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Abstra
tBrittle Gri�th-type delamination of 
ompounds is dedu
ed by means of Γ-
onvergen
e from partial, isotropi
 damage of three-spe
imen-sandwi
h-stru
-tures by �attening the middle 
omponent to the thi
kness 0. The models usedhere allow for nonlinearly elasti
 materials at small strains and 
onsider the pro-
esses to be unidire
tional and rate-independent. The limit passage is performedvia a double limit: �rst, we gain a delamination model involving the gradient ofthe delamination variable, whi
h is essential to over
ome the la
k of a uniform
oer
ivity arising from the passage from partial damage to delamination. Se
ond,the delamination gradient is supressed. Noninterpenetration- and transmission-
onditions along the interfa
e are obtained.1 Introdu
tionDelamination (or debonding) is one main reason for the ma
ros
opi
 failure of 
om-pounds. Opposite, sometimes delamination is an intentional me
hanism in engineering
onstru
tions designed for the e�
ient absorption of energy during impa
ts. In any
ase, reliable modelling of delamination is important and has re
ently re
eived a 
on-siderable attention both in engineering and in mathemati
al 
ommunities. As manyengineering 
ontributions [All02, AC96, DBS02, Lad92℄ the present paper views delam-ination as the damage of interfa
es. Using the ideas of 
ontinuum damage me
hani
s,the delamination along an interfa
e ΓC is modelled by an inner variable, the delami-nation variable z : [0, T ]× ΓC → [0, 1], whi
h re�e
ts the 
urrent state of the bondingalong ΓC, i.e. for z(t, x) = 1 the bonding is fully inta
t at x ∈ ΓC at time t ∈ [0, T ],whereas for z(t, x) = 0 the bonding is 
ompletely broken. In [All02℄ it is suggestedto understand interfa
es as the limit of a thin medium, whi
h links two 
onstituentsand whi
h follows its own 
onstitutive law. Su
h interfa
e models have been exploitedin [PS96a, PS96b℄ to study delamination in the framework of the adhesion models ofFrémond, see e.g. [Fré88℄.In the present work su
h a limit is rigorously performed: Starting from a sandwi
h-stru
ture 
omposed of three 
onstituents of non-zero thi
kness, where the middle 
om-ponent is exposed to partial, isotropi
 damage, the delamination of two perfe
tly un-breakable spe
imen glued together with a breakable adhesive of thi
kness 0 is gainedwhen �attening the thi
kness of the middle 
omponent to 0, see also Fig. 1. Thedamage models applied for this purpose where analyzed in [TM10℄. The limit pas-sage is mathemati
ally performed via a double limit. The �rst limit models des
ribedelamination with an energy fun
tional involving the delamination gradient and theyre�e
t transmission- and noninterpenetration 
onditions on the displa
ements u alongthe interfa
e, namely
z
[[
u
]]

= 0 and [[
u·n1

]]
≥ 0 a.e. on ΓC , (1.1)1



where [[u]] is the jump of u a
ross ΓC and n1 is the unit normal ve
tor. At this pointwe emphasize that the noninterpenetration 
ondition 
annot be obtained from any
onstitutive relation in the damageable domain. Sin
e the usage of the small straintensor presumes in�nitesimally small strains and hen
e ex
ludes interpenetration inthe bulk, this additional unilateral 
onta
t 
ondition rather results from an anisotropi
term in the stored energy density on the damageable domain, whi
h involves (tr e)−,the negative part of the tra
e of the small strain tensor e.The delamination gradient was also in
luded in the models analyzed in [BBR08, BBR09℄.Due to this term, the delamination variable 
an attain values between 0 and 1. Thisproperty di�ers from those of 
ra
k-models based on Gri�th' fra
ture 
riterion [Gri21℄,as studied e.g. in [DMFT04, FL03, Gia05℄. To over
ome this dis
repan
y the gradientis suppressed in a se
ond limit κ → 0 and the delamination model dis
ussed in [RSZ09℄is obtained. In fa
t, Proposition 4.4 implies that z in this model only takes the val-ues 0 or 1 for the initial datum z0 = 1. Then 1 − z is the indi
ator fun
tion of the
ra
k. Indeed, this model re�e
ts Gri�th' fra
ture 
riterion, sin
e it expresses, that a
ra
k expands as soon as the energy release is bigger than a 
riti
al value (the fra
turetoughness ̺ in (4.5)) and 
ra
k-healing is forbidden.Both the damage and the delamination pro
esses are 
onsidered to be quasistati
 andhen
e 
an be analyzed using their so-
alled energeti
 formulation. Our general frame-work will solely be based on the hypothesis that the evolution is governed by a time-dependent energy fun
tional E and a dissipation potential R being degree-1 positivelyhomogeneous, whi
h re�e
ts the rate-independen
e of the pro
ess (i.e. invarian
e underany monotone res
aling of time). Both fun
tionals are de�ned with respe
t to a suitablestate spa
e Q, whi
h is a Bana
h spa
e in this work. The triple (Q, E ,R) is 
alled arate-independent system. A state q = (u, z) ∈ U ×Z =: Q is given by the displa
ement�eld u and the inner variable z that des
ribes either damage or delamination. Weassume that R involves only z, whi
h distinguishes it as a �slow� variable while u is a�fast� variable. Within the energeti
 formulation of rate-independent pro
esses one isinterested in so-
alled energeti
 solutions, whi
h are de�ned as follows:De�nition 1.1 (Energeti
 solution) The pro
ess q = (u, z) : [0, T ] → Q is an en-ergeti
 solution of the initial value problem given by (Q, E ,R) and the initial 
ondition
(u0, z0), if q(0) = (u(0), z(0)) = (u0, z0), if t 7→ ∂tE(t, q(t)) ∈ L1((0, T )), if for all
t ∈ [0, T ] we have E(t, q(t)) < ∞ and if the global stability inequality (1.2 S) and theglobal energy balan
e (1.2E) are satis�ed for all t ∈ [0, T ]:for all q̃ ∈ Q : E(t, q(t)) ≤ E(t, q̃) +R(z̃ − z(t)), (1.2 S)

E(t, q(t)) + DissR(z, [0, t]) = E(0, q(0)) +

∫ t

0

∂ξE(ξ, q(ξ)) dξ (1.2E)with DissR(z, [0, t]) := sup
{ ∑N

j=1R(z(tj)− z(tj−1)) | 0= t0<t1 <. . .<tN = t, N ∈N
}
.For the limit passages we will apply the abstra
t result [MRS08, Theorem 3.1℄ forsequen
es of rate-independent systems, whi
h generalizes the 
lassi
al ideas of Γ-
onvergen
e to the rate-independent setting. While the 
lassi
al Γ-
onvergen
e, seee.g. [DM93℄ ensures that minimizers of stati
 fun
tionals 
onverge to minimizers ofa limit fun
tional, if the lim inf-inequality and the existen
e of a re
overy sequen
e is2



given, these two properties are not su�
ient to verify an analogous impli
ation in therate-independent setting. In order to guarantee that energeti
 solutions qh : [0, T ] → Qof the approximating systems (Q, Eh,Rh) 
onverge as h → 0 to an energeti
 solution
q : [0, T ] → Q of the limit system (Q, E ,R) the properties (1.2) have to be main-tained under 
onvergen
e. The theorem [MRS08, Theorem 3.1℄, whi
h guarantees thisand whi
h is the basis of our 
onvergen
e results, is re
alled in Theorem A.1 in theAppendix. In parti
ular, the 
onservation of (1.2 S) 
an be veri�ed by the 
onstru
-tion of a so-
alled mutual re
overy sequen
e, whi
h must preserve the interplay of thedispla
ements and the inner variable required by the spe
i�
 form of the fun
tionals.In the present work the transmission 
ondition in (1.1) makes the 
onstru
tion of themutual re
overy sequen
es extraordinarily di�
ult for both limit passages, sin
e itrequires a strong intera
tion of the displa
ements and the inner variables. For the �rstlimit a re�e
tion te
hnique is applied to the displa
ements, see Se
tion 3.2, and for these
ond limit a generalized Hardy's inequality is used, see Se
tion 4.2.Another di�
ulty lies in extra
ting the 
onditions (1.1) when passing from partial dam-age to delamination, sin
e this entails a loss of 
oer
ivity: For the modeling of damageand delamination it is 
hara
teristi
 that the stored energy density links the unknowns(linearized strain tensor e, inner variable z) multipli
atively, e.g. as in W (e, z) := z|e|2.Thus, the 
oer
ivity of the partial damage pro
esses, i.e. z ∈ (εγ, 1] with γ > 0, is lostas ε → 0. Then, in general, regions with z = 0 isolating those with z > 0 from theDiri
hlet boundary may o

ur, so that Korn's inequality does not hold. Due to this,e.g. in [BMR09℄ partial damage models result in a 
omplete damage model 
ontainingno information about the displa
ements. Anyhow to dedu
e (1.1) we transform thedamageable domains to a unit domain, see Fig. 1, and we use an ansatz ensuring thatthe limit z of a bounded sequen
e (uε, zε)ε∈(0,ε0] is 
onstant in the dire
tion vanishingas ε → 0, so that no isolated regions with z > 0 
an o

ur.In Se
tion 2 the setup, tools and an existen
e result for the partial, isotropi
 damagemodels are introdu
ed. In Se
tion 3, a delamination model involving the delamina-tion gradient is obtained as the Γ-limit of these damage models. Then, in Se
tion4, it is shown that the gradient delamination models Γ-
onverge to a model des
rib-ing Gri�th-type delamination, whi
h no longer involves the (arti�
ial) delaminationgradient. Finally, in Se
tion 5 the results are merged to a simultaneous 
onvergen
e.Remark 1.2 In [Tho10℄ the noninterpenetration 
ondition from (1.1) was dedu
edfrom the term e−11, whi
h involves only the �rst 
omponent of the strain tensor e,and not from the full tra
e (tr e)−, as it is done in this work in order to get 
loserto engineering models. Moreover, the transmission 
ondition from (1.1) was dedu
edunder the assumption that the damage 
omponent of states in sublevels of E is boundedin W 1,r(ΩD) for some r > d, whi
h implies the 
ompa
t embedding W 1,r(ΩD) ⋐ C(ΩD).In this work it was possible to generalize the results to r ∈ (1,∞). Hen
e, the limitpassage ε → 0 
an be done for all r ∈ (1,∞) and p ∈ (1,∞), whi
h satisfy a 
ertainrelation, see (3.12). Here, W 1,r(ΩD) is the Sobolev spa
e for the damage variable and
W 1,p(Ω, Rd) denotes the Sobolev spa
e for the displa
ements. Relation (3.12) evenadmits the exponents r = 2 and p = 2 for d = 3. However, for te
hni
al reasons these
ond limit passage κ → 0 is 
arried out as in [Tho10℄ for p > d. �3



2 The Damage Models, Assumptions and ToolsFor all ε∈ (0, ε0] we 
onsider a domain Ω:=(−L, L)×(−H, H)d−1, whi
h is the unionof the three 
uboid-type Lips
hitz-domains Ωε
− := (−L,−ε)×ΓC, Ωε

+ := (ε, L)×ΓCfor L > 1, ΩεD := (−ε, ε)×ΓC ⊂ R
d with the interfa
es Γε

± := {±ε}×ΓC ⊂ R
d−1 and

ΓC := (−H, H)d−1, see also Fig. 1a. We assume that the domains Ωε
± are o

upiedby a nonlinearly elasti
 material whi
h is damage-resistive, whereas ΩεD refers to amaterial undergoing a rate-independent damage pro
ess leading to partial damage ofthat spe
imen. This damage pro
ess is assumed to be driven by slow time-dependentexternal loadings indu
ed by time-dependent Diri
hlet 
onditions on parts of the outerboundary ΓDir={L,−L}×ΓC with Ld−1(ΓDir)>0. Throughout this paper Lm(A) denotesthe m-dimensional Lebesgue-measure of the set A⊂R

m with m = (d−2), (d−1) or d.
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ε→0

x1, y1

x2

x3Fig.1. Geometry and notation of the 
uboid-type domains and surfa
es used.a) Domain with a thin subdomain ΩεD undergoing possible damage. Loading isrealized through Diri
hlet boundary 
onditions pres
ribed on the sides ΓDir.b) Domain obtained for ε=0 with an interfa
e ΓC undergoing possible delamina-tion with a subsequent unilateral Signorini 
ondition.
) Setup for the analysis: the original, ε-dependent domains Ωε
−, Ωε

+ and ΩεDare used for the displa
ements, whereas the auxiliary transformed damageabledomain ΩD of �xed size is used for the damage/delamination variable.For q = (u, z) the energy of the 
ompound Ω, see Fig. 1a, is given by:
Ẽκ

ε (t, u, z) :=

∫

Ωε
−
∪Ωε

+

W (e(u+g(t)))dx +

∫

ΩεD(WD(e(u+g(t)), z)+ κ
rε
|∇z|r+δ[εγ ,1](z)

)
dx, (2.1)where r ∈ (1,∞) and ε, κ > 0. Sin
e we are going to perform the limit passages

ε, κ → 0, we restri
t our analysis to small values ε∈(0, ε0] and κ∈(0, κ0] for 
onstants
0<ε0 ≪ 1, 0<κ0 ≪ 1. For the stored elasti
 energy density WD : R

d×d
sym × [0, 1] → R of4



the damageable region we make a spe
i�
 ansatz for all e ∈ R
d×d
sym and z ∈ [0, 1], namely

WD(e, z) := zW̃ (e) + ϕ(tr e) , (2.2)where tr(e) =
∑d

i=1 eii and where ϕ : R → [0,∞) is 
onvex and satis�es
c̃(a−)p̂ ≤ ϕ(a) ≤ c

(
(a−)p̂−1 + 1

)
a− (2.3)with 
onstants c̃, c > 0 and an exponent p̂ ∈ (1, p] and a− := max{0,−a}. Thus, ϕ in(2.2) only takes into a

ount the negative part of tr e and hen
e punishes 
ompression,whi
h may trigger less damage than tension. More importantly, the 
ontribution of

ϕ(tr e) to WD in (2.2) guarantees that even the totally damaged material still resists
ompression. As an example for (2.2) one may 
onsider an isotropi
 material 
oupledwith damage as follows
WD(e, z) := z

(
µ1|e|

2 + µ2|e|
p + λ

2
|(tr e)+|2

)
+ λ

2
|(tr e)−|2 ,where λ, µ > 0 are the Lamé 
onstants. Then p̂ = 2 and c̃ = c = λ/2 in (2.3). Theproperties of W and W̃ are explained in detail in Se
tion 2.1.In (2.1), u : Ω→R

d denotes the unknown displa
ement and e(w) :=1
2
(∇w+∇w⊤) thelinearized strain tensor for all w : Ω → R

d. Thereby u satis�es homogeneous Diri
hlet
onditions on ΓDir and the given displa
ement g(t) = g(t, ·) : Ω → R
d with t ∈ [0, T ]in
orporates the time-dependent Diri
hlet 
ondition. Its properties are spe
i�ed inSubse
tion 2.1. Moreover, z : [0, T ]×ΩεD → [0, 1] denotes the damage variable. Thefun
tional Ẽκ

ε allows for partial damage only, whi
h is ensured by the indi
ator fun
tion
δ[εγ ,1] of the interval [εγ, 1] for γ >0, i.e. δ[εγ ,1](z)=0 if εγ≤z(x)≤1 for a.e. x∈ΩεD and
δ[εγ ,1](z)=∞ otherwise. However δ[εγ ,1] prevents total damage for ea
h ε∈ (0, ε0], butit will allow for 
omplete delamination in the limit ε=0.We assume that the damage pro
ess is unidire
tional, i.e. that healing of the materialis impossible, meaning ż ≤ 0, where ż = ∂tz is the partial derivative with respe
t totime. The evolution of the damage variable is des
ribed by the dissipation potential

R̃ε(v) :=

{ ∫
ΩεD −̺

ε
v dx if v ≤ 0 a.e. on ΩεD,

∞ otherwise, (2.4)for a 
onstant ̺ > 0 and v = ż.2.1 General Assumptions and Existen
e ResultWe now state general assumptions on the densities W, W̃ and the given data, andtherewith dedu
e the existen
e of energeti
 solutions to the model given by Ẽκ
ε and R̃ε.We assume that the Diri
hlet data satisfy

g ∈ C1([0, T ], W 1,p(Ω, Rd)),

supp g(t) ∩ Ωε0D = ∅ for all t∈ [0, T ]

} (2.5)and we set ĉg := ‖g‖C1([0,T ],W 1,p(Ω,Rd)). Note that the se
ond assumption in (2.5) leadsto supp g(t) ∩ ΩεD = ∅ even for all ε∈(0, ε0].5



Furthermore we make the following hypotheses on the energy densities W : R
d×d
sym → R,

W̃ : R
d×d
sym → R of the damage-resistive and of the damageable materials:(2.6a) Convexity: W, W̃ : R

d×d
sym → R stri
tly 
onvex.(2.6b) Coer
ivity: ∃ p ∈ (1,∞), c, c̃, C̃ > 0 ∀e, ê ∈ R

d×d
sym :

c|e|p ≤ W (e) ≤ c̃(|e|p + C̃) , c|e|p ≤ W̃ (e) ≤ c̃(|e|p + C̃) .(2.6
) Continuity of the stresses: ∃ c, C > 0 ∀ e, ê ∈ R
d×d
sym :

|∂eW (e)− ∂eW (ê)| ≤ C(c + |e|p−1 + |ê|p−1) |e− ê| .As a dire
t 
onsequen
e of (2.6a, b) one obtains, see [Da
00, Theorem 2.31℄,(2.6d) Continuity: W, W̃ : R
d×d
sym → R 
ontinuously.Moreover, (2.6a, b) imply the following stress 
ontrol for the densities(2.6e) Stress 
ontrol: ∃ c, C > 0 ∀e, ê ∈ R

d×d
sym :

|∂eW (e)| ≤ c(|∂eW (e)|p−1 + C) , |∂eW̃ (e)| ≤ c(|∂eW̃ (e)|p−1 + C) .In view of (2.2) we realize that the 
omposed density
W (x, e, z) :=

{
W (e) if x ∈ Ωε

− ∪ Ωε
+

WD(e, z) if x ∈ ΩD (2.7)also satis�es (2.6a-e) with 
onstants that depend on ε and(2.6f) Monotoni
ity: ∀ε ∈ (0, ε0] ∃K > 0, K̃ ≥ 0 ∀e ∈ R
d×d, εγ ≤ z ≤ z̃ ≤ 1 :

W (e, z) ≤ W (e, z̃) ≤ K(W (e, z) + K̃).This is a property of partial damage. Due to (2.6b) we introdu
e the spa
es
UD := {u ∈ W 1,p(Ω, Rd) | u = 0 on ΓDir} , Zε := W 1,r(ΩεD) , Qε := UD × Zε (2.8)and S̃κ

