hene, with a onstant σ > 0, the regularizing BV -gradient term is given by

G(z) := σHd−1(Jz) = σP (Z, Ω) . (49)We want to use the above regularization in a model that desribes the damage ofonrete. From now on we denote with Z := [z = 1] the set where the strutureis unbroken. Then, Ω\Z := [z = 0] desribes the regions where the struture isompletely disintegrated. We assume that these regions are �lled with pulverizedmaterial whih is densely paked. For this reason, the region Ω\Z is able to resistompression as good as the undamaged region Z. Sine we only allow for in�nites-imally small strains we may expet that the body Ω keeps its outward appearane.We further assume that the onrete struture ontains a reinforement, whih en-sures that the body Ω an reat on tension even in pulverized regions Ω\Z, but nolonger as good as the sound material in Z. All these properties are featured by thestored energy density of the form
WB(e, z) := µ(z+ρ)|e|2 + λ

2

(
|(tr e)−|2 + (z + α)|(tr e)+|2

)
, (50)where α ∈ (0, 1) is onstant and µ, λ > 0 are the Lamé onstants. Moreover, also

ρ ∈ (0, 1] is onstant and learly, the assumption ρ > 0 preserves the oerivity of
WB with respet to e. Sine the volumetri part of the strain tensor is under ontrolby the term λ

2

(
|(tr e)−|2 + (z + α)|(tr e)+|2

) it partiularly ensures that also thedeviatori part is ontrolled. This means that �nite shear stresses an our in thepulver Ω\Z.In the setting of reinfored onrete we de�ne the state spae Q as in (7). With
R : Z → [0,∞] from (1) and QB := U × ZB from above the system (Q, EB,R) isompleted by the energy funtional EB : [0, T ]×Q → R ∪ {∞},

EB(t, u, z) :=

{ ∫
Ω

WB(e(u+g(t)), z) dx + σHd−1(Jz) if (u, z) ∈ QB ,
∞ otherwise. (51)Again, the rate-independent damage proess is driven by slow time-dependent ex-ternal loadings indued by time-dependent Dirihlet onditions, whih are modeledby the given displaement g : [0, T ] → H1(Ω, Rd), and σ > 0.The works [FM93, FG06, GL09℄ onsider brittle damage without any regu-larization for the damage variable. In these works the density is of the form

W̃B(e, z) = ze : A : e + (1−z)e : B : e, where A, B ∈ R(d×d)×(d×d) are symmetri andpositive de�nite with onstants c1, c2 > 0 suh that c1|e|2 ≤ e :B :e ≤ e :A :e ≤ c2|e|2for all e ∈ Rd×d. Thus, WB from (50) an be regarded as a speial ase of
W̃B. In [FM93, FG06, GL09℄, minimizing energy plus dissipation in the �rst time-step means minimizing ∫

Ω
W̃B(e(u), z)+̺(1−z) dx in H1(Ω, Rd)×L∞(Ω). Beauseof the absene of a damage gradient one an immediately eliminate z by per-forming the minimization of the funtional ∫

Ω
ŴB(e(u)) dx in H1(Ω, Rd), where13



ŴB(e) = min{e : A : e, e : B : e +̺}. This density is nononvex and in order toguarantee the existene of minimizers a relaxation using homogenization tools isrequired. However, for the brittle damage problem (51) regularized with (49) oneannot remove z from the minimization as easily. For all z ∈ ZB one rather onsid-ers the redued energy funtional ER(t, z) = minu∈U EB(t, u, z) and then minimizes
ER(t, z) + R(1−z) in ZB (at the �rst time-step). Sine for every z ∈ [0, 1] �xedthe density WB(·, z) is onvex with respet to the strains the orresponding ER(t, z)exists for all z ∈ ZB. In order to make sure that also a minimizer of ER(t, ·) ex-ists, we now disuss the lower semiontinuity and ompatness properties of theregularization (49) in ZB.Remark 1 (Compatness of ZB, f. [AFP05, Chap. 4℄) The distributionalgradient Dz of any funtion z ∈ BV(Ω) an be uniquely divided into three parts:

Dz = Daz + Djz + Dcz . (52)Here, Daz denotes the part whih is absolutely ontinuous with respet to the mea-sure Ld and (Djz + Dcz) is singular with respet to Ld. Moreover, Djz stands forthe jump part and Dcz for the Cantor part. We say that z is a speial funtionwith bounded variation, i.e. z ∈ SBV(Ω), if Dcz = 0. The set SBV(Ω) is an alge-braially losed subspae of BV(Ω) [AFP05, p. 213, Cor. 4.3℄. In partiular, for any
z ∈ SBV(Ω) the derivative in (52) takes a speial struture sine it an be reoveredfrom the approximate di�erential ∇z, the approximate one-sided limits (z+, z−) andthe normal νz to the jump set Jz, i.e.