ε (t) := {q ∈Qε | Ẽ
κ
ε (t, q) <∞, Ẽκ

ε (t, q)≤ Ẽκ
ε (t, q̃)+R̃ε(z̃−z) for all q̃ ∈Qε} denotethe stable sets at time t.For all �xed ε∈(0, ε0], κ∈(0, κ0] the rate-independent systems (Qε, Ẽ

κ
ε , R̃ε) thus �t tothe setting studied in [TM10℄ so that the existen
e of energeti
 solutions is guaranteed.Proposition 2.1 (Energeti
 solutions of (Qε, Ẽ

κ
ε , R̃ε), [TM10, Theorem 3.1℄)For all ε ∈ (0, ε0] and κ ∈ (0, κ0] �xed, let the rate-independent system (Qε, Ẽ

κ
ε , R̃ε)be de�ned via (2.1)-(2.5). Let p, r ∈ (1,∞). Then, for (Qε, Ẽ

κ
ε , R̃ε) and for any ini-tial state q0 ∈ S̃

κ
ε (0), there exists an energeti
 solution q of the initial-value problem

(Qε, Ẽ
κ
ε , R̃ε, q0).2.2 The Damage Model in a Fixed State Spa
eFirst, κ ∈ (0, κ0] remains �xed. As ε → 0 the d-dimensional domain ΩεD shrinks to the

(d−1)-dimensional interfa
e ΓC between the domains Ω±, see Fig. 1a, b, and we want6



to show that (Qε, Ẽ
κ
ε , R̃ε)ε∈(0,ε0] 
onverges to a rate-independent pro
ess des
ribing thedelamination along the interfa
e. Thus, it is ne
essary to reformulate the ε-problemsin a �xed state spa
e Q. In parti
ular, for all ε ∈ (0, ε0], we use damage variables thatare de�ned on a �xed domain ΩD = (−1, 1) × ΓC, see Fig. 1a, 
. Hen
e, from now onwe 
onsider z : ΩD → [0, 1] and the energy fun
tionals Ẽκ

ε have to be adapted. This isrealized with the following mapping:
Tε : ΩD → ΩεD, Tεy = (εy1, s) = x ∈ ΩεD for y = (y1, s) ∈ ΩD, (2.9)with s = (x2, . . . , xd) ∈ ΓC. For all ε ∈ (0, ε0] this transformation is wellde�ned,
ontinuous and and invertible. Then we introdu
e the following transformation:

Πε : L1(ΩεD) → L1(ΩD) , z̃ 7→ z̃ ◦ Tε . (2.10)In view of (2.9) and (2.10) we obtain that the gradient of z̃ transforms as follows:
∇xz̃(x) = ∇yΠεz̃(y)∇xy =

(
1
ε
∂y1

Πεz̃(y), (∇sΠεz̃(y))⊤
)⊤

=: ε∇Πεz̃(y) , (2.11)where we used ∇s := (∂y2
, . . . , ∂yd

)⊤.We are now in a position to de�ne a �xed state spa
e by
U := {u ∈ W 1,p(Ω− ∪ Ω+, Rd) | u = 0 on ΓDir} , Z := L∞(ΩD) , Q := U × Z . (2.12)With UD as in (2.8) the state spa
e for the approximating problems is given by

ZD := W 1,r(ΩD) with r ∈ (1,∞) , QD := UD × ZD . (2.13)Therewith we introdu
e the extended energy fun
tionals Eκ
ε : [0, T ]×Q → R∞

Eκ
ε (t, q) :=

{
ΠEκ

ε (t, q) if q = (u, z) ∈ QD,
∞ if q ∈ Q\QD, where (2.14)

ΠEκ
ε (t, u, z) :=

∫

Ωε
−
∪Ωε

+

W (e(u+g(t))dx+

∫

ΩεD WD(e(u), Π−1
ε z)dx+

∫

ΩD(
κ
r
|ε∇z|r+δ[εγ ,1](z)

)
dy.Here we used that supp g(t) ∩ ΩεD = 0 for all ε ∈ (0, ε0] and all t ∈ [0, T ]. Comparedto Ẽκ

ε in (2.1) the fun
tional ΠEκ
ε allows for z : ΩD → [0, 1]. Therefore one has to use

Π−1
ε z in in the se
ond integral. Only the integral 
ontaining the damage gradient istransformed from ΩεD to ΩD. This requires to use ε∇z from (2.11) and involves a fa
tor

ε, whi
h 
an
els out 1/ε in (2.1). Additionally we used that εδ[εγ ,1](z) = δ[εγ ,1](z). Inview of the transformations (2.9), (2.10) we note that
εγ ≤ z ≤ 1 a.e. on ΩD is equivalent to εγ ≤ Π−1

ε z ≤ 1 a.e. on ΩεD . (2.15)As we now use the state spa
e Q we also transform the dissipation potential (2.4)leading to the potential R : Z → [0,∞] with
R(v) :=

{ ∫
ΩD −̺ v(y) dy if v ≤ 0 a.e. on ΩD,
∞ else. (2.16)7



Remark 2.2 Sin
e ̺ > 0 we �nd the 
oer
ivity R(v) ≥ ̺‖v‖L1(ΩD). Moreover, R :

L1(ΩD) → [0,∞] is 
onvex and both weakly and strongly lower semi
ontinuous. How-ever, the la
k of strong upper semi
ontinuity makes the theory te
hni
ally di�
ult.For all t∈ [0, T ] we now de�ne the stable sets of the transformed problems by
Sκ

ε (t) :={q∈Q | Eκ
ε (t, q)<∞, Eκ

ε (t, q)≤Eκ
ε (t, q̃)+R(z̃−z) for all q̃∈Q}.We 
an rewrite the rate-independent systems (Qε, Ẽ

κ
ε , R̃ε) by the equivalent systems

(Q, Eκ
ε ,R). It remains to transfer the existen
e result stated in Proposition 2.1 for

(Qε, Ẽ
κ
ε ,Rε) to (Q, Eκ

ε ,R). For this we �rst show that ∂tE
κ
ε (t, q) is well-de�ned for all

q ∈ Q if Eκ
ε (t∗, q) < ∞ for some t∗ ∈ [0, T ].Proposition 2.3 (Well-posedness of ∂tE

κ
ε ) Keep ε ∈ (0, ε0], κ ∈ (0, κ0] �xed. Let

(Q, Eκ
ε ,R) be given by (2.12), (2.14) and (2.16) so that (2.5) and (2.6) hold with

p, r ∈ (1,∞). Then, for all (tq, q)∈ [0, T ]×Q with Eκ
ε (t∗, q)<∞ it is Eκ

ε (·, q)∈C1([0, T ])with
∂tE

κ
ε (t, q)=

∫

Ω
ε0
−
∪Ω

ε0
+

∂eW (e(u+g(t))) :∂te(g(t)) dx . (2.17)Proof: Be
ause of (2.1), (2.14) and (2.10) it is Eκ
ε (t∗, u, z) = Ẽκ

ε (t∗, u, Π−1
ε z) < ∞.Sin
e ∫

ΩD κ
r
|ε∇z|r dy with z ∈ ZD does not depend on t ∈ [0, T ] we 
on
lude that

∂tE
ε
κ(t, u, z) = ∂tẼ

ε
κ(t, u, Π−1

ε z), whi
h is given by formula (2.17).This result is used to adapt Proposition 2.1 to the transformed fun
tionals.Proposition 2.4 (Energeti
 solutions of (Q, Eκ
ε ,R)) For all ε∈ (0, ε0], κ∈ (0, κ0]�xed, let (Q, Eκ

ε ,R) be de�ned via (2.12), (2.14) and (2.16) su
h that (2.5) and (2.6)hold with p, r ∈ (1,∞). Then, for (Q, Eκ
ε ,R) and for any initial state q0 ∈ S

κ
ε (0), thereexists an energeti
 solution q : [0, T ] → Q of the initial value problem (Q, Eκ
ε ,R, q0).Proof: Consider (Q, Eκ

ε ,R) with the initial state q0 = (u0, z0) ∈ S
κ
ε (0). By (2.14)and (2.16) we �nd that (u0, Π

−1
ε z0)∈S̃

κ
ε (0). Then Proposition 2.1 states the existen
eof an energeti
 solution q = (u, z) : [0, T ] → Qε of (Qε, Ẽ

κ
ε , R̃ε) with (u(0), z(0)) =

(u0, Π
−1
ε z0). We want to show that (u, Πεz) is an energeti
 solution of (Q, Eκ

ε ,R, q0).To verify that (u(t), Πεz(t))∈Sκ
ε (t) we use that (u(t), z(t))∈ S̃κ

ε (t). The bije
tivity of
Πε : Zε →ZD and (2.15) imply that Ẽκ

ε (t, ũ, Πεz̃) <∞ sin
e Eκ
ε (t, ũ, z̃) <∞. Applying

Πε and transforming the integrals in stability 
ondition (1.2 S) yields the stabilityof (u(t), Πεz(t)), i.e. Eκ
ε (t, u(t), Πεz(t)) ≤ Eκ

ε (t, ũ, Πεz̃)+R(Πεz̃−Πεz(t)). The energybalan
e (1.2E) follows dire
tly from DissR(Πεz, [0, t])=Diss eRε
(z, [0, t]) and Proposition2.3, sin
e ∂tE

κ
ε (t, u(t), Πεz(t))=∂tẼ

κ
ε (t, u(t), z(t)).2.3 The Topologies T , TT and a uniform Korn's InequalityIn the following we spe
ify a suitable topology on the �xed state spa
e Q, whi
h allowsus to show that a subsequen
e of energeti
 solutions of (Q, Eκ

ε ,R) 
onverges to anenergeti
 solution of the limit system as ε → 0 and as κ → 0 respe
tively.8



For the analysis we will 
onsider sequen
es of systems (Q, Eκ
ε ,R)ε∈(0,ε0] and sequen
es

(tε, qε)ε∈(0,ε0] ⊂ [0, T ]×Q. The notation ε ∈ (0, ε0] always stands for 
ountably manyindi
es ε ∈ (0, ε0] satisfying ε → 0. The indi
ations (Q, Eκ,R)κ∈(0,κ0] and (qκ)κ∈(0,κ0]have to be understood similarly.Sin
e Eκ
ε (tε, uε, zε) ≤ E for some E ∈ [0,∞) implies that ‖zε‖L∞(ΩD) ≤ 1, a suitabletopology on Z=L∞(ΩD) is the weak∗-topology of L∞(ΩD). In view of (2.14) and (2.6b)we obtain that ‖e(uε+g(tε))‖Lp(Ωε

−
∪Ωε

+
,Rd×d)≤E. By the triangle inequality, assumption(2.6) and Korn's inequality on ea
h of the domains Ωε

− ∪ Ωε
+ we �nd a 
onstant Ẽsu
h that ‖uε‖W 1,p(Ωε

−
∪Ωε

+
,Rd)≤ Ẽ, provided that the 
onstants in Korn's inequality areuniformly bounded, whi
h is ensured below. Therefore the 
onvergen
e of a sequen
e

(uε, zε)ε∈(0,ε0] to a limit (u, z) has to be understood as follows
(uε, zε)

T
−→ (u, z) ⇔

{
uε ⇀ u in W 1,p(Ων

− ∪ Ων
+, Rd) for all ν ∈ (0, ε0],

zε
∗
⇀ z in L∞(ΩD).

(2.18)With the fun
tions uε(x) = tanh(x1/ε) one 
an see that uε ⇀ u in W 1,p(Ων
− ∪ Ων

+) forall ν ∈ (0, ε0] does not imply uε ⇀ u in W 1,p(Ω− ∪ Ω+).To spe
ify the 
onvergen
e of sequen
es of pairs (tε, qε) ∈ [0, T ]×Q we de�ne
(tε, qε)

TT−→ (t, q) ⇔ tε → t and qε
T
−→ q. (2.19)As already mentioned a uniform Korn's inequality is required for the domains Ωε

−∪Ωε
+.Theorem 2.5 (Korn's inequality for a family of domains) For all 0 < ε ≤ ε0let Ωε

± ⊂ Ω± be the Lips
hitz domains depi
ted in Fig.1a and let p ∈ (1,∞). Thenthere is a 
onstant cK > 0, su
h that for all 0 < ε ≤ ε0 and all v ∈ W 1,p(Ω±, Rd) with
v = 0 on ΓDir in the tra
e sense we have

‖v‖W 1,p(Ωε
±

,Rd) ≤ cK‖e(v)‖Lp(Ωε
±

,Rd×d) . (2.20)Proof: It su�
es to prove the result for Ωε
+ and Ωε

− separately. We restri
t ourselvesto Ωε
+, the proof for Ωε

− is analogous.We transform Ωε
+ = (ε, L)× ΓC into Ω+ = (0, L)× ΓC via the invertible mapping

τε : Ω+ → Ωε
+, (y1, s) 7→ (ε+α(ε)y1, s) , where α(ε) = (1−ε/L) . (2.21)For vε := v ◦ τε ∈ W 1,p(Ω+, Rd) we obtain that

∇yvε(y) = ∇xv(τε(y))∇yτε(y) and ∇xv(x) = ∇yvε(τ
−1
ε (x))∇xτ

−1
ε (x) , (2.22)where ∇yτε = diag(α(ε), 1, . . . , 1), y = (y1, s) ∈ Ω+ and x = (x1, s) ∈ Ωε

+ with
x1 = ε+α(ε)y1.Using these relations and exploiting Korn's inequality on Ω+ results in a uniform Korn'sinequality for all ε ∈ (0, ε0] :

‖v‖p
W 1,p(Ωε

+
) = ‖v‖p

Lp(Ωε
+

) + ‖∇xv‖
p
Lp(Ωε

+
) = α(ε)

(
‖vε‖

p
Lp(Ω+) + ‖∇yvε∇xτ

−1
ε ‖p

Lp(Ω+)

)

≤ α(ε)−p+1
(
‖vε‖

p
Lp(Ω+) + ‖∇yvε‖

p
Lp(Ω+)

)
≤ α(ε0)

−p+1Cp
K‖e(vε)‖

p
Lp(Ω+)

≤ α(ε0)
−pCp

K‖e(v)‖p
Lp(Ωε

+
) . 9



3 The �rst Γ-limit: Gradient DelaminationOur aim for this se
tion is to show that (Q, Eκ
ε ,R)ε∈(0,ε0] Γ-
onverges to the limit system

(Q, Eκ,R) as ε → 0, see Fig. 1b, where Eκ : [0, T ]×Q → R∞ is given by
Eκ(t, q) :=





∫

Ω−∪Ω+

W (e(u+g(t))) dx +

∫

ΩD(
κ
r
|∇z|r+δ[0,1](z)

)
dy if q=(u, z)∈QC,

∞ if q ∈ Q\QC ,

(3.1)
ZC := {z ∈ W 1,r(ΩD) | ∂y1

z = 0} with r ∈ (1,∞) , (3.2)
QC :=

{
q = (u, z) ∈ U × ZC ∣∣ TCz[[u]]

= 0 and [[
u·n1

]]
≥ 0 a.e. on ΓC} (3.3)with U from (2.12). Moreover, TCz=z|ΓC in the tra
e sense, whi
h is well-de�ned in ZC,and [[·]] denotes the jump of a fun
tion de�ned on Ω−∪Ω+ a
ross ΓC in the tra
e sense.The 
onstraint TCz[[u]] = 0 a.e. on ΓC in
orporates a transmission 
ondition, namely

[[u]] = 0 whenever TCz > 0. This 
ondition was already used in [Fré88℄. Furthermore
n1 := (1, 0, . . . , 0) stands for the unit normal ve
tor to ΓC. Thus the 
ondition [[u·n1]] ≥ 0a.e. on ΓC prevents the interpenetration of the material of Ω− and Ω+.If (u, z) ∈ QC and v ∈ ZC we �nd that Eκ(t, q) and R(v) equivalently read

Eκ(t, u, z)=

∫

Ω−∪Ω+

W (e(u+g(t))) dx + 2

∫

ΓC(
κ
r
|∇sTCz|r+δ[0,1](TCz)

)
ds , (3.4)

R(v)=





2

∫

ΓC−̺ TCv(s) ds if TCv ≤ 0 Ld−1-a.e. on ΓC ,

∞ otherwise (3.5)with s := (x2, . . . , xd) and∇s := (∂x2
, . . . , ∂xd

). This shows that the limit system indeedmodels delamination along ΓC. For all t∈ [0, T ] we introdu
e the stable sets
Sκ(t) :={q=(u, z)∈Q | Eκ(t, q)<∞, Eκ(t, q)≤Eκ(t, q̃)+R(z̃−z) for all q̃=(ũ, z̃)∈Q} .The 
onvergen
e result, whi
h will be proven in the next subse
tion, is the following:Theorem 3.1 (Γ-
onvergen
e of the damage problems) Let assumptions (2.5)and (2.6) be valid with r, p ∈ (1,∞), and γ ∈ (p−1, P ) satisfying (3.12) and (3.9).Keep κ ∈ (0, κ0] �xed. For all ε ∈ (0, ε0] let qε : [0, T ] → Q be an energeti
 solutionof (Q, Eκ

ε ,R) given by (2.12), (2.14) and (2.16). If the initial values satisfy qε
0

T
−→ q0and Eκ

ε (0, qε
0) → Eκ(0, q0), then the damage problems (Q, Eκ

ε ,R)ε∈(0,ε0] Γ-
onverge tothe delamination problem (Q, Eκ,R) given by (2.12), (3.1) and (2.16) in the sense ofTheorem A.1.Proof: Theorem 3.1 is proven by 
he
king the assumptions (A.1)�(A.3) of TheoremA.1. The lower Γ-limit of R, i.e. 
ondition (A.3-C4) here follows from the weak se-quential lower semi
ontinuity of R on Z. Conditions (A.1), (A.3-C1) and (A.3-C3) areshown in Subse
tion 3.1 and 
ondition (A.3-C2) is veri�ed in Subse
tion 3.2.The existen
e of a subsequen
e (zε)ε∈(0,ε0] is obtained by repeating the arguments of[MM05, Theorem 3.2℄, using the bound (3.7b), Helly's sele
tion prin
iple and the fa
t10



that min{R(zk − z),R(z − zk)} → 0 implies zk
∗
⇀ in L∞(ΩD). For the 
orrespondingsubsequen
e (uε)ε∈(0,T ] the bound (3.7a) provides a further subsequen
e uε̃(t) ⇀ u(t)in W 1,p(Ων

− ∪ Ων
+, Rd) uniformly for a 
ountable 
hoi
e of indi
es ν → 0 and Lemma3.9 implies that (u(t), z(t)) ∈ Sκ(t) for all t ∈ [0, T ]. Due to the stri
t 
onvexity of Wby (2.6a) the fun
tional Eκ(t, ·, z(t)) has a unique minimizer, so that u(t) is the onlya

umulation point, i.e. uε(t) ⇀ u(t) in W 1,p(Ων

− ∪ Ων
+, Rd) for all ν ∈ (0, ε0] and all

t ∈ [0, T ] even for the whole subsequen
e.3.1 Compa
tness of Sublevels, Lower Γ-limit, Conditions on ∂tE
κ
ε , ∂tE

κIn the following we verify the 
onditions on the energy fun
tionals 
omplying with(A.1), (A.3-C1) and (A.3-C3). As a dire
t 
onsequen
e of stability (1.2 S) one obtainsthat the energeti
 solutions of the approximating problems have an equibounded en-ergy; to see this one may 
he
k (1.2 S) for the energeti
 solutions and the states (û, ẑε)with û = 0 and ẑε = εγ. To ensure that the equiboundedness of the energies impliesthe equiboundedness of the 
orresponding states we establish the following a prioriestimates as a 
onsequen
e of the 
oer
ivity (2.6b).Lemma 3.2 (A priori estimates uniform for κ ∈ [0, κ0]) Let (2.5), (2.6) hold, let
t ∈ [0, T ] and keep κ∈ [0, κ0] �xed. For all ε∈(0, ε0], all ν ∈ [ε, ε0] and all q = (u, z) ∈ Qwith Eκ

ε (t, q) < ∞ it is
Eκ

ε (t, q) ≥ 21−pc
cp
K

‖u‖p
W 1,p(Ων

−
∪Ων

+
,Rd)

+ κ
r
‖ε∇z‖r

Lr(ΩD) − C (3.6)with C =ccp
g and ‖ε∇z‖r

Lr(ΩD,Rd)≥‖∇z‖r
Lr(ΩD,Rd)≥‖z‖

r
W 1,r(ΩD)−L

d(ΩD) for all ε∈(0, ε0].Moreover, Eκ
ε (t, q) < ∞ implies that ‖z‖L∞(ΩD) ≤ 1.Proof: Let q = (u, z) ∈ Q with Eκ

ε (t, q) < ∞. Keep ν ∈ (0, ε0] �xed. Then Ων
−∪Ων

+ ⊆
Ωε
− ∪Ωε

+ for all ε ≤ ν. From hypothesis (2.6b), (2.5) and the uniform Korn's inequality(2.20), where we exploit the Diri
hlet-
onditions on the Lips
hitz-domains Ων
±, we infer

Eκ
ε (t, q) ≥

∫

Ων
−
∪Ων

+

W (e(u+g(t))) dx + κ
r
‖ε∇z‖r

Lr(ΩD,Rd)

≥ c‖e(u+g(t))‖p
Lp(Ων

−
∪Ων

+
,Rd×d)

+ κ
r
‖∇z‖r

Lr(ΩD,Rd)

≥21−pc‖e(u)‖p
Lp(Ων

−
∪Ων

+
,Rd×d)

− ccp
g + κ

r
‖∇z‖r

Lr(ΩD,Rd)

≥ 21−pc
cp
K

‖u‖p
W 1,p(Ων

−
∪Ων

+
,Rd)

− ccp
g + κ

r
‖z‖r

W 1,r(ΩD) −
κ
r
Ld(ΩD) ,where we used that ε−1 > 1 for all 0 < ε < 1. The last statement of the lemma dire
tlyfollows from δ[εγ ,1](z(y)) = ∞ if z(y) /∈ [εγ, 1] in (2.14).Proposition 3.3 (A priori estimates for energeti
 solutions) Let (2.5) as wellas (2.6) hold. Keep κ∈(0, κ0] �xed. For all ε∈(0, ε0] let qε : [0, T ] → Q be an energeti
solution of (Q, Eκ

ε ,R, qε
0). Then there are 
onstant Ẽ, C independent of κ and ε, su
hthat for all t ∈ [0, T ] and for all �xed ν ∈ (0, ε0] the following uniform bounds are valid

‖uε(t)‖W 1,p(Ων
±

,Rd) ≤ Ẽ , ‖zε(t)‖L∞(ΩD) ≤ 1 , (3.7a)
DissR(zε, [0, t]) ≤ C . (3.7b)11



Proof: For all ε ∈ (0, ε0] the fun
tion qε : [0, T ] → Q is an energeti
 solution of
(Q, Eκ

ε ,R). Hen
e, for all t ∈ [0, T ] they satisfy Eκ
ε (t, qε(t)) < ∞, whi
h implies that

εγ ≤ zε(t, x) ≤ 1 for a.e. x ∈ ΩD, for all t ∈ [0, T ] and all ε ∈ (0, ε0]. Stability inequality(1.2 S) with qε(t) and q̃ = (0, εγ) yields Eκ
ε (t, qε(t)) ≤ Eκ

ε (t, q̃) + R(z̃−zε(t)) ≤ E forall t ∈ [0, T ] by (2.5), so that (t, qε(t))ε∈(0,T ] is a stable sequen
e and their energies areequibounded for all t ∈ [0, T ]. Using estimate (3.6) �nishes the proof of (3.7a).Be
ause of Eκ
ε (0, qε(0)) ≤ C and ∫ t

0
∂ξE

κ
ε (ξ, qε(ξ)) dξ ≤ cgT (ĉE + ĈLd(Ω)) for all t ∈

[0, T ], whi
h is due to stress 
ontrol (2.6
), energy balan
e (1.2E) yields (3.7b).With Proposition 3.4 we then ensure that the equiboundedness of sequen
es enablesus to extra
t subsequen
es 
onverging with respe
t to T to an element in QC, given by(3.3). The Items (1.) and (2.a) in Proposition 3.4 result from the 
oer
ivity inequality(3.6), whi
h yields uniform boundedness of uε in W 1,p(Ων
− ∪ Ων

+, Rd) for all �xed ν ∈
(0, ε0] and hen
e, using Cantor's diagonal pro
ess, the 
onvergen
e of a subsequen
e forall �xed ν. Moreover, (2.b) results from the uniform boundedness of the gradient termfor �xed κ ∈ (0, κ0]. Item (2.
) 
an be gained from the term (tr e(uε))

− in
luded to
WD, see (2.2), using the Lebesgue-Besi
ovit
h di�erentiation theorem to express [[u1]] ∈
L1(ΓC) in the Lebesgue points ŝ ∈ ΓC and then Gauss' theorem on balls Br(ŝ) ⊂ ΓC.In this 
ontext we use the following relation for the tra
e mapping

T :

{
W 1,p(A) → Lq′(∂A),

u 7→ u|∂A,
if {

p < d and 1 ≤ q′ ≤ (d− 1)p/(d− p) ,

p = d and q′ ∈ [1,∞) ,
(3.8)to obtain that ∣∣∣

∫
∂A

∫ ε

−ε
uε ·n dx1 da

∣∣∣ ≤ (2ε)(q′−1)/q′Ld−2(∂A)‖uε‖Lq′(Iε×∂A)
!
→ 0, where

A = Br(ŝ) and ‖uε‖W 1,p(ΩεD,Rd) ≤ Cε−γ/p by Π−1
ε zε∈ [εγ , 1]. This leads to the following
ondition on γ:

γ < P , where P =

{
(p−1)d/(d−1) if p < d ,

p if p ≥ d .
(3.9)Moreover, for γ < p−1 one obtains that

‖∇uε‖L1(ΩεD,Rd×d) ≤ Cε
p−1−γ

p → 0 ,whi
h implies that jumps are prevented. In order to admit nontrivial displa
ementjumps in points where z = 0 we thus have to assume γ > p−1.Item (2.d) is equivalent to ∫
ΓC |TCz[[u]]| ds = 0. This is obtained by 
onsidering thetra
es of the approximating sequen
e (uε)ε∈(0,ε0] on {±ν}×ΓC and by passing to 0 �rstwith ε, then with ν. To estimate the tra
es TCΠ−1

ε zε on {0} × ΓC we use that
εγ ≤ Π−1

ε zε ≤ 1 Ld-a.e. in ΩεD ⇒ εγ ≤ TCΠ−1
ε zε ≤ 1 Hd−1-a.e. on {0} × ΓC . (3.10)This is due to the fa
t that ΩεD 
an be extended to a Lips
hitz domain Ω̃ ⊃ ΩεD.Moreover, C(Ω̃) is dense in W 1,r(Ω̃) and {v : Ω̃ → [0, 1]} is a 
losed subset both of

C(Ω̃) and of W 1,r(Ω̃). Then (3.10) follows by density arguments.When proving that ∫
ΓC |TCz[[u]]| ds = 0, we have to handle terms of the form

∫

ΩεD |uε|
∣∣Π−1

ε zε(ε)− TCΠ−1
ε zε

∣∣ ds ≤ ‖uε‖Lq′ (ΩεD,Rd)‖∂x1
Π−1

ε zε‖Lq(ΩεD) ,12



where q′ = q/(q−1). We need q < r for Π−1
ε zε ∈ W 1,r(ΩεD) to show that the se
ondfa
tor 
an be estimated by cεα‖Π−1

ε zε‖W 1,r(ΩεD) with some α > 0. Hen
e, we have toensure that uε ∈ Lq′(ΩεD, Rd) using the embedding
W 1,p(ΩεD, Rd) → Lq′(ΩεD, Rd) if {

p < d and 1 ≤ q′ ≤ dp/(d−p) ,

p = d and q′ ∈ [1,∞) ,
(3.11)see [Ada75, Th. 5.4℄. This leads to the following admissible 
ombinations of r and p:

r ∈ (1, d) and p ∈ [rd/(rd−d+r),∞) or
r ∈ [d,∞) and p ∈ (1,∞) .

} (3.12)Thus, the transmission 
ondition (2.d) 
an be veri�ed using impli
ation (3.10) togetherwith the 
onditions (3.12) and (3.9) on r, p and γ.Note that not every 
ombination of r, p < d is admissible. But the 
ase d = 3, r = p = 2is in
luded in the �rst line of (3.12), sin
e then 3 > r = p = 2 > rd/(rd−d+ r) = 6/5.Proposition 3.4 (Properties of sequen
es with equibounded energies) Let theenergy fun
tionals Eκ
ε be given by (2.14) su
h that the assumptions (2.5) and (2.6) hold.Let κ ∈ (0, κ0] �xed and (tε)ε∈(0,ε0] ⊂ [0, T ]. Let r, p ∈ (1,∞) and γ ∈ (p − 1, P ) su
hthat (3.12) and (3.9) hold. Assume that Eκ

ε (tε, uε, zε) ≤ E for all ε ∈ (0, ε0]. Then(1.) there is a subsequen
e (uε, zε)
T
−→ (u, z) as ε → 0,(2.) the limit satis�es (u, z) ∈ QC, i.e.(2.a) u ∈ W 1,p(Ω− ∪ Ω+, Rd), u = 0 on ΓDir in the tra
e sense,(2.b) z ∈ W 1,r(ΩD), 0 ≤ z(y) ≤ 1 and ∂y1

z(y) = 0 for all y ∈ ΩD,(2.
) [[u·n1]] ≥ 0 a.e. on ΓC,(2.d) TCz[[u]] = 0 a.e. on ΓC.Moreover, for γ < p−1 jumps are prevented, i.e. [[u]] = 0 a.e. on ΓC.Proof: Re
all Q from (2.12), Eκ
ε from (2.14) and QC from (3.3).Ad (1.) and (2.a): From Eκ

ε (tε, qε) ≤ E we infer that εγ ≤ zε ≤ 1 a.e. in ΩD. Sin
ethe unit ball of L∞(ΩD), whi
h is the dual spa
e of L1(ΩD), is weakly∗ sequentially
ompa
t by the theorem of Bana
h-Alaoglu we �nd a subsequen
e zε
∗
⇀ z in L∞(ΩD).The equiboundedness of the energies together with 
oer
ivity estimate (3.6) yields that

‖uε‖W 1,p(Ων
−
∪Ων

+
,Rd) are uniformly bounded for all ε ≤ ν. For a 
ountable set of indi
es νwith ν → 0 we obtain by Cantor's diagonal pro
ess that there is a subsequen
e uε ⇀ uin W 1,p(Ων

−∪Ων
+, Rd) as ε → 0 for all ν, due to the re�exivity of W 1,p(Ων

−∪Ων
+, Rd). As

ν → 0 we 
on
lude that u ∈ W 1,p(Ω− ∪ Ω+, Rd) with u = 0 on ΓDir in the tra
e sense.This proves the existen
e of a subsequen
e qε
T
−→ q.Ad (2.b): The equiboundedness of the energies together with (3.6) yields that

‖zε‖
r
W 1,r(ΩD) ≤ r(E+Ld(ΩD))/κ as well as ‖∂y1

zε‖
r
Lr(ΩD) ≤ εrrE/κ. Due to the re�ex-ivity of W 1,r(ΩD) there is a subsequen
e zε ⇀ z in W 1,r(ΩD) with ∂y1

z = 0 a.e. in
ΩD. Be
ause of the 
ompa
t embedding W 1,r(ΩD) ⋐ Lr(ΩD) and Riesz' 
onvergen
etheorem there is a subsequen
e [εγ, 1] ∋ zε(y) → z(y) ∈ [0, 1] pointwise for a.e. y ∈ ΩD.Hen
e, z ∈ [0, 1] a.e. in ΩD. 13



Ad (2.
): To verify that [[u1]] ≥ 0 a.e. on ΓC we use the Lebesgue-Besi
ovit
h di�er-entiation theorem, see [AFP05, Corollary 2.23℄, stating for [[u1]] ∈ L1(ΓC) that
[[
u1(ŝ)

]]
= lim

r→0

1

Ld−1(Br(ŝ))

∫

Br(ŝ)

[[
u1(s)

]]
ds for a.a. ŝ ∈ ΓC (3.13)with Br(ŝ) := {s ∈ ΓC | |s− ŝ| < r}. Hen
e it su�
es to show that

∫

Br(ŝ)

[[
u1(s)

]]
ds ≥ 0 for a.a. ŝ ∈ ΓC and all r ≤ r(ŝ) . (3.14)Omitting to indi
ate the dependen
e of u on s we �rst dedu
e the following relation

∫

Br(ŝ)

[[
u1

]]
ds = lim

ν→0

∫

Br(ŝ)

(
u1(ν)− u1(−ν)

)
ds = lim

ν→0
lim
ε→0

∫

Br(ŝ)

(
u1

ε(ν)− u1
ε(−ν)

)
ds (3.15)for the subsequen
e uε ⇀ u in W 1,p(Ων

− ∪ Ων
+, Rd) for all ν ∈ (0, ε0] obtained in (1.)from the equiboundedness of Eκ

ε (tε, uε, zε). Moreover, note that the �rst equality resultsfrom the fa
t that the linear, 
ontinuous tra
e operators S±ν : W 1,p(Ω±) → L1(ΓC),
S±ν v=(v(±ν, s)−v±), for v± being the tra
e of v|Ω± ∈ W 1,p(Ω±) onto ΓC, satisfy theestimate ‖S±ν ‖ ≤ ν

p−1

p (Ld−1(ΓC)) p−1

p , whi
h follows with Hölder's inequality.Now it remains to verify that the expression in line (3.15) is positive. Using Gauÿ'theorem we obtain that
∫

Br(ŝ)

(
u1

ε(ν, s)− u1
ε(−ν, s)

)
ds =

∫

Br(ŝ)

∫ ν

−ν

div uε dx1 ds−

∫

∂Br(ŝ)

∫ ν

−ν

uε · n da ,with n as the outer unit normal ve
tor to (−ν, ν)×∂Br(ŝ). Hen
e, (3.14) holds true, if
lim
ν→0

lim
ε→0

∫

Br(ŝ)

∫ ν

−ν

div uε dx1ds ≥ 0 (3.16)and lim
ν→0

lim
ε→0

∫

∂Br(ŝ)

∫ ν

−ν

uε · n da → 0 . (3.17)For (3.16) we de
ompose divuε =(divuε)
+−(divuε)

− with (divuε)
+ =max{0, divuε} and

(divuε)
− = max{0,−divuε}. Showing limν→0 lim supε→0

∫
Br(ŝ)

∫ ν

−ν
(div uε)

− dx1ds = 0we are done. To do so, we 
hoose a subsequen
e in ε whi
h attains the limit superior.Due to (2.2) and the 
oer
ivity inequalities (2.3) and (2.6b) for ϕ and W the equi-boundedness of Eκ
ε (tε, uε, zε) yields that ‖(divuε)

−‖Lp̂(Ω) ≤ C for all ε ∈ (0, ε0] on thedomain Ω with p̂ ∈ (1, p], see (2.2). Thus, we �nd a further subsequen
e (divuε)
− ⇀ bin Lp̂(Ω) and obtain

lim
ν→0

lim
ε→0

∫

Br(ŝ)

∫ ν

−ν

(div uε)
− dx1 ds = lim

ν→0

∫

Br(ŝ)

∫ ν

−ν

b dx1 ds = 0 .Hen
e (3.16) is established.For the proof of (3.17) we de
ompose the integral as follows
∫

∂Br(ŝ)

∫ ν

−ν

uε · n dx1 da =

∫

∂Br(ŝ)

(∫ −ε

−ν

+

∫ ε

−ε

+

∫ ν

ε

)
uε · n dx1 da . (3.18)14



First, let p ≤ d. Using Hölder's inequality we obtain that
∣∣∣±

∫

∂Br(ŝ)

∫ ±ν

±ε

uε · n dx1 da
∣∣∣ ≤ ±

∫

∂Br(ŝ)

∫ ±ν

±ε

|uε| dx1 da

≤ (ν − ε)
q′−1

q′ Ld−2(∂Br(ŝ))
q′−1

q′

(
±

∫ ±ν

±ε

∫

∂Br(ŝ)

|uε|
q′ da dx1

) 1

q′

,

(3.19)whi
h tends to 0 as ε < ν → 0 by property (3.8) for either A = (−ν,−ε)× ∂Br(ŝ) or
A = (ε, ν)× ∂Br(ŝ).For the integral over Iε = (−ε, ε) in (3.18) we pro
eed as in estimate (3.19). Theequiboundedness of the energies, the assumptions (2.6b), (2.5), Π−1

ε zε ≥ εγ, Korn'sinequality on Ω and property (3.8) imply the following estimate for all ε ∈ (0, ε0]:
‖uε‖Lq′(Iε×∂Br(ŝ),Rd) ≤ C‖uε‖W 1,p(ΩεD,Rd) ≤ ε−