∀z ∈ SBV(Ω) : Dz = ∇zLd + (z+ − z−)⊗ νzH
d−1⌊Jz . (53)Aording to [AFP05, p. 216, Th. 4.7℄ the topologial losedness of SBV(Ω) is en-sured if the following holds: Let φ : [0,∞) → [0,∞], θ : (0,∞) → (0,∞] be lowersemiontinuous inreasing funtions and assume that

lim
t→∞

φ(t)

t
= ∞ and lim

t→0

θ(t)

t
= ∞ . (54)Let Ω ⊂ Rd be open and bounded and let (zk)k∈N ⊂ SBV(Ω) suh that

sup
k∈N

{∫

Ω

φ(|∇zk|) dx +

∫

Jzk

θ(|z+
k − z−k |) dHd−1

}
< ∞ . (55)If zk

∗
⇀ z in BV(Ω), then z ∈ SBV(Ω), in partiular, ∇zk ⇀ ∇z in L1(Ω)d and

Djzk
∗
⇀ Djz in Ω. Moreover, we have lower semiontinuity of the funtionals, i.e.

∫

Ω

φ(|∇z|) dx ≤ lim inf
k→∞

∫

Ω

φ(|∇zk|) dx if φ is onvex, (56)
∫

Jz

θ(|z+ − z−|) dHd−1 ≤ lim inf
k→∞

∫

Jzk

θ(|z+
k − z−k |) dHd−1 if θ is onave. (57)The spae SBV(Ω) is ompat with respet to the weak∗ topology, if (55) holdstogether with the additional equiboundedness of ‖zk‖∞, i.e., if (zk)k∈N ⊂ SBV(Ω)satis�es (55) and ‖zk‖∞ < c, then there is a subsequene zk

∗
⇀ z in BV(Ω) and

z ∈ SBV(Ω) [AFP05, p. 216, Th. 4.8℄. 14



The set ZB from (48), whih onsists of the indiator funtions IZ of all thesets Z with �nite perimeter in Ω is a subset of SBV(Ω) having the property DIZ =
(I+

Z − I−Z )⊗ νIZ
Hd−1(JIZ

), where I+
Z , I−Z ∈ {0, 1}. Hene, the funtion θ from abovean be any power law θ(t) = tp with p ∈ (0, 1) to ensure (54) and the onavity from(57). Thus, for any IZ ∈ ZB we obtain

∫

JIZ

θ(|I+
Z − I−Z |) dHd−1 = Hd−1(JIZ

) = P (Z, Ω) .Consider (IZk
)k∈N ⊂ ZB with ‖IZk

‖∞ + P (Zk, Ω) ≤ c. Then the ompatness the-orem for pieewise onstant funtions [AFP05, p. 234, Th. 4.25℄ guarantees theexistene of a subsequene that onverges in measure to a pieewise onstant fun-tion z. Moreover, the lower semiontinuity of the Hausdor�-measure ensures that
Hd−1(Jz) ≤ lim infk→∞Hd−1(JIZk

) ≤ c. Sine a sequene that onverges in measureontains a subsequene that onverges Ld-a.e. we onlude that also z ∈ ZB.In order to address the main issue in the proof of energeti solutions, it shouldbe mentioned that the reovery sequene for ẑ ∈ ZB an be adopted from Setion2.2. Now, one may onsider ẑk := ẑIAk
+ zkIBk

+0·ICk
with Ak = [0 ≤ ẑ−δk ≤ zk],

Bk = [0 ≤ zk < ẑ−δk], Ck = Ω\(Ak ∪ Bk) and δk → 0 determined as in Setion2.2. This is due to the fat that ẑ and ẑk take the values 0 and 1 only, so that for
δk < 1 the property ẑ(x)−δk ≤ zk(x) implies ẑ(x) ≤ zk(x) for Ld-a.e. x ∈ Ak andthis an be transferred to the relations for the traes by Cor. 2.The distributional gradient Hd−1(Jz) may be disadvantageous for numerialomputations. Therefore, we would like to approximate it by integral terms via
Γ-onvergene. Following the ideas of [MM77, Mod87℄ whih originate in modelingof phase transitions, this an be ahieved by a term of Modia-Mortola type