γ

p

(
E

1
p

c
+ ĉg

)
cK(Ω)C (3.20)Under the assumption that γ ∈ (p−1, P ) with P = (p−1)d/(d−1) if p < d, see (3.9),we now 
on
lude

∣∣∣
∫

∂Br(ŝ)

∫ ε

−ε

uε · n dx1 da
∣∣∣ ≤ (2ε)

q′−1

q′ Ld−2(∂Br(ŝ))
q′−1

q′

(∫

∂Br(ŝ)

∫ ε

−ε

|uε|
q′ dx1 da

) 1

q′

≤ ε
q′−1

q′
− γ

p C → 0 , (3.21)where we use that ‖uε‖Lq′ (Iε×∂Br(ŝ),Rd) ≤ c‖uε‖W 1,p(ΩεD,Rd) for q′ = (d− 1)p/(d− p). Therequirement q′−1
q′
− γ

p
> 0 then yields γ < (p−1)d/(d−1) as stated in 
ondition (3.9).Assume now that p > d. Then W 1,p(Ω, Rd) ⋐ C(Ω, Rd). Due to this, we 
an set q′ = ∞in the above estimates. Moreover, q′ − 1/q′ = 1, so that (3.21) implies that γ < p.Alltogether we have veri�ed (3.16) and (3.17), hen
e [[u · n1]] a.e. on ΓC by (3.14).Ad (2.d): In the following we verify TCz[[u]] = 0 a.e. on ΓC for the limit state (u, z).Verifying TCz[[u]] = 0 a.e. on ΓC for the limit state (u, z) is equivalent to showing that∫

ΓC |TCz[[u]]| ds = 0. For this, we approximate u on the interfa
e {0}× ΓC from the leftand the right by the tra
es of the approximating sequen
e on the lines {±ν} × ΓC andwe exploit that z is 
onstant in y1-dire
tion, so that z(±ν, s) = z(0, s) for all s ∈ ΓCand all ν ∈ (0, ε0]. In parti
ular, we use
∫

ΓC∣∣TCz [[
u
]]∣∣ ds = lim

ν→0

∫

ΓC∣∣TCz (u(ν)− u(−ν))
∣∣ ds

≤ lim
ν→0

( ∑

ι∈{−,+}

∫

ΓC∣∣TCz (u(ιν)− uε(ιε))
∣∣ ds +

∫

ΓC∣∣z(ε)u(ε)− z(−ε)u(−ε))
∣∣ ds

)

≤ lim
ν→0

lim
ε→0

( ∫

ΓC∣∣Π−1
ε zε(ε)uε(ε)− Π−1

ε zε(−ε)uε(−ε)
∣∣ ds (3.22)

+
∑

ι∈{−,+}

∫

ΓC∣∣TCΠ−1
ε zε (uε(ιν)− uε(ιε))

∣∣ds

)
. (3.23)In (3.23), with ι ∈ {−, +}, we apply that |TCΠ−1

ε zε| ≤ 1 a.e. on ΓC by (3.10). Withpartial integration and Hölder's inequality we �nd
∫

ΓC∣∣TCΠ−1
ε zε (uε(±ν)− uε(±ε))

∣∣ds ≤ ‖∂x1
uε‖L1(Ωε

±
\Ων
±

,Rd) ≤ (ν − ε)
p−1

p ‖∂x1
uε‖Lp(Ωε

±
,Rd),15



whi
h tends to 0 as ε < ν → 0, sin
e the norms are uniformly bounded, as 
an be seenfrom (3.6).When estimating the term in (3.22) we apply partial integration on ΩεD and we use that
‖uε‖W 1,p(ΩεD,Rd) ≤ Cε−γ/p, due to Π−1

ε zε ∈ [εγ, 1]. In parti
ular, we obtain
∫

ΓC ∣∣Π−1
ε zε(ε)uε(ε)− Π−1

ε zε(−ε)uε(−ε)
∣∣ds =

∫

ΓC ∣∣∣∣
∫ ε

−ε

∂x1
(Π−1

ε zεuε) dx1

∣∣∣∣ ds

≤

∫

ΓC ∣∣∣∣
∫ ε

−ε

(∂x1
Π−1

ε zε)uε dx1

∣∣∣∣ ds +

∫

ΓC ∣∣∣∣
∫ ε

−ε

Π−1
ε zε∂x1

uε dx1

∣∣∣∣ ds . (3.24)For the �rst term in (3.24) we use again Hölder's inequality with the exponent q = r for
zε and q′ = r/(r−1) for uε. Now, we exploit the embedding W 1,p(ΩεD, Rd) → Lq′(ΩεD, Rd)for p < d and p ≤ q′ ≤ dp/(d−p). Be
ause of these relations we �nd the 
ondition
q′ = r/(r−1) ≤ dp/(d−p) whi
h leads to p ∈ [rd/(rd−d + r), d) in (3.12).To estimate the se
ond term in (3.24) we use that ∫

ΩεD WD(Π−1
ε zε, e(uε)) ≤ C dueto the equiboundedness of the energies, and additionally that Π−1

ε zp
ε ≤ Π−1

ε zε for
Π−1

ε zε ∈ [εγ, 1] and p ∈ (1,∞). Thus, with Hölder's inequality we obtain
∫

ΓC ∣∣∣∣
∫ ε

−ε

Π−1
ε zε∂x1

uε dx1

∣∣∣∣ ds ≤

∫

ΩεDΠ−1
ε zε|∂x1

uε| dx ≤ Ld(ΩεD)p−1

∫

ΩεDWD(Π−1
ε zε, e(uε)) → 0 .Hen
e, Item (2.d) is proven for r ∈ (1,∞) and p ∈ [rd/(rd−d + r), d).For p = d we 
an apply the embedding W 1,p(ΩεD, Rd) → Lq′(ΩεD, Rd), whi
h holds forall q′ ∈ [p,∞) and in parti
ular for all q′ ∈ [1,∞). For p > d we have the 
ompa
tembedding W 1,p(ΩεD, Rd) ⋐ C(ΩεD, Rd). Thus, in both 
ases the 
hoi
e q′ = r/(r−1)in the above Hölder estimates is admissible. Note that, if r > d we may use theexponent r̃ = d instead of r in the above estimates. Then the lower bound on p is

r̃d/(r̃d−d+r) = 1. This �nishes the proof of Item (2.d).Ad [[u]]: By (1.) there is a subsequen
e uε ⇀ u in W 1,p(Ων
− ∪ Ων

+, Rd) for all �xed
ν ∈ (0, ε0]. Using partial integration we obtain for the ith 
omponent that

∫

ΓC |ui
ε(ν, s)− ui

ε(−ν, s)| ds ≤

∫

ΩνD |∂x1
ui

ε| dx ≤

∫

ΩεD |∇uε| dx +

∫

ΩνD\ΩεD |∇uε| dx . (3.25)With estimate (3.20) and Hölder's inequality we �nd for the �rst term in (3.25) that
‖∇uε‖L1(ΩεD,Rd×d) ≤ ε

p−1

p Ld−1(ΓC) p−1

p cK(Ω)E
1

p ε
−γ

p . (3.26)Sin
e γ<p−1 we 
on
lude from (3.26) that ‖∇uε‖L1(ΩεD,Rd×d) → 0.Additionally the equiboundedness of the energies and the 
oer
ivity of W provide a
onstant C > 0 su
h that ‖∇uε‖Lp(Ωε
−
∪Ωε

+
,Rd×d) ≤ C. Thus, appli
ation of Hölder'sinequality on the se
ond term in (3.25) yields

∫

ΩνD\ΩεD |∇uε| dx ≤
(
(ν−ε)Ld−1(ΓC)) p−1

p ‖∇uε‖Lp((Ωε
−
∪Ωε

+
)\(Ων

−
∪Ων

+
),Rd×d) → 0 .Repeating the ideas of (3.15) we obtain ∫

ΓC |[[u]]| ds = 0, if ‖∇uε‖L1(ΩεD,Rd×d) → 0.16



The next lemma summarizes the properties of the limit energy Eκ, whi
h guaranteethe existen
e of minimizers in the dire
t method of the 
al
ulus of variations, su
h as
oer
ivity and lower semi
ontinuity. They yield the 
ompa
tness of the sublevels of Eκ.Lemma 3.5 (Properties of the limit energy) Let the assumptions (2.5) and (2.6)hold. Then, for all t∈ [0, T ] and all κ∈ (0, κ0] the energy fun
tional Eκ(t, ·) :QC→R∞given by (3.1) and (3.3) is 
oer
ive and weakly sequentially lower semi
ontinuous on
QC. In parti
ular, (3.6) holds also for ε = 0, i.e. Ω− ∪ Ω+. Moreover for all E ∈ Rthe sublevels Lκ

E(t) := {q ∈ Q | Eκ(t, q) ≤ E} of the fun
tional Eκ(t, ·) : Q → R∞ aresequentially 
ompa
t with respe
t to T from (2.18).Proof: Keep κ ∈ (0, κ0] and t ∈ [0, T ] �xed. If (qj)j∈N ⊂Q\QC, then Eκ(t, qj) =∞for all j ∈ N. Thus, for ‖uj‖W 1,p(Ων
−
∪Ων

+,Rd) → ∞ for some ν ∈ (0, ε0] the property
Eκ(t, qj) →∞ is trivially satis�ed. Coer
ivity inequality (3.6) with ε = 0 follows from(2.6) for all q∈QC. Thus Eκ(t, ·) is 
oer
ive both on QC and on Q.In order to show lower semi
ontinuity we assume that qj

T
−→ q. If qj ∈ Q\QC foralmost all j ∈ N then there is an index j0 ∈ N su
h that qj ∈ Q\QC for all j ≥ j0and hen
e lim infj→∞ E

κ(t, qj) = ∞ ≥ Eκ(t, q). Assume that there is a subsequen
e
(qj)j∈N ⊂ QC with uj ⇀ u in W 1,p(Ω− ∪ Ω+, Rd) and zj ⇀ z in W 1,r(ΩD). Let u±j , u±denote the tra
es of uj|Ω±, u|Ω± on ΓC. Then the 
ompa
tness of the tra
e operators
TC : W 1,r(ΩD) → Lr(ΓC) and T± : W 1,p(Ω±, Rd) → Lp(ΓC, Rd) implies that TCzj u±j →
TCz u± in L1(ΓC, Rd) and u±j → u± in Lp(ΓC, Rd), ea
h 
ontaining a subsequen
e that
onverges pointwise a.e. on ΓC. Hen
e [[u ·n1]] ≥ 0 and TCz[[u]] = 0 a.e. on ΓC, i.e.
(u, z) ∈ QC. Furthermore {z ∈ W 1,r(ΩD) | 0 ≤ z ≤ 1 a.e. on ΩD} is a 
losed subset of
W 1,r(ΩD). Together with (2.6) one obtains lower semi
ontinuity of Eκ(t, ·) on QC.Let now (qj)j∈N ⊂ Lκ

E(t). By 
oer
ivity (3.6) there are 
onstants c1(E), c2(E) su
h that
‖uj‖W 1,p(Ω−∪Ω+,Rd) ≤ c1(E) and ‖zj‖W 1,r(ΩD) ≤ c2(E). Sin
e W 1,p(Ω±, Rd) and W 1,r(ΩD)are re�exive Bana
h spa
es there are subsequen
es uj ⇀ u in W 1,p(Ω− ∪ Ω+, Rd) and
zj ⇀ z in W 1,r(ΩD). From the lower semi
ontinuity of Eκ(t, ·) on QC we now infer
E ≥ lim infj→∞ E

κ(t, qj) ≥ Eκ(t, q), whi
h proves that the sublevels of Eκ : Q → R∞are 
ompa
t in with respe
t to T .As a 
onsequen
e of Proposition 3.4 and Lemma 3.5 we obtain 
ondition (A.1-E1).Corollary 3.6 Keep κ ∈ (0, κ0] �xed and let the assumptions (2.5) and (2.6) holdtrue. Then, for all ε ∈ (0, ε0] the sublevels Lε,κ
E (t) := {q ∈ Q | Eκ

ε (t, q) ≤ E} as well asthe sublevels Lκ
E(t) := {q ∈ Q | Eκ(t, q) ≤ E} are 
ompa
t and the unions ∪ε∈(0,ε0]L

ε,κ
E (t)are pre
ompa
t with respe
t to the topology T , whi
h is de�ned by (2.18).Proof: For all ε ∈ (0, ε0] and κ ∈ (0, κ0] �xed the weak sequential 
ompa
tness ofthe sublevels Lε,κ

E (t) in W 1,p(Ω, Rd)×W 1,r(ΩD) is due to [TM10, Proposition 3.4℄, sin
ethe 
omposed density W from (2.7) satis�es hypotheses (2.6). Sin
e T is 
oarser thanthe weak topology of W 1,p(Ω, Rd) ×W 1,r(ΩD) we 
on
lude the 
ompa
tness of Lε,κ
E (t)with respe
t to T . The pre
ompa
tness of unions of sublevels in T dire
tly follows fromProposition 3.4 for tε = t and the 
ompa
tness of Lκ

E(t) is due to Lemma 3.5.In the following we prove the Γ-lim inf-inequality (A.3-C3) for Eκ
ε . The main idea in theproof is to exploit the lower semi
ontinuity of Eκ

ε (t, ·) on Lp(Ων
−∪Ων

−, Rd×d)×Lr(ΩD, Rd)17



for all �xed ν ∈ (0, ε0]. The use of this spa
e is admissible sin
e the lower Γ-limit onlyhas to be veri�ed for stable sequen
es, so that their energies and hen
e the damagegradients are uniformly bounded.Lemma 3.7 (Lower Γ-limit of the energy fun
tionals) Keep κ∈(0, κ0] �xed. Let
(tε, uε, zε)

TT−→(t, u, z) as ε→0 and (uε, zε)∈S
κ
ε (tε) for all ε∈(0, ε0]. Then

Eκ(t, u, z) ≤ lim inf
ε→0

Eκ
ε (tε, uε, zε) . (3.27)Proof: In view of (2.5) it holds g(tε)→ g(t) in W 1,p(Ω− ∪ Ω+, Rd). Sin
e (uε, zε) ∈

Sκ
ε (tε) we �nd a 
onstant E > 0 so that Eκ

ε (tε, uε, zε) ≤ E for all ε ∈ (0, ε0]. FromProposition 3.4 then follows that the limit (u, z) ∈ QC. Moreover there is a subsequen
e
zε ⇀ z in W 1,r(ΩD) su
h that we obtain

lim inf
ε→0

∫

ΩDκ
r
|ε∇zε|

r dy ≥ lim inf
ε→0

∫

ΩDκ
r
|∇szε|

r dy ≥

∫

ΩDκ
r
|∇sz|

r dy =

∫

ΩDκ
r
|∇z|r dy , (3.28)where the last equality is due to ∂y1

z=0. Furthermore, we observe that ∫
Ων
−
∪Ων

+

W (·) dxis weakly sequentially lower semi
ontinuous on Lp(Ων
−∪Ων

+; Rd×d) by (2.6a) and (2.6d).In view of (2.6b) and Proposition 3.4, Item (1.) it holds for all ν > 0

lim inf
ε→0

∫

Ων
−
∪Ων

+

W (e(uε+g(tε))) dx ≥

∫

Ων
−
∪Ων

+

W (e(u + g(t))) dx . (3.29)Putting together (3.28) and (3.29) we obtain the desired lim inf-estimate as ν → 0,sin
e u∈W 1,p(Ω−∪Ω+, Rd) by Proposition 3.4, Item (2.).Next, we verify the 
onditions (A.1-E2), (A.1-E3) and (A.3-C1) 
on
erning the time-derivatives of both the approximating and the limit energy fun
tional.Lemma 3.8 (Properties of ∂tE
κ
ε , ∂tE

κ) The fun
tionals Eκ
ε , Eκ : Q → R∞ satisfy(A.1-E2). In parti
ular, ∂tE

κ(t, q) takes the same form as ∂tE
κ
ε (t, q) in (2.17). More-over, Eκ satis�es (A.1-E2) and, as ε → 0, (A.3-C1) holds true.Proof: Re
all ∂tE

κ
ε (t, q) from (2.17). Condition (A.1-E2) 
an be proven by repeatingthe arguments of [TM10, Theorem 3.7℄. The proof mainly uses the stress 
ontrol (2.6
)to derive a Gronwall estimate for the energy. Furthermore it relies on the assumptions(2.5) for g and on the 
oer
ivity inequalities (2.6b). Sin
e ∂tE

κ
ε is independent of κ alsothe 
onstants c0, c1 do not depend on κ. Due to the uniform Korn's inequality (2.20)these 
onstants are also independent of ε ∈ (0, ε0] and hen
e also apply to the limitenergy, so that ∂tE

κ(t, q) is also given by (2.17).Conditions (A.1-E3) and (A.3-C1) result from (2.6
). An analogous proof 
an be foundin [TM10, Theorems 3.11, 3.9℄.
18



3.2 Conditioned Upper Semi
ontinuity of Stable SetsWe now verify 
ondition (A.3-C2), saying that the limit of a stable sequen
e is stable.This will be done by verifying that for all sequen
es (tε, qε)ε∈(0,ε0] ⊂ [0, T ] × Q with
(qε)∈S

κ
ε (tε) and (tε, qε)

TT−→ (t, q) and for all (q̂)∈Q there is a sequen
e (q̂ε)ε∈(0,ε0]⊂QDsatisfying (q̂ε)
T
−→ (q̂) su
h that

lim sup
ε→0

(Eκ
ε (tε, q̂ε)+R(ẑε−zε)) ≤ Eκ(t, q̂)+R(ẑ−z) . (3.30)To gain that R(ẑε−zε) → R(ẑ−z) we must ensure R(ẑε−zε) <∞ for all ε ∈ (0, ε0].Moreover, ûε∈W 1,p(Ω, Rd) must hold for all ε∈(0, ε0] to assure that Eκ

ε (tε, ûε, ẑε)<∞,whereas the limit û ∈ W 1,p(Ω−∪Ω+, Rd), only. We will 
onstru
t (ûε, ẑε)ε∈(0,ε0] in su
ha way that Eκ
ε (tε, ûε, ẑε) → Eκ(t, û, ẑ). This requires an interplay of ûε and ẑε.The di�
ulty is to 
onstru
t (ûε)ε∈(0,ε0] in a way whi
h allows it to prove that

∫

ΩεD Π−1
ε ẑεW (e(ûε)) dx → 0 .This 
onstru
tion will be based on re�e
ting both û− = û|Ω− and û+ = û|Ω+

at theinterfa
e ΓC, i.e. x1 = 0, and on subsequent interpolation on the interval (−ε, ε). Thismethod guarantees that ûε ∈ W 1,p(Ω−∪Ω+, Rd), in su
h a way that ∇ûε are uniformlybounded for (x1, s) ∈ (−ε, ε]×
(
ΓC\N Ĉ

z

) and bounded by ε−1 on (−ε, ε]× N Ĉ
z , where

N Ĉ
z := {s ∈ ΓC | TCẑ(s) = 0}.Lemma 3.9 (Mutual re
overy sequen
es) Keep κ ∈ (0, κ0] �xed. Let (Q, Eκ

ε ,R)and (Q, Eκ,R) be de�ned by (2.12), (2.14), (2.16) and (3.1). Assume that (2.5) and(2.6) hold true. Moreover, let γ > (p−1), p ∈ (1,∞) and r ∈ (1,∞). Then, for all
(tε, qε)ε∈(0,ε0] ⊂ [0, T ]×Q with (tε, qε)

TT−→ (t, q) as ε → 0 and qε ∈ S
κ
ε (tε) and for every

q̂ ∈ Q there is a sequen
e (q̂ε)ε∈(0,ε0] su
h that (3.30) holds true.Proof: Let q̂ = (û, ẑ) ∈Q and let (tε, qε)
TT−→ (t, q) as ε→ 0 with qε ∈ S

κ
ε (tε). Hen
etheir energies are equibounded and Proposition 3.4 
an be applied. Thus, q∈QC with

0≤ z≤ 1 a.e. in ΩD, so that Eκ(t, q) is at least �nite. For an arbitrary q̂ ∈ Q we willnow 
onstru
t the mutual re
overy sequen
e (q̂ε)ε∈(0,ε0] with q̂ε = (ûε, ẑε).If q̂ ∈ Q\QC, then Eκ(tε, q̂) = ∞ for all ε ∈ (0, ε0] so that (3.30) holds for q̂ε = q̂. Letnow q̂ ∈ QC. If ẑ > z a.e. in ΩD, then R(ẑ−z) = ∞ and (3.30) trivially holds.Hen
e, assume ẑ ≤ z a.e. in ΩD. In order to keep Eκ
ε (t, ûε, ẑε) + R(ẑε−zε) �nite, thesequen
e (ẑε)ε∈(0,ε0] has to satisfy εγ ≤ ẑε ≤ zε. Furthermore it is required that ûε ∈ UD,i.e. ûε ∈ W 1,p(Ω, Rd) with ûε = 0 on ΓDir, whereas û ∈ W 1,p(Ω− ∪ Ω+, Rd) with û = 0on ΓDir, TCẑ[[û]] = 0 and [[û·n1]] ≥ 0 a.e. on ΓC, only. We will �rst 
onstru
t (ẑε)ε∈(0,ε0]and prove the 
onvergen
e of the energy terms whi
h solely depend on the damagevariable. Then we will 
onstru
t (ûε)ε∈(0,ε0] in su
h a way that the interplay of ûε with

ẑε makes the remaining energy terms 
onverge.Step 1 (Constru
tion of ẑε): For every ε ∈ (0, ε0] we now 
onstru
t ẑε in su
h amanner that ẑε ∈ ZD and R(ẑε−zε) < ∞, i.e. the property εγ ≤ ẑε ≤ zε a.e. in ΩD19



has to be ensured. For this, we adapt the ansatz used in [TM10, Th. 3.14℄ and weintrodu
e
ẑε := max

{
εγ, min{zε, ẑ − δε}

}
, (3.31)where δε = o(‖zε − z‖r

Lr(ΩD)) is determined by Markov's inequality (M) to ensure
Ld

(
[|zε − z| > δε]

) (M)
≤ δ−r

ε ‖z − zε‖
r
Lr(ΩD) dx

!
→ 0 . (3.32)Here and in the following we use the notation [f > a] = {y ∈ ΩD | f(y) > a} witha similar meaning for ≥, <,≤ . Note that ẑε = εγ if ẑ − δε < εγ and in parti
ular,if ẑ = 0. Using a 
omposition lemma for W 1,r-fun
tions and Lips
hitz-fun
tions, see[MM72℄, one obtains as in [TM10, Th. 3.14℄

ẑε ∈ W 1,r(ΩD) with ∇ẑε(y) =





∇ẑ(y) if y ∈ Aε ,

∇zε(y) if y ∈ Bε ,

0 if y ∈ ΩD\(Aε ∪ Bε) ,

(3.33)where Aε = [εγ ≤ ẑ − δε ≤ zε] and Bε = [zε < ẑ − δε]. Be
ause of (3.32) we have
δε → 0, Ld(Bε) → 0 and one 
an prove that ẑε ⇀ ẑ in W 1,r(ΩD) as in [TM10, Th. 3.14,step 1℄. Be
ause of the 
ompa
t embedding W 1,r(ΩD) ⋐ Lr(ΩD) we immediately seethat R(ẑε − zε) →R(ẑ − z).With the same arguments as in [TM10, Th. 3.14, step 2℄ we see that
lim sup

ε→0

(
‖∇ẑε‖

r
Lr(ΩD) − ‖∇zε‖

r
Lr(ΩD)

)
≤ lim sup

ε→0
‖∇ẑε‖

r
Lr(Aε) − lim inf

ε→0
‖∇zε‖

r
Lr(Aε∪Cε) ,where ‖∇ẑ‖r

Lr(Aε) ≤ ‖∇ẑ‖r
Lr(ΩD) for all ε ∈ (0, ε0]. Moreover, to in
rease the estimate,we may drop the sets Cε in the − lim inf-term. We de�ne Ŵ (I, Z) = I|Z|r and intro-du
e C(I, z) =

∫
ΩD Ŵ (I,∇z) dy, where I stands for the indi
ator fun
tion of a subsetin ΩD. Hen
e, C(IAε

, zε) = ‖∇zε‖Lr(Aε) = ‖IAε
∇zε‖Lr(ΩD). Sin
e Ld(Aε) → Ld(Ω) by(3.32), we have that IAε

→ IΩD strongly in Lq(ΩD) for any q ∈ [1,∞) and ∇zε ⇀ ∇zweakly in Lr(ΩD, Rd). Hen
e, by the lower semi
ontinuity result [Da
00, p. 96, Theorem3.23℄ it is lim infε→0 C(IAε
, zε) ≥ C(ΩD, z) = ‖∇z‖r

Lr(ΩD).Step 2 (Constru
tion of ûε): For every ε ∈ (0, ε0] we now determine (ûε)ε∈(0,ε0] insu
h a way that ûε ∈ UD, see (2.8). Sin
e (û, ẑ) ∈ QC we have û ∈ W 1,p(Ω− ∪ Ω+, Rd),

û = 0 on ΓDir, TCẑ[[û]] = 0 and [[û·n1]] ≥ 0 a.e. on ΓC.Let û± := û|Ω±, set I+
ε := [0, ε) and I−ε := [−ε, 0). For our 
onstru
tion we re�e
t

û+|I+
ε ×ΓC and û−|I−ε ×ΓC along the interfa
e {0} × ΓC and take the additive mean ofthese fun
tions. Therewith we obtain an interpolated fun
tion ûε ∈ W 1,p(ΩεD, Rd),whi
h has the form

ûε(x1, s) := ε−x1

2ε
û−(±x1, s) + ε+x1

2ε
û+(∓x1, s) for x1 ∈ I∓ε , (3.34)i.e. ûε(−ε, s) = û−(−ε, s) , ûε(ε, s) = û+(ε, s) , ûε(0, s) = 1

2

(
û+(0, s) + û−(0, s)

)
. We
ompose the fun
tions ûε ∈ W 1,p(Ω, Rd) as follows

ûε(x1, s) :=

{
û±(x1, s) if (x1, s) ∈ Ωε

±,

ûε(x1, s) if (x1, s) ∈ ΩεD.
(3.35)20



By 
onstru
tion it is ûε ∈ W 1,p(Ω, Rd) and, sin
e ûε|Ωε
±

= û|Ωε
±
, we have

∫

Ωε
±

W (e(ûε+g(tε))) dx =

∫

Ωε
±

W (e(û+g(tε))) dx →

∫

Ω±

W (e(û+g(t))) dx , (3.36)where we used (2.5) and the dominated 
onvergen
e theorem.Step 3 (Proof of ∫
Ω

εD WD(e(ûε), Π
−1

ε
ẑε) dx → 0): From the 
onstru
tion (3.31)re
all that Π−1

ε ẑε(x) = εγ if ẑ(x) = 0 for all ε ∈ (0, ε0]. In view of the de
omposition
ΩεD = Aε ∪ Bε ∪ Cε and (2.6b) we have

∫

ΩεDΠ−1
ε ẑε|e(û

ε(x1, s))|
p dx

≤

∫

Aε

Π−1
ε (ẑ−δε)|e(û

ε(x1, s))|
p dx +

∫

Bε

|e(ûε(x1, s))|
p dx +

∫

Cε

εγ |e(ûε(x1, s))|
p dx .Let N Ĉ

z := {s ∈ ΓC | TCẑ(s) = 0}. For y ∈ Bε = [ẑ − δε > zε] we have ẑ(y) > εγ, whi
himplies that Bε ∩ ΓC ⊂ ΓC\N Ĉ
z . Similarly, we �nd

Aε = [εγ < ẑ − δε ≤ zε] = [εγ + δε < ẑ ≤ zε + δε] ⊂ [εγ < ẑ] ,i.e. also Aε ∩ ΓC ⊂ ΓC\N Ĉ
z . Moreover, Cε = [ẑ ≤ εγ + δε] and hen
e N Ĉ

z ⊂ Cε ∩ ΓC.Be
ause of this, we 
an estimate
∫

ΩεDΠ−1
ε ẑε|e(û

ε(x1, s))|
p dx ≤

∫

N Ĉ
z

∫ ε

−ε

εγ|e(ûε)|p dx1 ds +

∫

ΓC\N Ĉ
z

∫ ε

−ε

|e(ûε)|p dx1 ds ,where |e(ûε)|p ≤ 2p−1
(
|∂x1

ûε|p + |∇sû
ε|p

)
. For notational simpli
ity denote by û± alsotheir even extensions to Ω by re�e
tion at x1 = 0. In parti
ular, û± ∈ W 1,p(Ω, Rd).Using that 0 < (ε±x1)/(2ε) < 1 on I−ε ∪ I+

ε we �nd
‖∇sû

ε‖Lp(ΩεD,Rd−1×d−1) ≤ 2‖∇û−‖Lp(I−ε ×ΓC,Rd×d) + 2‖∇û+‖Lp(I+
ε ×ΓC,Rd×d) → 0 . (3.37)Moreover, ∂x1

ûε = Gε
1 + Gε

2 with
Gε

1 =
ε− x1

2ε
∂x1

û− +
ε + x1

2ε
∂x1

û+ and Gε
2 = (2ε)−1(û+ − û−) . (3.38)Again, ‖Gε

1‖Lp(ΩεD,Rd) → 0 as in (3.37), while Gε
2 needs spe
ial 
onsideration.Sin
e û ∈ W 1,p(Ω\N Ĉ

z ) it holds for a.e. s ∈ ΓC\N Ĉ
z that û+(0, s) = û−(0, s) and hen
ewe �nd using Hölder's inequality

|û+(x1, s)− û−(x1, s)| ≤

∣∣∣∣
∫ x1

0

∂ξû
+(ξ, s) dξ

∣∣∣∣ +

∣∣∣∣
∫ x1

0

∂ξû
−(ξ, s) dξ

∣∣∣∣

≤ C|x1|
p−1

p

(
‖∂x1

û+(·, s)‖Lp(I+
ε ,Rd) + ‖∂x1

û−(·, s)‖Lp(I−ε ,Rd)

)
.

(3.39)Dividing by 2ε and integrating over (x1, s) ∈ (I−ε ∪ I+
ε )× ΓC\N Ĉ

z yields
‖Gε

2‖
p

Lp((I−ε ∪I+
ε )×ΓC\N Ĉ

z
,Rd)

≤ C⋆

(
‖∂x1

û+‖p
Lp(ΩεD,Rd)

+ ‖∂x1
û−‖p

Lp(ΩεD,Rd)

)
→ 0 (3.40)21



as ε → 0, sin
e the 
onstant C⋆ is independent of ε.For s ∈ N Ĉ
z we have in general û+(0, s) 6= û−(0, s). Then we �nd

|û+(x1, s)− û−(x1, s)|

≤
∣∣[[û

]]
(s)

∣∣ +

∣∣∣∣
∫ x1

0

∂ξû
+(ξ, s) dξ

∣∣∣∣ +

∣∣∣∣
∫ x1

0

∂ξû
−(ξ, s) dξ

∣∣∣∣
(3.41)Handling the last terms as in (3.39) leads to

‖Gε
2‖

p

Lp((I−ε ∪I+
ε )×N Ĉ

z
,Rd)

≤ Cε1−p
∥∥[[

û
]]∥∥

Lp(ΓC,Rd)
+ C⋆

(
‖∂x1

û+‖p
Lp(ΩεD,Rd)

+ ‖∂x1
û−‖p

Lp(ΩεD,Rd)

)
,

(3.42)where the se
ond term tends to 0 as in (3.40). Using that Π−1
ε ẑε = εγ on I−ε ∪ I+

ε ×N Ĉ
zwith γ > p−1, we obtain that the term in WD related to the �rst term in (3.42) willtend to 0 as ε → 0.In order to show that also ∫

ΩεD ϕ(tr e(ûε)) dx → 0 we apply the upper growth estimatein (2.3) and we use that ∣∣( tr e(ûε)
)−∣∣p̃ ≤ 2p̃−1|(∂x1

ûε
1)
−|p̃ + 2p̃−1|∇sû

ε|p̃ with p̃ ∈ {p̂, 1}.The integral on ΩεD over the se
ond term tends to 0 as in (3.37). For the integral overthe �rst term we use that (∂x1
ûε

1)
− ≤ (Gε1

1 )− + (Gε1
2 )−, where Gε1

i denotes the �rst
omponent of Gε
i ∈ R

d, i ∈ {1, 2}. We obtain that the integral on ΩεD over |(Gε1
1 )−|p̃tends to 0 again as in (3.37). For the term involving (Gε1

2 )− we use that
(
û+

1 (x1, s)− û−1 (x1, s)
)−

≤
(
û+

1 (x1, s)−û+
1 (0, s)

)−
+

([[
û · n1

]]
(s)

)−
+

(
û−(0, s)−û−(x1, s)

)−
,where (

[[û·n1]]
)−

=0 sin
e Eκ(t, û, ẑ)<∞. On the remaining terms we apply integrationby parts, Jensen's and Hölder's inequality and �nd
‖Gε1

2 ‖
p̃

Lp̃((I−ε ∪I+
ε )×N Ĉ

z
,Rd)

≤ C⋆

(
‖∂x1

û+‖p̃
Lp̃(ΩεD,Rd)

+ ‖∂x1
û−‖p̃

Lp̃(ΩεD,Rd)

)
→ 0 ,due to p̂∈(1, p] and ‖(∂x1

û±1 )−‖p
Lp(Ω,Rd)

≤ C by the equiboundedness of the energies.4 The Se
ond Γ-limit: Gri�th-type DelaminationIn this se
tion we prove that the gradient delamination models (Q, Eκ,R)κ∈(0,κ0] ap-proximate a model (Q, E ,R) for Gri�th-type delamination as κ → 0. Here, R :Z →
[0,∞] is given by (2.16) and

E(t, q) :=

{ ∫
Ω−∪Ω+

W (e(u+g(t))) dx if q = (u, z) ∈ QG,

∞ if q ∈ Q\QG,
(4.1)

ZG :={z ∈ L∞(ΩD) | 0 ≤ z ≤ 1 and ∂y1
z = 0 a.e. in ΩD}, (4.2)

QG :=

{
(u, z) ∈ U × ZG ∣∣∣∣

[[
u·n1

]]
≥ 0 and TCz[[u]]

= 0 a.e. on ΓC}, (4.3)22



with U as in (2.12) and with TC explained by (4.4). For sequen
es (uκ, zκ)κ∈(0,κ0] withequibounded energies there is a subsequen
e zκ
∗
⇀ z in L∞(ΩD) and due to ∂y1

zκ = 0a.e. in ΩD for all κ∈(0, κ0] we �nd that z ∈ L∞(ΩD) is 
onstant a.e. in y1-dire
tion. Bythe de�nition of the weak derivative we 
an verify that ∂y1
z=0 a.e. in ΩD is the weak

y1-derivative of z ∈ L∞(ΩD). This allows us to de�ne the tra
e of z on ΓC by
TCz(s) = 1

2

∫ 1

−1

z(y1, s) dy1 . (4.4)Then, for all z ∈ ZC from (3.2) de�nition (4.4) 
oin
ides with the tra
e in the usualsense and for all v ∈ ZG it is
R(v) =

{
2
∫
ΓC −̺ TCv ds if TCv ≤ 0 a.e. on ΓC,

∞ otherwise, (4.5)so that (QG, E ,R) indeed models delamination along the interfa
e ΓC.For all t∈ [0, T ] the stable sets of (Q, Eκ,R) and (Q, E ,R) are given by
Sκ(t) :={q=(u, z)∈Q | Eκ(t, q)<∞, Eκ(t, q)≤Eκ(t, q̃)+R(z̃−z) for all q̃=(ũ, z̃)∈Q} ,

S(t) :={q=(u, z)∈Q | E(t, q)<∞, E(t, q)≤E(t, q̃)+R(z̃−z) for all q̃=(ũ, z̃)∈Q}.Be
ause a fun
tion f ∈ L∞(ΓC) is only de�ned Ld−1-a.e. on ΓC, its support suppC fand its zero set NC
f have to be de�ned with 
are. Using the ideas of [Fed69, p. 60℄ weintrodu
e

suppC f := ∩{A ⊂ ΓC |A 
losed, Ld−1
(
{s ∈ ΓC | f(s) 6=0}\A

)
= 0} , (4.6)