Mk(z) :=

{ ∫
Ω

(
k2z2(1−z)2 + 1

k2 |∇z|2
)
dx if z∈H1(Ω, [0, 1]) ,

∞ otherwise, (58)where H1(Ω, [0, 1]) denotes the set of H1(Ω)-funtions with values in the interval
[0, 1]. A detailed proof for the Γ-onvergene of Mk(zk) to the limit σHd−1(Jz)with σ := 2

∫ 1

0
z(1 − z) dz, an be found e.g. in [Alb98℄. Intuitively, it seems to belear that this ansatz also works for the brittle damage model. The only di�ultyis given by the unidiretionality of R. Hene, to prove the MRS-ondition, thereovery sequene (ẑk)k∈N given in [Alb98℄ has to be adjusted suitably.A Modia-Mortola term in the ontext of damage an also be found in [Gia05℄.There, as a part of the Ambrosio-Tortorelli model for volume damage it was usedto approximate the Franfort-Marigo model for Gri�th raks [BFM08℄. Withinthis limit passage the (volume) damage variable turns into the d − 1-dimensionalrak set, i.e. into the jump set of the limit displaement. However, here we want touse a funtional of Modia-Mortola type to approximate a model for brittle volumedamage by a more regular model for volume damage.3.1 Approximation of (Q, EB,R) by a Modia-Mortola termIn this setion we show that the system (Q, EB,R) given by (7), (51) and (1) with

ρ > 0 in (50) an be approximated by systems (Q, Ek,R)k∈N in the sense of Γ-onvergene of rate-independent systems developed in [MRS08℄. In this ontext, for15



all k ∈ N the approximating energy funtionals Ek : [0, T ] → Q are given by
Ek(t, u, z) := IB(t, gk, u, z) +Mk(z) with Mk(z) from (58) and (59)

IB(t, gk, u, z) :=

∫

Ω

WB(e(u+gk(t)), z) dx with WB from (50). (60)For the given data we assume (gk)k∈N ⊂ C1([0, T ], H1(Ω, Rd)) and
∃ cg > 0 ∀k ∈ N : ‖gk‖

2
C1([0,T ],H1(Ω,Rd)) ≤ cg . (61)For every k ∈ N �xed the rate-independent systems (Q, Ek,R) �t into the frame-work disussed in [TM10, Set. 5.2℄. Hene, we may state the existene of energetisolutions for (Q, Ek,R) as a diret onsequene of [TM10, Th. 3.1℄.Lemma 3.1 (Existene of energeti solutions for (Q, Ek,R)) Let Ω ⊂ Rd bean open, bounded Lipshitz domain with a Dirihlet boundary ΓD 6= ∅. For all

k ∈ N let the system (Q, Ek,R) be given by (7), (59) and (1) with ρ > 0 in (50).Let (61) hold true. Assume that the initial data (uk(0), zk(0)) satisfy (2(S)) for
Ek and R at time t = 0. Then, for all k ∈ N there exists an energeti solution
(uk, zk) : [0, T ]→ Q for the system (Q, Ek,R) and the initial datum (uk(0), zk(0)).Our aim is to show that energeti solutions of the systems (Q, Ek,R) onverge to anenergeti solution of the brittle damage system (Q, EB,R), where the onvergeneof sequenes (uk, zk)

T
→ (u, z) is to be understood in the sense of (9).Theorem 3.2 (Modia-Mortola approximation of (Q, EB,R)) Let the assump-tions of Lemma 3.1 hold. For all k ∈ N let (uk, zk) : [0, T ] → Q be an energetisolution to the system (Q, Ek,R) given by (7), (59) and (1). If the initial data satisfy

(uk(0), zk(0))
T
→ (u(0), z(0)) and Ek(0, uk(0), zk(0)) → EB(0, u(0), z(0)) then there isa subsequene (uk(t), zk(t))

T
→ (u(t), z(t)) for all t ∈ [0, T ] and (u, z) : [0, T ] → Q isan energeti solution of (Q, EB,R).3.2 Proof of Convergene Theorem 3.2In the following we show the existene of a subsequene of energeti solutions of