NC
f := ΓC\ suppC f = ∪{O ⊂ ΓC | O open, Ld−1

(
O ∩ {s ∈ ΓC | f(s) 6=0}

)
= 0} .Clearly, suppC f is 
losed and NC

f is open and they are well-de�ned for equivalen
e
lasses f ∈ L∞(ΓC). The following lemma is a dire
t 
onsequen
e of (4.6), see [Tho10,Lemma 4.3.1℄.Lemma 4.1 Let f ∈ L∞(ΓC), g ∈ C0(ΓC) and let OS g := {s ∈ ΓC | g(s) 6= 0} denotethe open support of g. Then
f(s)g(s) = 0 for a.e. s ∈ ΓC is equivalent to suppC f ∩OS g = ∅ . (4.7)The following example emphasizes the intera
tion of u and z for (u, z) ∈ QG and showsthat the proper de�nition of NC

z is 
ru
ial.Example 4.2 Let M ⊂ ΓC be 
losed and nowhere dense, i.e. M has an empty interior.Let 0 < Ld−1(M) < Ld−1(ΓC). Su
h a set 
an be 
onstru
ted similarly to Cantor'smiddle third set, see e.g. [Els02, p. 70 & Exer
ise 8.9℄. Consider z = 1− IM ∈ L∞(ΓC),i.e. z = 0 on M and z = 1 on ΓC\M. Then NC
z = ∅ 6= M . Let (u, z) ∈ QG. Thus, itholds [[u]] = 0 on Γc\M and [[u]] ≥ 0 on M . Be
ause of p>d we have that [[u]] ∈ C0(ΓC)and {s ∈ ΓC | [[u]]>0} is open. By int M = ∅ we 
on
lude that {s ∈ ΓC | [[u]]>0} = ∅,i.e. [[u]] = 0 on ΓC. Thus, if z = 0 holds only on a nowhere dense subset of ΓC, then u
annot jump on ΓC at all, although possibly Ld−1(M) > 0. �23



As 
an be seen from (4.1), the values of E(t, u, z) are independent of the parti
ularvalues of z. Moreover Example 4.2 shows that, for p>d, only the set Nz is of importan
e.In the following we prove that the system (Q, E ,R) for Gri�th-type delaminationfavours energeti
 solutions (u, z) with either z(t, y) = 0 or z(t, y) = z0(y), where z0 isa given initial 
ondition.Lemma 4.3 (Stability of majorants) Let (u, z) ∈ S(t). Consider z̃ ≥ z su
h that
{y ∈ ΩD | z̃(y) = 0} = {y ∈ ΩD | z(y) = 0}. Then also (u, z̃) ∈ S(t).Proof: We 
he
k the stability 
ondition (1.2 S) for an arbitrary state (û, ẑ). If ẑ > z̃on a set of positive measure, then R(ẑ− z̃) = ∞ and (1.2 S) is trivially satis�ed. Hen
eit remains to investigate the 
ase ẑ ≤ z̃ a.e. on ΩD.If z ≤ ẑ ≤ z̃ a.e., then we have already E(t, û, ẑ) ≥ E(t, u, z̃), so that (1.2 S) holds forthis 
hoi
e of (û, ẑ). Assume now that ẑ ≤ z ≤ z̃. The stability of (u, z) and the fa
tthat z̃ ≥ z then yield

E(t, û, ẑ) = E(t, u, z̃) ≤ E(t, û, ẑ) +R(ẑ − z) ≤ E(t, û, ẑ) +R(ẑ − z̃) .Finally 
onsider ẑ su
h that ẑ ≤ z ≤ z̃ on A ⊂ ΩD and z̃ > ẑ > z on ΩD\A for a set
A ⊂ ΩD with Ld(A) > 0. We introdu
e a fun
tion z̄ su
h that z̄ := ẑ in A and z̄ := zin ΩD\A. From the stability of (u, z) we obtain

E(t, u, z̃) = E(t, u, z) ≤ E(t, û, z̄) +R(z̄ − z) ≤ E(t, û, ẑ) +R(ẑ − z̃) ,due to R(z̄ − z) =
∫

A
(z − ẑ) dy ≤

∫
A
(z̃ − ẑ) dy ≤ R(ẑ − z̃).Proposition 4.4 (Gri�th-
ra
k property) Let (Q, E ,R) be given by (2.12), (4.1)and (2.16) su
h that assumptions (2.5) and (2.6) hold true. Let (u0, z0) ∈ Q be a giveninitial value su
h that (u0, z0) ∈ S(0). Let (u, z) : [0, T ] → Q be an energeti
 solutionof (Q, E ,R). Then (u, z̃) is also an energeti
 solution, where

z̃(t, y) :=

{
z0(y) if z(t, y) > 0,

0 else.Moreover, for all t ∈ [0, T ] it is z(t, ·) = z̃(t, ·) ∈ L∞(ΩD).Proof: Sin
e (u(t), z(t)) ∈ S(t) Lemma 4.3 implies that also (u(t), z̃(t)) ∈ S(t). Thus,it remains to verify the energy balan
e (1.2E). We have E(t, u(t), z̃(t)) = E(t, u(t), z(t))and ∂tE(t, u(t), z̃(t)) = ∂tE(t, u(t), z(t)). Moreover, due to the monotoni
ity of z̃ and zwith z̃ ≥ z it holds that
DissR(z̃, [0, t]) = R(z̃(t)− z0) ≤ R(z(t)− z0) = DissR(z, [0, t]) . (4.8)Hen
e, the upper energy estimate for (u, z̃) : [0, T ] → Q follows. The lower energyestimate, whi
h is a dire
t 
onsequen
e of stability (see e.g. [FM06, p. 70℄ for a proof)then yields equality in (1.2E). This implies equality in (4.8) and for all t ∈ [0, T ] we
on
lude that z̃(t, ·) = z(t, ·) ∈ L∞(ΓC).We now state the Γ-
onvergen
e result from gradient to Gri�th-type delamination.24



Theorem 4.5 (Γ-
onvergen
e of the delamination problems) Let the assump-tions (2.5) and (2.6) hold with p > d and r ∈ (1,∞). For all κ ∈ (0, κ0], let
qκ : [0, T ] → Q be an energeti
 solution of (Q, Eκ,R). If the initial values satisfy
qκ
0

T
−→ q0 and Eκ(0, qκ

0 ) → E(0, q0), then the delamination problems (Q, Eκ,R)κ∈(0,κ0]

Γ-
onverge to the limit delamination problem (Q, E ,R) in the sense of Theorem A.1.Proof: We pro
eed as for Theorem 3.1. Sin
e R : Z → [0,∞] is independent of κ, Re-mark 2.2 also proves 
ondition (A.2-D2) as κ → 0. Furthermore, for all q with �nite en-ergy it holds ∂tE(t, q)=∂tE
κ(t, q) given by (2.17), so that 
onditions (A.1-E2), (A.1-E3)and (A.3-C1) hold due to Lemma 3.8. The existen
e of a subsequen
e (qκ)κ∈(0,κ0] ofenergeti
 solutions to (Q, Eκ,R, qκ

0 ) 
onverging in T for all t∈ [0, T ] 
an be establishedas for Theorem 3.1. Conditions (A.1-E1), (A.1-E2) and (A.3-C2) will be shown in thesubsequent se
tions.4.1 Compa
tness of the Energy Sublevels and Lower Γ-limitIn Lemma 3.5 it has been veri�ed that the sublevels of the fun
tionals Eκ(t, ·) are
ompa
t in the topology T . In order to 
omplete the proof of (A.1-E1) it remainsto show that unions of sublevels with respe
t to κ are pre
ompa
t in T . Moreover,we will show that the sublevels of E are even 
ompa
t in the weak topology of Q, i.e.in W 1,p(Ω− ∪ Ω+, Rd) for the displa
ements, whi
h is important for the proof of the
Γ-lim inf-inequality.Theorem 4.6 (Sequen
es with equibounded energies) For all κ ∈ (0, κ0] let
Eκ : [0, T ]×Q → R∞ be given by (3.1) so that (2.5) and (2.6) hold. Moreover, let
E∈R and (tκ)κ∈(0,κ0] ⊂ [0, T ]. Assume that Eκ(tκ, uκ, zκ)≤E for all κ∈(0, κ0]. Then(1.) there is a subsequen
e (uκ, zκ) ⇀ (u, z) in Q and hen
e also (uκ, zκ)

T
→ (u, z) as

κ → 0,(2.) for the limit holds (u, z) ∈ QG, see (4.3), and 0 ≤ TCz ≤ 1 a.e. on ΓC.Proof: Ad (1.): From Eκ(tκ, uκ, zκ) ≤ E and 
oer
ivity estimate (3.6) we obtainthat (uκ)κ∈(0,κ0] is equibounded in W 1,p(Ω− ∪Ω+, Rd). Sin
e U ⊂ W 1,p(Ω− ∪Ω+, Rd) isa re�exive Bana
h spa
e there is a subsequen
e uκ ⇀ u in U and in W 1,p(Ων
− ∪Ων

+, Rd)for all ν ∈ (0, ε0]. Furthermore, the equiboundedness of Eκ(tκ, uκ, zκ) implies that
‖zκ‖L∞(ΩD) ≤ 1 for all κ∈(0, κ0]. By Bana
h-Alaoglu's theorem there is a subsequen
e
zκ

∗
⇀ z in L∞(ΩD). This proves that the subsequen
e (uκ, zκ)κ∈(0,κ0] 
onverges to (u, z)both in the weak topology of Q and in T .Ad (2.): For the limit (u, z) of the subsequen
e (uκ, zκ)κ∈(0,κ0] ⊂ U×ZC from abovewe now show that (u, z) ∈ QG. Sin
e U is a Bana
h spa
e it 
learly holds u ∈ U .For zκ

∗
⇀ z in L∞(ΩD) with zκ ∈ W 1,r(ΩD), ∂y1

zκ = 0 and 0 ≤ zκ ≤ 1 a.e. in ΩD itremains to prove that z ∈ ZG, see (4.2). We �rst verify that 0 ≤ z ≤ 1 a.e. in ΩD.Testing the weak*-
onvergen
e with L1
+(ΩD) = {ϕ ∈ L1(ΩD) |ϕ ≥ 0 a.e. in ΩD} yields

0 ≤ limκ→0

∫
ΩD ϕzκ dy =

∫
ΩD ϕz dy for all ϕ ∈ L1

+(ΩD). To 
on
lude that z ≥ 0 a.e.on ΩD we assume that z < 0 on A ⊂ ΩD with Ld(A) > 0. For the indi
ator fun
tion
IA :ΩD→{0, 1} of the set A holds IA∈L1

+(ΩD), but ∫
A
z dy<0, whi
h is a 
ontradi
tion25



to ∫
ΩDϕz dy≥ 0 for all ϕ∈L1

+(ΩD). Hen
e it indeed holds that z≥ 0 a.e. in ΩD. Withthe same arguments we obtain that 0≤ limκ→0

∫
ΩDϕ(1−zκ) dy =

∫
ΩD ϕ(1−z) dy for all

ϕ∈L1
+(ΩD), whi
h yields that z≤1 a.e. in ΩD.Now we prove that z is 
onstant a.e. in y1-dire
tion. For all κ∈ (0, κ0] we obtain 0 =

−
∫
ΩD ∂y1

zκϕ dy =
∫
ΩD zκ∂y1

ϕ dy for all ϕ ∈ C∞
0 (ΩD). Hen
e by the weak*-
onvergen
eit holds 0 = limκ→0

∫
ΩDzκ∂y1

ϕ dy =
∫
ΩDz∂y1

ϕ dy for all ϕ∈C∞
0 (ΩD). The fundamentallemma of the 
al
ulus of variations then yields that z is 
onstant a.e. in y1-dire
tion.Moreover, sin
e 0≤z≤1 a.e. in ΩD we obtain that 0=TC0≤TCz ≤ TC1=1.To show (1.1) we use testfun
tions f ∈L1(ΩD) with f(y1, s)=f(s) and we �nd

2

∫

ΓC f(s)TCzκ(s) ds =

∫

ΩDfzκ dy1ds →

∫

ΩDfz dy1ds = 2

∫

ΓC f(s)TCz(s) ds.This proves in parti
ular that 0 =
∫
ΓCTCzκ

∣∣[[uκ]]
∣∣ ds →

∫
ΓCTCz∣∣[[u]]

∣∣ ds, sin
e the 
om-pa
tness of the tra
e operator W 1,p(Ω− ∪ Ω+, Rd) → Lp(ΓC, Rd) yields [[uκ]] → [[u]]strongly in Lp(ΓC, Rd). Therefore we �nd a subsequen
e whi
h 
onverges pointwise a.e.on ΓC and hen
e 0 ≤ limκ→0[[uκ ·n1]] = [[u·n1]] a.e. on ΓC.For tκ = t �xed the above theorem states the pre
ompa
tness of unions of energysublevels both in the weak topology ofQ and in T . It remains to verify the 
ompa
tnessof the sublevels of the limit fun
tional E(t, ·).Lemma 4.7 (Properties of the limit energy) Let E be given by (4.1) su
h that theassumptions (2.5) and (2.6) hold true. Then E(t, ·) : Q → R∞ is 
oer
ive and weaklysequentially lower semi
ontinuous on Q for all t ∈ [0, T ]. In parti
ular, (3.6) holds for
κ = 0 and Ων

± = Ω±. Moreover for all E ∈ R the sublevels LE(t) := {q ∈ Q | E(t) ≤ E}of the fun
tional E(t, ·) : Q → R∞ are sequentially 
ompa
t in the weak topology of Qand hen
e in T .Proof: Estimate (3.6) is a dire
t 
onsequen
e of (2.6b), (2.5) and Korn's inequality(2.20). This estimate together with the fa
t that E(t, u, z) = ∞ if ‖z‖L∞(ΓC) > 1 provesthe 
oer
ivity of E(t, ·) on Q. Lower semi
ontinuity follows from 
onvexity (2.6a) andthe 
losedness of QG ∩ {(u, z) ∈ W 1,p(Ω− ∪ Ω+, Rd)× L∞(ΩD) | 0≤z≤1 a.e. in ΩD} in
W 1,p(Ω− ∪ Ω+, Rd)×L∞(ΩD), whi
h 
an be shown as in the proof of Lemma 3.5 usingthe ideas of the proof of Theorem 4.6, Item (2.) Then the 
ompa
tness of the sublevelsin the weak topology of Q dire
tly follows from the lower semi
ontinuity and 
oer
ivityas in the proof of Lemma 3.5. Sin
e T is 
oarser than the the weak topology of Q the
ompa
tness of the sublevels in T follows.To establish the Γ-lim inf-estimate for (Q, Eκ,R) we use that stable sequen
es haveequibounded energies, whi
h yields a subsequen
e even 
onverging weakly in Q.Theorem 4.8 (Lower Γ-limit of the energy fun
tionals) Let Eκ and E be givenby (3.1) and (4.1) su
h that the assumptions (2.5) and (2.6) hold. Let (tκ, qκ)

TT−→ (t, q)as κ → 0 with qκ ∈ S
κ(tκ) for all κ ∈ (0, κ0]. Then

E(t, q) ≤ lim inf
κ→0

Eκ(tκ, qκ) . (4.9)26



Proof: Sin
e qκ = (uκ, zκ) ∈ S
κ(tκ) for all κ ∈ (0, κ0] there is a 
onstant E > 0 su
hthat Eκ(tκ, uκ, zκ) ≤ E. Thus, Theorem 4.6 
an be applied and yields the existen
e ofa subsequen
e (uκ, zκ) ⇀ (u, z) in Q with (u, z) ∈ QG.Due to assumptions (2.6) we obtain that the fun
tional ∫

Ω−∪Ω+
W (·) dx is weakly se-quentially lower semi
ontinuous on W 1,p(Ω− ∪Ω+, Rd). Together with (2.5) we dedu
e

lim infκ→0

∫
Ω−∪Ω+

W (e(uκ + g(tκ))) dx ≥
∫
Ω−∪Ω+

W (e(u + g(t))) dx. Furthermore it
learly holds lim infκ→0
κ
r

∫
ΓC |∇szκ|

r ds ≥ 0, whi
h establishes (4.9).4.2 Conditioned Upper Semi
ontinuity of the Stable SetsWe show 
ondition (A.3-C2) by proving the existen
e of a mutual re
overy sequen
e,i.e. for any sequen
e (tκ, qκ)
TT−→ (t, q) with q = (u, z) and with qκ = (uκ, zκ) ∈ S

κ(tκ)for all κ∈ (0, κ0] and for all q̂ = (û, ẑ)∈Q our task is to 
onstru
t a mutual re
overysequen
e (q̂κ)κ∈(0,κ0] with q̂κ =(ûκ, ẑκ) su
h that
lim sup

κ→0

(
Eκ(tκ, q̂κ) +R(ẑκ−zκ)− E

κ(tκ, qκ)
)
≤ E(t, q̂) +R(ẑ−z)− E(t, q) . (4.10)In order to 
onstitute (ẑκ)κ∈(0,κ0] ⊂ W 1,r(ΩD) for a given fun
tion ẑ ∈ L∞(ΩD) we haveto mollify TCẑ by a sequen
e of suitable molli�ers (ηκ)κ(0,κ0] ⊂ C∞

0 (Rd−1) in su
h a waythat ∫
ΓC κ

r

(
|∇TCẑκ|

r − |∇TCzκ|
r
)
ds vanishes. For this, we use molli�ers of the form

η̃1(s) :=

{
c exp(−1/(1−|y|2)) if |s| ≤ 1,

0 otherwise, η̃ρ(s) := 1
ρd−1 η̃1(s/ρ) , ηκ = η̃ρ(κ) , (4.11)where c is de�ned in su
h a way that ‖η̃1‖L1(Rd−1) = 1 and ρ(κ) → 0 as κ → 0 suitably.For TCẑ ∈ L∞(ΓC) the molli�
ation guarantees that TCẑκ → TCẑ in Lq(ΓC) for all

q ∈ [1,∞), see [Ada75, p. 29, Lemma 2.18℄. Moreover, by [Jan71, p. 33, Theorem 39.1℄we have
supp(TCẑ ∗ η̃ρ) ⊂ suppC ẑ + BC

ρ (0) = {s + s̃ | s ∈ supp Cẑ, s̃ ∈ BC
ρ (0)} , (4.12)where BC

ρ (0) ⊂ ΓC is the 
losed ball of radius ρ around 0 and suppC ẑ = supp TCẑ.We de�ne ẑκ(y1, s) = TCẑκ(s) for a.e. (y1, s) ∈ ΩD, so that ẑκ ∈ ZG.Sin
e in general N Ĉ
zκ
6⊂ N Ĉ

z , it is ne
essary to modify û so that the modi�ed fun
tions ûκsatisfy [[[ûκ]]>0] ⊂ N Ĉ
zκ

. In order to verify (4.10) we want that Eκ(tκ, ûκ, ẑκ) → E(t, û, ẑ).This 
an be guaranteed if ûκ → û strongly in W 1,p(Ω− ∪ Ω+, Rd). In the following weprove the existen
e of this sequen
e for the 
ase p > d, sin
e the 
ontinuity of [[û]]on ΓC then allows us to 
on
lude from Lemma 4.1 that (û, ẑ) ∈ QG is equivalent to
suppC ẑ ∩OS [[û]] = ∅. We will apply a Hardy inequality a

ording to [Lew88, p. 190℄.Proposition 4.9 Let M̂ ⊂ ΓC be 
losed and let Ω± ⊂ R

d as in Fig. 1. Assume that
p > d. Let dM̂(x) := minx̂∈M̂ |x − x̂| for all x ∈ Ω±. For all u ∈ W 1,p