(Q, Ek,R)k∈N whih onverges in the topology T for all t ∈ [0, T ] to an energetisolution of the brittle damage system (Q, EB,R). This is done following the ideasof [MRS08, Th. 3.1℄. To obtain this onverging subsequene, it is neessary thatthe energies are uniformly bounded and that sublevels of the energies are ompatin T , whih is veri�ed in Setion 3.2.1 and partiularly in Corollary 3 below. Theonvergene of the sequene pointwise for all t ∈ [0, T ] an be obtained followingthe ideas of [MM05, Th. 3.2℄. The proof of the energy balane for the limit systemfurther requires that the Γ-lim inf-inequality holds, whih is established in Proposi-tion 3 below. Additionally, the partial time derivatives must onverge pointwise forall t ∈ [0, T ], i.e. ∂tEk(tk, uk(t), zk(t)) → ∂tEB(t, uk(t), zk(t)), where ∂tEk and ∂tEBhave the form (10). As in the proof of Theorem 2.1, the above onvergene anbe dedued from the properties (P4) and (P5) of WB, see e.g. [MRT10℄ for details.With this onvergene a lower energy estimate an be established, see [MRS08, Th.3.1℄. The respetive upper energy estimate an be obtained following the ideas of[MRS08, Prop. 2.4℄, so that the energy balane (2(E)) for (u, z) and (Q, EB,R) isgained. The stability of (u, z) and (Q, EB,R) is dedued with the aid of a MRS inLemma 3.5 in Setion 3.2.2. 16



3.2.1 Compatness of energy sublevels and the lower Γ-limitFrom the stability inequality (2(S)) one obtains that the energies Ek(t, uk(t), zk(t)) ofthe energeti solutions (uk, zk) : [0, T ] → Q are uniformly bounded for all t ∈ [0, T ].This an be seen from testing (2(S)) with the funtions (ûk, ẑk) with ûk = 0 and
zk = 0 :

Ek(t, uk(t), zk(t)) ≤ Ek(t, 0, 0) +R(0 − zk) ≤ C . (62)Lemma 3.3 (A priori estimates) Let (61) be satis�ed and ρ > 0 in (50). Forall k ∈ N let the funtion (uk, zk) : [0, T ]→ Q be an energeti solution of the system
(Q, Ek,R). Then, there is a onstant C := Ld(Ω)(̺+cg(µ(1+ρ)+λ(2+α)/2)) suhthat for all t ∈ [0, T ] the following estimates hold:

Ek(t, uk(t), zk(t)) ≤ C , (63a)
‖e(uk(t))‖2L2(Ω,Rd) ≤ 2C/(µρ) + 2cg , (63b)
∫

Ω

z2
k(1− zk)2 dx ≤ C/k2 , (63)

∫

Ω

|∇H(zk(t))| dx ≤ C , where H(z) := 2

∫ z

0

ξ(1−ξ) dξ . (63d)Proof: An energeti solution satis�es stability inequality (2(S)) for all t ∈ [0, T ].Hene, estimate (63a) and the onstant C an be obtained uniformly in time bytesting (2(S)) with the funtions ûk = 0 and ẑk = 0. With this hoie we �nd that
WB(0, 0) ≤ µ(1+ρ)|e(gk(t))|

2 + λ
2 |(tr e(gk(t)))−|2 + λ

2 (1+α)|(tr e(gk(t)))+|2

≤ (µ(1+ρ) + λ(2+α)/2)|e(gk(t))|2.Moreover it is R(zk(t) − 0) ≤ ̺Ld(Ω). Integrating WB(0, 0) over Ω then yields
C := Ld(Ω)( +̺cg(µ(1+ρ)+λ(2+α)/2)) and establishes estimate (63a). Then, estimate(63) is an immediate onsequene of (63a), sine all the terms in Ek(t, uk(t), zk(t))are positive. In order to obtain estimate (63b) we use the following alulation with
a = e(uk(t)), b = e(gk(t)) and Young's inequality in the last estimate:

|a + b|2 ≥ (|a| − |b|)2 = |a|2 − 2(1
2 |a|)(2|b|) + |b|2 ≥ 1

2 |a|
2 − |b|2 . (64)Together with (63a) this implies ‖e(uk(t))‖2L2 ≤

2C
µρ + 2‖e(gk(t))‖2L2 , i.e. (63b).It remains us to verify (63d). For H(z) := 2

∫ z

0 ξ(1−ξ) dξ it is H ′(z) = 2z(1−z)and ∇H(z) = H ′(z)∇z. Applying Young's inequality to Mk(zk(t)) we �nd that
∇H(zk(t)) is uniformly bounded in L1(Ω), i.e.