M̂
(Ω±, Rd) with

W 1,p

M̂
(Ω±, Rd) := {ũ ∈ W 1,p(Ω±, Rd) | ũ=0 on M̂ ∪ ΓDir} it holds (u/dM̂)∈Lp(Ω±, Rd).In parti
ular, there is a 
onstant CM̂ > 0 su
h that

∥∥u/dM̂

∥∥
Lp(Ω±,Rd)

≤ CM̂ ‖∇u‖Lp(Ω±,Rd×d) . (4.13)27



We now 
onstru
t a sequen
e (ûκ)κ∈(0,κ0] su
h that TCẑκ[[ûκ]] = 0 a.e. on ΓC. For this,let ûsym(x1, s) = 1
2

(
û(x1, s) + û(−x1, s)

) and ûanti(x1, s) = 1
2

(
û(x1, s) − û(−x1, s)

).Then, ûsym ∈ W 1,p(Ω, Rd) and ûanti ∈ W 1,p(Ω− ∪Ω+, Rd), whi
h satis�es ûanti(0, s) = 0if and only if [[û]](s) = 0 for s ∈ ΓC, in parti
ular, ûanti = 0 on M̂ = suppC ẑ, i.e.
ûanti ∈ W 1,p(Ω−∪ M̂ ∪Ω+, Rd). We use 
ut-o� fun
tions that push ûanti to 0 in asuitable neighborhood of M̂. Thanks to Proposition 4.9 we 
an show for p > d that this
onstru
tion 
onverges strongly in W 1,p(Ω− ∪ Ω+, Rd) as the size of the neighborhoodtends to 0.Corollary 4.10 Let p > d and û∈W 1,p(Ω−∪M̂∪Ω+, Rd) with û=0 on ΓDir in the tra
esense. With ξM̂

ρ (x) := min
{

1
ρ

(
dM̂(x)− ρ

)+
, 1

} set
ûρ(x1, s) := ûsym(x1, s) + ξM̂

ρ (x1, s) ûanti(x1, s) . (4.14)Then the following statements hold:(i) ûρ → û strongly in W 1,p(Ω− ∪ Ω+, Rd),(ii) û ∈ W 1,p(Ω− ∪ M̂ ∪ Ω+, Rd) ⇒ ûρ ∈ W 1,p(Ω− ∪ (M̂ +Bρ(0)) ∪ Ω+, Rd) with
Bρ(0) ⊂ R

d,(iii) [[û · n1]] ≥ 0 ⇒ [[ûρ ·n1]]≥ 0.Proof: Re
all that ûsym ∈ W 1,p(Ω, Rd) is �xed in ûρ, so that it su�
es to verify thestatements for ûρ
anti = ξM̂

ρ ûanti. From ξM̂
ρ positive and [[û·n1]] ≥ 0 it follows [[ûρ

anti·n1]]≥0,whi
h proves (iii). Note that
ξM̂
ρ (x)





= 0 if dM̂(x) ≤ ρ,

∈ (0, 1) if ρ < dM̂(x) ≤ 2ρ,

= 1 if 2ρ < dM̂(x),

and ξM̂(x) :=

{
0 if x ∈ M̂,

1 otherwise. (4.15)Hen
e ûρ
anti = 0 in M̂ + Bρ(0). This implies ûρ ∈ W 1,p(Ω−∪(M̂ + Bρ(0))∪Ω+, Rd), sothat (ii) holds.It remains to prove (i). From (4.15) we see that ξM̂

ρ → ξM̂ pointwise in Ω. With
Aρ := [dM̂(x) ≤ ρ], Bρ := [ρ < dM̂(x) ≤ 2ρ] and Cρ := [2ρ < dM̂(x)] we obtain by thedominated 
onvergen
e theorem that
‖ûρ

anti − ûanti‖
p
Lp(Ω,Rd)

=

∫

Aρ

|ûanti|
p dx +

∫

Bρ

|(ξM̂
ρ − ξM̂)ûanti|

p dx +

∫

Cρ

|0|p dx → 0 ,due to Ld
(
[dM̂(x) ≤ ρ]

)
→ 0, Ld

(
[ρ < dM̂(x) ≤ 2ρ]

)
→ 0 and |ξM̂

ρ − ξM̂ | ≤ 1 for all
ρ > 0.By the 
hain rule we 
al
ulate that ∇ûρ

anti = ξM̂
ρ ∇ûanti + ûanti⊗∇ξM̂

ρ . Thus,
‖∇(ûρ

anti−ûanti)‖Lp ≤ ‖(1−ξM̂
ρ )∇ûanti‖Lp +‖ûanti⊗∇ξM̂

ρ ‖Lpwhere ‖(1− ξM̂
ρ )∇ûanti‖Lp(Ω−∪Ω+,Rd×d) → 0 again by dominated 
onvergen
e.It remains to show that ‖ûanti⊗∇ξM̂

ρ ‖Lp(Ω−∪Ω+,Rd×d) → 0. We obtain that
|∇ξM̂

ρ (x)| =





0 if 0 ≤ dM̂(x) ≤ ρ,

1/ρ if ρ < dM̂(x) ≤ 2ρ,

0 if 2ρ < dM̂(x) ,28



i.e. |∇ξM̂
ρ |≤1/ρ. Sin
e dM̂(x)∈ [ρ, 2ρ] it holds 1/ρ≤ 2

d
M̂

(x)
for all x∈Ω. We 
on
lude

‖ûanti⊗∇ξM̂
ρ ‖

p
Lp(Ω−∪Ω+,Rd×d)

≤ 2p

∫

B2ρ(M̂)\Bρ(M̂ )

∣∣∣∣
ûanti(x)

dM̂(x)

∣∣∣∣
p

dx → 0,sin
e ‖ûanti/dM̂‖Lp(Ω−∪Ω+,Rd) is bounded by Corollary 4.9 and sin
e
Ld

(
B2ρ(M̂)\Bρ(M̂)

)
→ 0 for B2ρ(M̂)\Bρ(M̂) = {x ∈ Ω | ρ<dM̂(x)≤2ρ} .With these tools at hand we now prove the existen
e of a mutual re
overy sequen
e un-der the assumption that r ∈ (1,∞). In parti
ular we have to determine the molli�ers ηκin su
h a way that their slopes grow su�
iently slow, so that ∫

ΩD κ
r

(
|∇ẑκ|

r−|∇zκ|
r
)
dyvanishes. In order to verify this, we will exploit the Lips
hitz-
ontinuity of | · |r.Theorem 4.11 (Mutual re
overy sequen
es) Let (Q, Eκ,R) and (Q, E ,R) be gi-ven by (2.12), (3.1), (2.16) and (4.1), su
h that the assumptions (2.5) and (2.6) holdtrue with p>d and r ∈ (1,∞). Then, for all (tκ, qκ)

TT−→ (t, q) with qκ∈S
κ(tκ) for all

κ ∈ (0, κ0] and for every q̂∈Q there is a sequen
e (qκ)κ∈(0,κ0] su
h that (4.10) holds.Proof: Let (tκ, uκ, zκ)
TT−→ (t, u, z) with qκ = (uκ, zκ) ∈ S

κ(tκ) for every κ ∈ (0, κ0].Consider q̂ = (û, ẑ) ∈ Q. If q̂ ∈ Q\QG, then E(tκ, q̂) = ∞ for all κ ∈ (0, κ0] and(4.10) trivially holds. Hen
e, assume that q̂ ∈ QG. Additionally let 0 ≤ ẑ ≤ z a.e.in ΩD, otherwise R(ẑ−z) = ∞. For every κ ∈ (0, κ0] we now have to 
onstru
t themutual re
overy sequen
e (ûκ, ẑκ)κ∈(0,κ0] ⊂ Q in su
h a way that q̂κ = (ûκ, ẑκ)∈QC and
R(ẑκ−zκ) < ∞ for all κ∈(0, κ0]. This means in parti
ular that ẑκ∈W 1,r(ΩD), whereas
ẑ∈L∞(ΩD), only. Additionally it is required that ẑκ ≤ zκ a.e. inΩD. The 
onstru
tion of
(ẑκ)κ∈(0,κ0] will be done in Step 1. In Step 2 we verify that ∫

ΩD κ
r

(
|∇ẑκ|

r−|∇zκ|
r
)
ds → 0.Finally, in Step 3, we spe
ify ûκ using Corollary 4.10.Step 1 (Constru
tion of ẑκ): For all κ ∈ (0, κ0] we now 
onstru
t ẑκ. We have

ẑ∈L∞(ΩD) with 0≤ ẑ≤1 being 
onstant a.e. in y1-dire
tion, whereas ẑκ has to satisfy
ẑκ∈W 1,r(ΩD) with ∂y1

ẑκ = 0 and 0 ≤ ẑκ ≤ 1. First, we put
ζ(y) :=

{
ẑ(y)/z(y) if z(y) > 0 ,

0 if z(y) = 0.
(4.16)Due to the assumption 0 ≤ ẑ ≤ z it 
learly holds that 0 ≤ ζ ≤ 1 a.e. in ΩD. Wemollify TCζ by 
onvolution with the sequen
e (ηκ)κ∈(0,κ0] ⊂ C∞

0 (Rd−1) of (4.11), wherethe dependen
e of ρ from κ will be spe
i�ed below. For all κ ∈ (0, κ0] the 
onvolutionleads to fun
tions ζ̃κ = TCζ ∗ ηκ whi
h satisfy ζ̃κ → TCζ strongly in Lq(ΓC) for all
q ∈ [1,∞) by [Ada75, Lemma 2.18℄, sin
e ẑ/z ∈ Lq(ΩD). Then we set ζκ(y1, s) = ζ̃κ(s)for all (y1, s) ∈ ΩD. As the �nal re
overy sequen
e we introdu
e

ẑκ := zκζκ for all κ ∈ (0, κ0] , (4.17)whi
h satis�es 0 ≤ ẑκ ≤ zκ. Sin
e zκ
∗
⇀ z in L∞(ΩD) by assumption, ζ̃κ → TCζ in

L1(ΓC) and thus ζκ → ζ in L1(ΩD) we have ẑκ ⇀ ẑ in L1(ΩD), and hen
e
lim
κ→0

R(ẑκ−zκ) = lim
κ→0

̺

∫

ΩD(zκ−ẑκ) dy = R(ẑ−z) . (4.18)29



Appli
ation of the 
hain rule yields that ∇ẑκ = ∇(ζκzκ)=ζκ∇zκ+zκ∇ζκ ∈ Lr(ΩD, Rd)as well as ∂y1
ẑκ =0 due to ∂y1

zκ =0 and ∂y1
ζκ =0.In order to ensure that κ

r
‖∇ẑκ‖

r
Lr(ΩD,Rd) → 0 as κ → 0 we now determine the radius

ρ(κ) for the molli�ers ηκ = η̃ρ(κ) suitably. For η̃ρ from (4.11) we have
‖∇(TCζ∗η̃ρ)‖

r
Lr(ΓC,Rd−1) ≤ ‖TCζ‖L∞(ΓC)‖∇η̃ρ‖

r
Lr(ΓC,Rd−1) ≤ ‖∇η̃1‖

r
Lr(ΓC,Rd−1)ρ

−r(d−1) .(4.19)Hen
e, ρ(κ) has to be 
hosen in su
h a way that κρ−r(d−1)→0. This is satis�ed e.g. for
ρ(κ)=κ1/(2r(d−1)). We de�ne ηκ = η̃ρ(κ).Step 2 (Can
ellation argument): Up to now our 
onstru
tion makes sure that
κ
r
‖∇ζκ‖

r
Lr(ΩD,Rd)

≤ Cκρ−r(d−1) → 0 as κ→ 0. Sin
e κ
r
‖∇zκ‖

r
Lr(ΩD,Rd)

is only uniformlybounded by the properties of stable sequen
es, we 
on
lude that κ
r
‖∇ẑκ‖

r
Lr(ΩD,Rd) maynot vanish 
ompletely. However, in the lim sup-estimate (4.10) we 
an 
ompensate theremaining terms by the term −κ

r
‖∇zκ‖

r
Lr(ΩD,Rd) that o

urs in Eκ(tκ, uκ, zκ). In orderto show that these terms indeed 
an
el out we use the following Lips
hitz-estimate for

w(x) = |x|r with r ∈ (1,∞) and x ∈ R, whi
h 
an be obtained by a Taylor expansion:
|w(a)− w(b)| =

∣∣∣∣
∫ 1

0

w′(b + α(a− b))(a− b) dα

∣∣∣∣ ≤ 2r−1(|a|r−1 + |b|r−1)|a− b| (4.20)for all a, b ∈ R. Using 0 ≤ ζκ ≤ 1 and 0 ≤ zκ ≤ 1 a.e. in ΩD, estimate (4.20) andHölder's inequality imply
∫

ΩD κ
r

(
|∇ẑκ|

r−|∇zκ|
r
)
dy ≤

∫

ΩD κ
r

(
(|∇ζκ|+|∇zκ|)

r−|∇zκ|
r
)
dy

≤ 2r−1

∫

ΩD κ
r

(
2r−1|∇ζκ|

r−1 + 2r|∇zκ|
r−1

)
|∇ζκ| dy

≤ 22r−2

r
κ‖∇ζκ‖

r
Lr(ΩD,Rd) + 22r−1

r
κ1−1/r‖∇zκ‖

r−1
Lr(ΩD,Rd)

κ1/r‖∇ζκ‖Lr(ΩD,Rd) → 0 ,sin
e κ‖∇ζκ‖
r
Lr(ΩD,Rd) → 0 by 
onstru
tion and κ1−1/r‖∇zκ‖

r−1
Lr(ΩD,Rd)

≤ C due to theproperties of stable sequen
es.Step 3 (Convergen
e of E
κ(tκ, q̂κ)): Be
ause of ẑκ = zκζκ we �nd suppC ẑκ =

suppC zκ ∩ suppC ζκ ⊂ suppC ζ + BC
ρ(κ)(0). Hen
e, for Eκ(tk, q̂k) < ∞ it su�
es to showthat [[ûκ]] = 0 on supp TCẑκ. Sin
e p>d we 
an apply Corollary 4.10 and set

ûκ := ûρ(κ) with M̂ = suppC ẑ . (4.21)where ρ(κ) is determined by (4.19). From (4.12), Corollary 4.10 (ii) and Lemma4.1 we infer that TCẑκ[[ûκ]] = 0 on ΓC. By Corollary 4.10 (i) we have ûκ → û and
(ûκ+g(tκ)) → (û+g(t)) strongly in W 1,p(Ω− ∪ Ω+, Rd) by (2.5). Be
ause of (2.6b),a Taylor expansion gives ∫

Ω−∪Ω+
W (e(ûκ+g(tκ))) dx →

∫
Ω−∪Ω+

W (e(û+g(t))) dx. This�nishes the proof of the lim sup-estimate (4.10).5 Simultaneous Convergen
eIn the Se
tions 3 and 4 we proved that energeti
 solutions of the Gri�th-type delam-ination problem (Q, E ,R) 
an be approximated by energeti
 solutions of the partial30



damage models (Q, Eε
κ,R) via a double limit (�rst ε → 0 and then κ → 0). Thatis, we performed the intermediate step of �rst approximating energeti
 solutions ofthe gradient delamination problems (Q, Eκ,R) as ε → 0. In this se
tion we show thatone 
an merge this double limit passage to a simultaneous 
onvergen
e. For this, wehave to prove the existen
e of a κ-dependent upper bound G : (0, κ0] → (0, ε0] forthe parameter ε. The growth of this fun
tion G is on the one hand determined by theassumption κ1/(r(d−1))/ρ(κ) → 0, whi
h is needed to 
ontrol the gradient of the molli-�ed delamination variable for the 
onstru
tion of the re
overy sequen
e as κ → 0, seeformula (4.19). On the other hand it stems from the fa
t, that the property ∂y1

z = 0 on
ΩD for the limit z ∈ L∞(ΩD) of a sequen
e (zκ

ε )ε∈(0,ε0],κ∈(0,κ0] ⊂ W 1,r(ΩD) with zκ
ε

∗
⇀ zrequires that ε/κ1/r → 0 as (ε, κ) → (0, 0), as 
an be seen from formula (3.6). Thesetwo requirements imply that

ε ≪ κ1/r ≪ κ1/(r(d−1)) ≪ ρ(κ) for 0 < κ < κ0 ≪ 1 . (5.1)For the upper bound on ε we 
hoose a fun
tion G : (0, κ0] → (0, ε0] with the property
G(κ)/κ1/r → 0 as κ → 0 . (5.2)This relation is essential to show the simultaneous limit. Moreover, to obtain thisresult for sequen
es (ε, κ) → (0, 0) simultaneously, the 
ru
ial step is the 
onstru
tionof a joint mutual re
overy sequen
e. We formalize this 
onstru
tion with the aid ofso-
alled re
overy operators, whi
h are de�ned as follows.De�nition 5.1 (Re
overy operators) A family (Rh)h∈(0,h0] with Rh : Q×Q×Q →

Q for all h > 0 is 
alled a family of re
overy operators, if for a given stable sequen
e
(th, qh)h∈(0,h0] with (th, qh)

TT−→ (t, q) and any testfun
tion q̂ ∈ Q the sequen
e q̂h =

Rh(q̂, q, qh) provides a mutual re
overy sequen
e, i.e.
lim sup

h→0

(
Eh(th, q̂h) +R(q̂h − qh)− Eh(th, qh)

)
≤ E(t, q̂) +R(q̂ − q)− E(t, q) .Speaking in this notion the re
overy sequen
e 
onstru
ted in Lemma 3.9 as ε → 0 isformed by re
overy operators Rε = (RU

ε , RZ
ε ) : Q×Q×Q → Q with

R
U
ε : Q×Q×Q → U , R

U
ε (q̂, q, qε) = ûε = ûsym + Aεû , (5.3)

R
Z
ε : Q×Q×Q → Z, R

Z
ε (q̂, q, qε) = ẑε = max

{
εγ, min{ẑ − δε, zε}

}
, (5.4)i.e. here, the re
overy operators do not depend on all the 
omponents of the state q̂, theelements of the stable sequen
e qε and its limit q. In (5.3) it is δε = o(‖zε − z‖Lr(ΩD)).Moreover, for û∈W 1,p(Ω−∪Ω+, Rd) we introdu
ed ûsym(x1, s) = 1

2

(
û(x1, s)+û(−x1, s)

)and ûanti(x1, s) = 1
2

(
û(x1, s)− û(−x1, s)

). Clearly, ûsym ∈ W 1,p(Ω, Rd) and ûanti ∈
W 1,p(Ω−∪Ω+, Rd). Then, omitting to indi
ate the dependen
e of Aεû(x1, s) on s ∈ ΓC,we set
Aεû(x1) =