Mk(zk(t)) =

∫

Ω

(
k2(z2

k(1− zk)2 + k−2|∇zk|
2
)
dx

≥ 2

∫

Ω

zk(1 − zk)|∇zk| dx ≥

∫

Ω

|∇H(zk(t))| dx .The above a-priori estimates are used to dedue the preompatness of unions ofenergy sublevels. 17



Proposition 2 (Preompatness of unions of energy sublevels) Let the as-sumptions of Lemma 3.3 hold. Let the energy funtionals Ek be given by (59). As-sume that tk → t and Ek(tk, uk, zk) ≤ E for all k ∈ N. Then there is a subsequene
(uk, zk)

T
→ (u, z) and (u, z) ∈ QB.Proof: Beause of Ek(tk, uk, zk) ≤ E the sequene (uk, zk)k∈N satis�es boundssimilar to (63). In partiular, we have ‖uk‖H1

0 (Ω,Rd) ≤ cK‖e(uk)‖L2(Ω,Rd×d) ≤ Ẽby estimate (63b) and Korn's inequality. Sine H1
0 (Ω, Rd) is a re�exive Banahspae, Banah-Alaoglu's theorem states the existene of a subsequene uk ⇀ u in

H1
0 (Ω, Rd).Now, we prove the existene of a subsequene zk

∗
⇀ z in BV(Ω). Estimate(63d) implies that the sequene (H(zk))k∈N is uniformly bounded in BV(Ω). Hene,there is a subsequene (H(zk))k∈N onverging strongly in L1(Ω), i.e. (H(zk))k∈N ispreompat in L1(Ω). Sine |H(z̃)−H(ẑ)| = |

∫ z̃

ẑ H ′(ξ) dξ| ≤ |z̃− ẑ| we obtain thatthe operator H : L1(Ω) → L1(Ω) is ontinuous. Hene, also (zk)k∈N as the preimageof (H(zk))k∈N is preompat in L1(Ω). Thus, there is a subsequene zk → z in
L1(Ω) and from the lower semiontinuity of the variation with respet to strong
L1-onvergene for (zk)k∈N ⊂ BV(Ω) we onlude that z ∈ BV(Ω). Moreover, fromestimate (63) we dedue that z(x) ∈ {0, 1} for a.e. x ∈ Ω, i.e. z ∈ ZB.Proposition 3 (Lower Γ-limit) Let the assumptions of Lemma 3.3 hold. Let theenergy funtionals Ek be given by (59). Let σ := (H(1)−H(0)) with H from (63d).Assume that tk → t and (uk, zk)

T
→ (u, z). Moreover, let Ek(tk, uk, zk) ≤ E for all

k ∈ N. Then
EB(t, u, z) ≤ lim inf

k→∞
Ek(tk, uk, zk) . (65)Proof: We �rst show that lim infk→∞Mk(zk) ≥ σHd−1(Jz). Sine the operator

H : L1(Ω) → L1(Ω) from (63d) is ontinuous, as it was shown in the proof of Propo-sition 2, we have H(zk) → H(z) in L1(Ω). Moreover, due to the equiboundednessof the energies, estimate (63d) applies, whih states that (H(zk))k∈N is uniformlybounded in BV(Ω). Hene, the lower semiontinuity of the variation yields
lim inf
k→∞

Mk(zk) ≥ lim inf
k→∞

∫

Ω

|∇H(zk)|dx ≥ |DH(z)|(Ω) . (66)Beause of the equiboundedness of the energies Proposition 2 yields (u, z) ∈ QB. Inpartiular, z(x) ∈ {0, 1} and hene H(z(x)) ∈ {H(0), H(1)} for a.e. x ∈ Ω. More-over, |Dz|(Ω) = |Djz|(Ω) = Hd−1(Jz). The hainrule for BV funtions omposedwith Lipshitz-ontinuous funtions [AFP05, p. 188℄ then yields
|DjH(z)|(Ω) =

∣∣H(z+)−H(z−)

z+ − z−
Djz

∣∣(Ω) = (H(1)−H(0))|Djz|(Ω) , (67)where (H(1)−H(0)) = σ.As a diret onsequene of the preompatness of unions sublevels proved in Propo-sition 2 and the lower Γ-limit we may onlude their ompatness.Corollary 3 (Compatness of unions of energy sublevels) Let the assump-tions of Proposition 3 hold. Let tk → t and Ek(tk, uk, zk) ≤ E for all k ∈ N. Thenthere is a subsequene (uk, zk)
T
→ (u, z) and EB(t, u, z) ≤ E.18



3.2.2 Closedness of stable sets via MRSIn this setion we show that the limit states of sequenes whih satisfy (2(S)) forthe approximating systems (Q, Ek,R) are stable for the limit system (Q, EB,R). Asusual, this is done by proving the existene of a MRS.De�nition 3.4 (MRS-ondition) Let tk → t and qk
T
→ q for qk := (uk, zk) and

q := (u, z). For all k ∈ N assume that qk satis�es (2(S)) for (Q, Ek,R). For all
q̂ :=(û, ẑ)∈Q there is a sequene (q̂k)k∈N⊂Q with q̂k :=(ûk, ẑk) and q̂k

T
→ q̂ so that

lim sup
k→∞

(
Ek(tk, q̂k)−Ek(tk, qk)+R(ẑk−zk)

)
≤ EB(t, q̂)−EB(t, q)+R(ẑ−z) . (68)Clearly, our problem allows it to set ûk := û. Thus, the main di�ulty is hidden inthe onstrution of (ẑk)k∈N. For this, we will of ourse resort to the ideas appliedin [MM77, Mod87, Alb98℄. In partiular, in [Alb98℄, the reovery sequene, whihenables to show thatMk Γ-onverges to σHd−1, is onstruted for a dense set D of

ZB, only, namely for the indiator funtions of polyhedral sets with �nite perimeterin Ω, i.e.
D :=

{
IZ : Ω → {0, 1} indiator funtion of polyhedron Z ⊂ Ω, P (Z, Ω) < ∞

}
.The density of D in ZB is a diret onsequene of the fat that any set Ẑ of �niteperimeter an be approximated by open, smooth sets (Sk)k∈N suh that Sk → Ẑ in

Ld-measure and P (Sk, Ω) → P (Ẑ, Ω) [AFP05, p. 147, Th. 3.42℄.For our problem, the reovery sequene will be nontrivial if ẑ ≤ z a.e. in Ω, i.e.if Ẑ ⊂ Z with Ẑ := [ẑ=1] and Z := [z=1]. Only in this ase we have R(ẑ−z) < ∞.As Z refers to a given state, whih is supposed to be stable, we annot simplyreplae it by a sequene of polyhedra (Dj)j∈N in (68). Using the triangle inequality
R(ẑ−z) ≤ R(ẑ−IDj

) +R(IDj
−z) suh that the right-hand side is �nite, requiresthat Ẑ ⊂ Z ⊂ Dj for all j ∈ N. Moreover, if Ẑ shall be approximated by polyhedra

D̂j suh that R(I bDj
−z) < ∞ neessitates even D̂j ⊂ Ẑ ⊂ Z ⊂ Dj for all j ∈ N.But the following example similar to [AFP05, p. 154, Ex. 3.53℄ or [Giu84, p. 24,Rem. 1.27℄ shows that sets of �nite perimeter in general annot be approximatedfrom inside or outside by smooth open sets.Example 1 (Topologial boundary 6= redued boundary) Let Q := (0, 1)2.The set of points in Q with rational oordinates Q ∩ Q2 is ountable and an bearranged in a sequene (qj)j∈N. For every j ∈ N we de�ne the open ball B(qj , rj)with radius rj := 1/2j+2 and enter in qj . Then, L2(B(qj , rj)) = r2

j π = π/22(j+2)and P (B(qj , rj), Q) = L(∂B(qj , rj)) = 2πrj = π/2j+1. Let A := ∪j∈NB(qj , rj).Then A is an open set and we obtain that L2(A) ≤
∑

j∈N
L2(B(qj , rj)) = π/12 and

P (A, Q) ≤
∑

j∈N
P (B(qj , rj), Q) = π. Moreover, sine Q2 ⊂ A we note that A isdense in Q. Let now E := Q\A. Sine L2(Q) = 1 we �nd that L2(E) ≥ 1−π/12 > 0and hene E is nonempty with E ⊂ Q\Q2. Moreover, sine A is dense in Q weonlude that every point in E is an aumulation point of A and hene E = ∂A.This shows that the topologial boundary ∂A has a positive L2-measure. However,sine Hd−1(FA) = P (A, Q) < ∞ we know that the redued boundary FA has �nite