{
1
2

(
û±(x1)− û∓(−x1)

) if (x1, s) ∈ Ωε
±,

ε−x1

4ε

(
û−(±x1)− û+(∓x1)

)
+ ε+x1

4ε

(
û+(∓x1)− û−(±x1)

) if x1 ∈ I∓ε ,with û± = û|Ω±, I−ε = (−ε, 0] and I+
ε = [0, ε).31



The re
overy sequen
e from Lemma 4.11 for κ → 0 is similarly formed by re
overyoperators Rκ = (RU
κ , RZ

κ ) : Q×Q×Q → Q with
R
U
κ : Q×Q×Q → U , R

U
κ (q̂, q, qκ) = ûκ = ûsym + ξsuppC ẑ

ρ(κ) ûanti , (5.5)
R
Z
κ : Q×Q×Q → Z, R

Z
κ (q̂, q, qκ) = ẑκ = zκηρ(κ) ∗ TC(ẑ/z) , (5.6)where κρ(κ)−r(d−1) → 0 and ξsuppC ẑ

ρ(κ) as in Corollary 4.10. Again, we see that theseoperators do not depend on all the 
omponents of q̂, qκ and q.For the simultaneous limit we now have to 
ompose these two re
overy operators R
κ
ε =

Rκ ◦ Rε to get a joint mutual re
overy sequen
e by q̂κ
ε = Rκ ◦ Rε(q̂, q, q

κ
ε ), where

qκ
ε ∈ S

κ
ε (tκε ) with (tκε , q

κ
ε )

TT→ (t, q). In parti
ular, we have to spe
ify how the 
omposition
◦ has to be understood in our 
ontext. From the 
onstru
tion (5.3)-(5.6) we see that there
overy operators Rε and Rκ of our problems do not depend on all the 
omponents of
Q×Q×Q. Moreover, to get a �nite energy it is ne
essary that the re
overy operatorsmap to a subspa
e of Q, that is QC for Rε and QG for Rκ, respe
tively. For the samereason, also Q×Q×Q is restri
ted to subspa
es, namely Rε : QC ×QC ×QD → QDand Rκ : QG × QG × QC → QC. For the simultaneous limit passage we now wantto plug in testfun
tions q̂ ∈ QG, elements of stable sequen
es qκ

ε ∈ Sκ
ε (tκε ) ⊂ QDfor all ε ∈ (0, ε0], κ ∈ (0, κ0] and their limit q ∈ QG and we need that Rε ◦ Rκ :

QG×QG×QD → QD. Re
all from (5.6) that ẑε
κ(y1, s) = zκ

ε (y1, s)(ηρ(κ)∗TC(ẑ/z))(s), i.e.
ηρ(κ)∗TC(ẑ/z) ∈ C∞(ΓC) and multipli
ation with zκ

ε ∈ W 1,r(ΩD) leads to ẑε
κ ∈ W 1,r(ΩD).Sin
e ∂y1

zε
κ 6= 0, in general, we have R

Z
κ (q̂, q, qκ

ε ) = ẑε
κ ∈ ZD with the property ẑκ

ε ≤ zκ
ε .Hen
e, in view of (5.4) and (5.6), we 
an de�ne R

Z
ε,κ = R

Z
ε ◦R

Z
κ as follows

R
Z
ε,κ(q̂, q, q

κ
ε ) = R

Z
ε ◦R

Z
κ (q̂, q, qκ

ε ) = R
Z
ε

(
R
Z
κ (q̂, q, qκ

ε ), q, qκ
ε

)
= max{εγ, ẑκ

ε } . (5.7)From (5.3) and (5.5) we see that R
U
ε (·, q, qκ

ε ) : QC → UD and R
U
κ (·, ẑ, q, qκ

ε ) : UG → UCare linear operators. Here, we de�ne the 
omposition R
U
ε,κ = R

U
ε ◦R

U
κ by

R
U
ε,κ(q̂, q, q

κ
ε ) = R

U
ε ◦R

U
κ (q̂, q, qκ

ε ) = R
U
ε

(
R
U
κ (q̂, q, qκ

ε )
)

= ûsym + ξsuppC ẑ
ρ(κ) Aεû , (5.8)Now we are in a position to show that Rε,κ given by (5.7) and (5.8) is a joint mutualre
overy operator for the simultaneous limit passage (ε, κ) → (0, 0).Corollary 5.2 (Joint mutual re
overy operators) Let (ε, κ) → (0, 0) under the
ondition that 0 < ε ≤ G(κ) with G : (0, κ0] → (0, ε0] satisfying (5.2). Assume that

r, p ∈ (1,∞) and γ ∈ (p−1, P ), su
h that (3.12) and (3.9) are satis�ed. Let (2.5) and(2.6) hold. Then, the operators R
κ
ε = (RU

ε,κ, R
Z
ε,κ) : Q×Q×Q → Q de�ned by (5.7) and(5.8) form joint mutual re
overy operators for the systems (Q, Eκ

ε ,R) and (Q, E ,R).Proof: Let q̂ ∈ QG and (tκε , q
κ
ε )

TT−→ (t, q) as κ → 0 with (tκε , q
κ
ε ) ∈ Sκ

ε (tκε ). Then,
qκ
ε ∈ QD for all κ ∈ (0, κ0]. For the proof we set M̂ = suppC ẑ and in the arguments ofthe re
overy operators (5.3)�(5.6) we only indi
ate the quantities they depend on.By (5.7) and (5.8) it is R

U
ε,κ(û, M̂) = ûsym + ξM̂

ρ(κ)Aεû. Hen
e ξM̂
ρ(κ)Aεû = 0 in Bρ(κ)(M̂),while supp R

Z
κ (ẑ, z, zκ

ε ) ⊂ (−1, 1)× (BC
ρ(κ)(M̂)), so that R

Z
ε,κ(ẑ, z, zκ

ε ) = εγ in (−1, 1)×

ΓC\(BC
ρ(κ)(M̂)). Moreover, we have

e
(
R
U
ε,κ(û, M̂)

)
= ∇ûsym + ξM̂

ρ(κ)e(Aεû) + 1
2

(
Aεû⊗∇ξM̂

ρ(κ) + (Aεû⊗∇ξM̂
ρ(κ))

⊤
)
. (5.9)32



Re
all that the assumption κ1/(r(d−1))/ρ(κ) → 0 is needed to 
ontrol the gradientof the molli�ed delamination variable for the 
onstru
tion of the re
overy sequen
eas κ → 0, see formula (4.19). Moreover, to preserve that ∂y1
z = 0 on ΩD requires

ε/κ1/r → 0 as κ → 0, as 
an be seen from formula (3.6). Thus, relation (5.1) follows.By the assumptions (5.2) and ε ≤ G(κ) we have ensured that ε/κ1/r → 0. Hen
e,
learly R
Z
κ,ε(ẑ, z, z

κ
ε )

∗
⇀ ẑ, so that R(

R
Z
κ,ε(ẑ, z, zκ

ε )−zκ
ε

)
→ R

(
ẑ−z

)
. Moreover, both

Ωε
± ∩ Bρ(κ)(M̂) 6= ∅ and ΩεD ∩ Bρ(κ)(M̂) 6= ∅.In the following we omit indi
ating the dependen
e of ε and ρ on κ. Using the positivityof W given by (2.6b), the fa
t that Aεû|Ωε

±
= ûanti|Ωε

±
, Corollary 4.10 (i), (2.5) and thedominated 
onvergen
e theorem we �nd

∫

Ωε
±

W
(
e
(
R
U
ε,κ(û, M̂)+g(tε)

))
dx ≤

∫

Ω±

W
(
e
(
ûsym+ξM̂

ρ ûanti+g(tε)
))

dx

→

∫

Ω±

W
(
e(û+g(t))

)
dx .In view of (5.9) we obtain on ΩεD

∫

ΩεD Π−1
ε R

Z
κ,ε(ẑ, z, zκ

ε )W̃
(
e(RU

ε,κ(û, M̂))
)
dx

≤ 3p−1c̃

∫

ΩεD (
|∇ûsym|

p + Π−1
ε R

Z
κ (ẑ, z, zκ

ε )|e(Aεûanti)|
p +

∣∣Aεû⊗∇ξM̂
ρ

∣∣p) dx ,

(5.10)where the �rst term obviously tends to 0 as ε → 0. For the third term we pro
eed asin the proof of Corollary 4.10, i.e. with Dρ(M̂) = B2ρ(M̂)\Bρ(M̂) we have
∫

ΩεD ∣∣Aεû⊗∇ξM̂
ρ(κ)

∣∣p dx ≤

∫

ΩεD∩Dρ(M̂)

2p

∣∣∣∣
Aεûanti

dM̂(x)

∣∣∣∣
p

dx ≤

∫

ΩεD∩Dρ(M̂ )

2p

∣∣∣∣
ûanti

dM̂(x)

∣∣∣∣
p

dx → 0 , (5.11)sin
e ‖ûanti/dM̂(x)‖Lp(Ω−∪Ω+,Rd) is bounded by Proposition 4.9. Moreover, we have usedthat (ε± x1)/(4ε) ≤ 1/2 for x1 ∈ Iε, where Iε = (−ε, ε).Furthermore, the se
ond term in (5.10) 
an be estimated using that
∫

ΩεD Π−1
ε R

Z
ε,κ(ẑ, z, z

κ
ε )|e(Aεû)|p dx ≤

∫

Iε×(ΓC\BC
ρ (M̂))

εγ|e(Aεû)|p dx +

∫

(Iε×BC
ρ (M̂ ))\Bρ(M̂)

|e(Aεûanti)|
p dx .By repeating the estimates (3.37)-(3.42) we 
on
lude that this term tends to 0.To verify that also ∫

ΩεD ϕ
(
e
(
R
U
ε,κ(û, M̂)

))
dx → 0 we use the upper growth estimatein (2.3) and again formula (5.9). Moreover, sin
e | trA| ≤ |A| for all A ∈ R

d×d, wesee that the terms 
ontaining tr∇ûsym and tr(Aεû⊗∇ξM̂
ρ ) tend to 0 with the samearguments as above. To prove that also the term 
ontaining tr e(Aεû) tends to 0 onehas to repeat the 
orresponding arguments in the proof of Lemma 3.9.Finally, for the gradient of the delamination variable it is

κ
(
‖ε∇R

Z
ε,κ(ẑ, z, z

κ
ε )‖r

Lr(ΩD,Rd) − ‖ε∇zκ
ε ‖

r
Lr(ΩD,Rd)

)

≤ κ
(
‖ε∇R

Z
κ (ẑ, z, zκ

ε )‖r
Lr(ΩD,Rd) − ‖ε∇zκ

ε ‖
r
Lr(ΩD,Rd)

)
.33



Then formula (4.19) and the 
an
ellation argument lead to the desired result, sin
e
κ1−1/r‖ε∇zκ

ε ‖
r−1
Lr(ΩD,Rd)

≤ C due to the properties of stable sequen
es.The existen
e of a joint mutual re
overy sequen
e by Corollary 5.2 implies that thelimit (t, q) of a stable sequen
e (tκε , q
κ
ε )

TT−→ (t, q) as (ε, κ) → (0, 0), satis�es q ∈ S(t),that is E(t, q) ≤ E(t, q̃) +R(z̃ − z) for all q̃ = (ũ, z̃) ∈ Q. This yields that E(t, q) < ∞and hen
e q ∈ QG. In parti
ular, this means that q = (u, z) satis�es the transmissionand the noninterpenetration 
ondition, see (4.3).Sin
e qκ
ε ∈ Sκ

ε (tκε ) for all ε ∈ (0, ε0], κ ∈ (0, κ] implies the equiboundedness of the
orresponding energies one obtains the existen
e of a subsequen
e qκ
ε

T
−→ q by Lemma3.2 and the de�nition of T . Thus, we may state the following 
orollary.Corollary 5.3 Let the assumptions of Corollary 5.2 hold true. Consider a family

(tκε , u
κ
ε , z

κ
ε )ε(0,ε0],κ∈(0,κ0] with 0 < ε ≤ G(κ) and G as in (5.2), su
h that (uκ

ε , z
κ
ε ) ∈ Sκ

ε (tκε )and tκε → t. Then, there is a subsequen
e (uκk
εk

, zκk
εk

)
T
−→ (u, z) as (εk, κk) → (0, 0) and

(u, z) ∈ QG, so that the transmission and the noninterpenetration 
ondition (1.1) aresatis�ed.Moreover, the simultaneous lower Γ-limit 
an dire
tly be adopted from Lemmata 3.7and 4.8. Lemma 3.8 
on
erning the properties of the partial time-derivatives of theenergy fun
tionals and Lemma 4.7 on the limit fun
tional and are valid as well. Hen
e,we are in a position to 
on
lude with the simultaneous 
onvergen
e result.Theorem 5.4 (Simultaneous 
onvergen
e) Let the assumptions of Corollary 5.2hold. For all ε ∈ (0, ε0], κ ∈ (0, κ0] let qκ
ε : [0, T ] → Q denote energeti
 solutions ofthe systems (Q, Eκ

ε ,R) and the initial values qε,κ
0 , whi
h satisfy Eκ

ε (0, qε,κ
0 ) → E(0, q0).Then every subsequen
e (

qκk
εk

(t)
)

k∈N
with εk/κ

1/r
k → 0, whi
h 
onverges for all t ∈ [0, T ]with respe
t to the topology T , has an energeti
 solution of (Q, E ,R, q0) as its limit.Proof: The stability inequality (1.2 S) for q : [0, T ] → Q and (Q, E ,R) is a dire
t
onsequen
e of Corollary 5.2. To verify the energy balan
e (1.2E) one may repeat thearguments of [MRS08, Theorem 3.1℄. Alltogether, this implies that q : [0, T ] → Q isan energeti
 solution of (Q, E ,R, q0).A Appendix: Abstra
t Γ-
onvergen
e ResultIn [MRS08℄ the theory of Γ-
onvergen
e was adapted to the framework of the energeti
formulation of rate-independent pro
esses. In the following we introdu
e su�
ient
onditions guaranteeing that a subsequen
e of energeti
 solutions of the approximatingsystems (Q, Ej,Rj) 
onverges to an energeti
 solution of the limit system (Q, E∞,R∞).Let the topology for the 
onvergen
e of the energeti
 solutions be denoted by T . Theni.e. we want to obtain that qj(t)

T
→ q(t) for all t ∈ [0, T ].For all j ∈ N∞ = N ∪ {∞} we introdu
e the stable sets

Sj(t) := {q ∈ Q | Ej(t, q) < ∞, ∀q̃ = (ũ, z̃) : Ej(t, qj) ≤ Ej(t, q̃) +Rj(z̃−zj)}.34



In order to ensure the Γ-
onvergen
e of the systems (Q, Ej,Rj)j∈N the following 
ondi-tions have to be satis�ed by the energy fun
tionals Ej : [0, T ]×Q → R∞ for all j ∈ N∞.Compa
tness of energy sublevels: ∀ t∈[0, T ] ∀E∈R :

∀j ∈ N∞ : Lj
E(t) := {q ∈ Q | Ej(t, q) ≤ E} is 
ompa
t wrt. T ,

⋃∞
j=1 Lj

E(t) is relatively 
ompa
t wrt. T ,

(A.1-E1)Uniform 
ontrol of the power:
∃ c0∈R ∃ c1>0 ∀j ∈ N∞∀ (tq, q)∈[0, T ]×Q with E(tq, q) < ∞ :

E(·, q) ∈ C1([0, T ]) and |∂tE(t, q)| ≤ c1(c0+E(t, q)) for all t∈[0, T ] ,

(A.1-E2)Uniform time-
ontinuity of ∂tE∞ :

∀ε > 0 ∀E ∈ R ∃ δ > 0 ∀q ∈ Q with E(0, q) < E :

|t1 − t2| < δ ⇒ |∂tE∞(t1, q)− ∂tE∞(t2, q)| < ε .

(A.1-E3)Furthermore the dissipation distan
es Dj : Z × Z → [0,∞] with Dj(z, z̃) = Rj(z̃−z)for all z, z̃ ∈ Z must ful�ll for all j ∈ N∞:Quasi-distan
e:
∀j ∈ N∞ ∀ z1, z2, z3 ∈ Z : Dj(z1, z2) = 0 ⇔ z1 = z2 and

Dj(z1, z3) ≤ Dj(z1, z2) +Dj(z2, z3) ,

(A.2-D1)Semi-
ontinuity:
∀j ∈ N∞ : Dj : Z×Z → [0,∞] is lower semi-
ontinuous wrt. T ,

(A.2-D2)Positivity of D∞ :

∀ 
ompa
t A ⊂ Z , ∀(zj)j∈N ⊂ A :

min{Dj(zj , z),Dj(z, zj)} → 0 ⇒ zj
TZ→ z , (A.2-D3)where TZ is the restri
tion of T to the z-
omponent of q = (u, z) .Additionally the following 
ompatibility 
onditions have to be satis�ed:For all tj → t in [0, T ], qj = (uj, zj)

T
→ q = (u, z) with qj ∈ Sj(tj) for all j ∈ N it holdsConditioned 
ontinuous 
onvergen
e of ∂tEj :

∂tEj(tj , qk) → ∂tE(t, q) ,
(A.3-C1)Conditioned upper semi-
ontinuity of stable sets:

q ∈ S∞(t) ,
(A.3-C2)Lower Γ-limit for Ej :

E(t, q) ≤ lim infj→∞ Ej(tj , qj) ,
(A.3-C3)Lower Γ-limit for Dj : Let additionally q̂j = (ûj, ẑj)

T
→ q̂ = (û, ẑ) (A.3-C4)with q̂j ∈ Sj(tj), j ∈ N,The theorem below states the 
onvergen
e result. A proof is given in [MRS08, Th. 3.1℄.35



Theorem A.1 (Γ-
onvergen
e of (Q, Ej,Rj)j∈N) Let 
onditions (A.1), (A.2) and(A.3) hold and for all j ∈ N let qj : [0, T ] → Q be an energeti
 solution of (Q, Ej,Rj) inthe sense of Def. 1.1. If qj(t)
T
→ q(t) for all t ∈ [0, T ] and if Ej(0, qj(0)) → E∞(0, q(0))then q : [0, T ] → Q is an energeti
 solution of (Q, E∞,R∞).Moreover, for all t ∈ [0, T ] it is Ej(t, qj(t))→E(t, q(t)), DissRj

(qj , [0, t])→DissR(q, [0, t])and ∂tEj(t, qj(t))→∂tE(t, q(t)) for a.a. t ∈ [0, T ]. Furthermore, for Q being a separable,re�exive Bana
h spa
e, the energeti
 solution q is measurable with respe
t to time.A
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