Hd−1-measure, see Theorem 2.10. Hene Hd(FA) = Ld(FA) = 0. Therefore weonlude that the topologial boundary ∂A onsists of the redued boundary FA and19



the measure-theoreti exterior A0, see De�nition 2.5, with L2(A0) = L2(∂A). Sine
A is open, E is losed. Moreover, due to E = ∂A it is even nowhere dense. Beauseof A0 = E1, this shows that the measure-theoreti interior of a set is in general notan open set in topologial sense.Neither E nor E1 has a nonempty interior and therefore it annot be approx-imated by open sets ontained in E suh that the perimeters onverge. Moreover,due to cl A = Q, we onlude that A annot be approximated by open sets from theoutside with perimeters onverging to P (A, Ω).Sine the polyhedra might not enjoy the properties required in our setting we annotdiretly adopt the reovery sequene from [MM77, Mod87, Alb98℄. Instead, weonsider the sequene of polyhedra (D̂j)j∈N that approximates Ẑ. For eah elementof the sequene we apply the onstrution of [MM77, Mod87, Alb98℄, whih involvesthe solution of the optimal pro�le problem. We hoose a diagonal sequene (z̃k)k∈Nwith the property Mk(z̃k) ≤ σHd−1(FẐ) + o(1). Finally, we obtain the reoverysequene (ẑk)k∈N, whih is suitable for our purpose, with an ansatz similar to Setion2.2, namely

∀ k ∈ N : ẑk := max
{
0, min{z̃k − δk, zk}

}
, (69)where δk → 0 has to be adjusted. With this idea we an verify the MRS-ondition.Lemma 3.5 Let the assumptions of Proposition 3 hold. Then the MRS-onditionfrom De�nition 3.4 is satis�ed.Proof: Let (tk, uk, zk)k∈N ⊂ [0, T ] × Q with (tk, uk, zk)

[0,T ]×T
→ (t, u, z). Choose

q̂ = (û, ẑ) ∈ Q suh that EB(t, q̂) ≤ E for some E ∈ R, otherwise (68) trivially holds.We distinguish between the following two ases:Case A: Let q̂ = (û, ẑ) ∈ Q be suh that there exists a Ld-measurable set B ⊂ Ωwith Ld(B) > 0 and ẑ > z on B. Then R(ẑ − z) = ∞ and (68) holds.Case B: Let q̂=(û, ẑ)∈Q so that ẑ≤z a.e. in Ω. Then, R(ẑ−z)=
∫
Ω
̺(z−ẑ)dx<

∞. Let Ẑ := [ẑ = 1]. For Ẑ we �nd a sequene of polyhedra (D̂j)j∈N suh that
D̂j → Ẑ in Ld-measure and P (D̂j , Ω) → P (Ẑ, Ω). For all l ∈ N we hoose apolyhedron D̂j with the property ‖I bDj

− ẑ‖L1(Ω) + |P (D̂j , Ω) − P (Ẑ, Ω)| < 1/land label it D̂l. For eah D̂l we now apply the lassial onstrution of [Alb98,p. 16℄ to obtain the sequene (z̃k
l )k∈N. This onstrution uses the solution of theoptimal pro�le problem in order to approximate I bDl

near the boundary of D̂l bya smooth funtion. We refer to [Alb98, p. 16℄ for the detailed onstrution. Thissequene satis�es z̃k
l → IẐl

and Mk(z̃k
l ) ≤ σP (D̂l, Ω) + o(1) as k →∞. Hene, wehave Mk(z̃k

l ) ≤ σP (Ẑ, Ω) + 1/l + o(1). Moreover, by the lower Γ-limit there is asubsequene with σP (Ẑ, Ω) − 1/l ≤ σP (D̂l, Ω) ≤ Mk(z̃k
l ). Thus, for all k ∈ N wean pik z̃k

k with l = k and set z̃k := z̃k
k . We �nd that

z̃k → ẑ in L1(Ω) and lim
k∈N

Mk(z̃k) = σP (Ẑ, Ω) . (70)Now we an apply the onstrution (69) to get ẑk. In a �rst step we will determine
δk → 0 suh that ẑk → ẑ in L1(Ω). As a diret onsequene we then have

IB(tk, gk, û, ẑk) → IB(t, g, û, ẑ) and also R(ẑk−zk) →R(ẑ−z) , (71)20



sine ẑk ≤ zk by onstrution and zk → z in L1(Ω). Thus, as a seond step, itremains to prove
lim sup

k→∞

(
Mk(ẑk)−Mk(zk)

)
≤ σP (Ẑ, Ω)− σP (Z, Ω) . (72)Step 1 (ẑk → ẑ in L1(Ω)): As in Setion 2.2 we deompose the domain intothree subsets, i.e. Ω = Ak ∪Bk ∪ Ck with

Ak := [0 ≤ z̃k−δk < zk] , Bk := [0 ≤ zk ≤ z̃k−δk] , Ck := Ω\(Ak ∪Bk) . (73)We �rst determine δk → 0 suh that Ld(Bk) → 0. For this, we use that
Bk = [zk ≤ z̃k−δk] ⊂ [δk ≤ z̃k−ẑ+z−zk] ⊂ [δk ≤ |z̃k−ẑ+z−zk|] , (74)due to ẑ ≤ z. With Markov's inequality we obtain

Ld(Bk) ≤ Ld([δk ≤ |z̃k−ẑ+z−zk|]) ≤ δ−1
k ‖z̃k−ẑ+z−zk‖L1(Ω)

!
→ 0 . (75)Beause both z̃k → ẑ and zk → z in L1(Ω) we see that δk → 0 an be hosensuh that the right-hand-side of (75) tends to 0. This is e.g. the ase for δk :=

‖z̃k−ẑ+z−zk‖
1/2
L1(Ω).We now show that also Ld(Ck) → 0 and prove that ẑk → ẑ in L1(Ω). For this,we use a sequene νk → 0, similar to δk → 0, and we obtain

Ck = [z̃k−ẑ+ ẑ < δk] = [ẑ < δk+ẑ−z̃k] ∩
(
[|ẑ−z̃k| < νk] ∪ [|ẑ−z̃k| ≥ νk]

)

⊂ [ẑ < δk+νk] ∪ [|ẑ−z̃k| ≥ νk] .Clearly, [ẑ < δk +νk] → ∅ as δk +νk → 0. Moreover, by the same proedure as in(75), we an determine νk suh that Ld([|ẑ−z̃k| ≥ νk]) → 0, sine z̃k → ẑ in L1(Ω).Hene, Ld(Ck) → 0 as k →∞. With the above results and z̃k, ẑ ∈ [0, 1] we �nd
‖ẑk−ẑ‖L1(Ω) ≤ ‖z̃k−ẑ‖L1(Ω) + δkL

d(Ω) + Ld(Bk) + Ld(Ck) → 0 . (76)Step 2 (Proof of (72)): To shorten notation we write Mk(zk, E) to indiatethat the Modia-Mortola-term (58) is de�ned by integration over the set E. Usingthe deomposition Ω = Ak ∪Bk ∪ Ck and the de�nition of ẑk we alulate that
Mk(ẑk) = Mk(ẑk, Ω) = Mk(z̃k−δk, Ak) +Mk(zk, Bk) +Mk(0, Ck)with Mk(0, Ck) = 0. Thus we have

lim sup
k→∞

(
Mk(ẑk, Ω)−Mk(zk, Ω)

)
= lim sup

k→∞

(
Mk(z̃k−δk, Ak)−Mk(zk, Ak ∪ Ck)

)

≤ lim
k→∞

Mk(z̃k−δk, Ω)− lim inf
k→∞

Mk(zk, Ak)

≤ lim
k→∞

(
Mk(z̃k, Ω) + (δ2

k + 2δk)Ld(Ω)
)
− lim inf

k→∞
Mk(zk, Ak)

≤ σHd−1(Jẑ)− σHd−1(z) .Here, the last estimate holds beause ofMk(z̃k, Ω) ≤ σHd−1(Jẑ)+1/k+o(1) by on-strution. Moreover, lim infk→∞Mk(zk, Ak) ≥ σHd−1(Jz) is obtained by repeatingthe arguments of Setion 2.2 starting from (45). That is, to hoose a subsequene21



whih realizes the lim sup and whih satis�es ∑
k∈N

Ld(Bk ∪ Ck) < ∞. Then onean introdue the sets Un := ∪∞k=n(Bk ∪Ck), whih satisfy Ld(Un) → 0 as n →∞.For all k ≥ n it is (Bk ∪Ck) ⊂ Un and hene Ω\Un ⊂ Ak. These sets Ω\Un are usedin order to exploit the lower Γ-limit (65) for (zk)k∈N on �xed domains, i.e. for all
k ≥ n with n ∈ N �xed it is lim infk→∞Mk(zk, Ak) ≥ lim infk→∞Mk(zk, Ω\Un) ≥
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