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Abstract

Brittle Griffith-type delamination of compounds is deduced by means of I'-
convergence from partial, isotropic damage of three-specimen-sandwich-struc-
tures by flattening the middle component to the thickness 0. The models used
here allow for nonlinearly elastic materials at small strains and consider the pro-
cesses to be unidirectional and rate-independent. The limit passage is performed
via a double limit: first, we gain a delamination model involving the gradient of
the delamination variable, which is essential to overcome the lack of a uniform
coercivity arising from the passage from partial damage to delamination. Second,
the delamination gradient is supressed. Noninterpenetration- and transmission-
conditions along the interface are obtained.

1 Introduction

Delamination (or debonding) is one main reason for the macroscopic failure of com-
pounds. Opposite, sometimes delamination is an intentional mechanism in engineering
constructions designed for the efficient absorption of energy during impacts. In any
case, reliable modelling of delamination is important and has recently received a con-
siderable attention both in engineering and in mathematical communities. As many
engineering contributions [A1102, AC96, DBS02, Lad92] the present paper views delam-
ination as the damage of interfaces. Using the ideas of continuum damage mechanics,
the delamination along an interface I'c is modelled by an inner variable, the delami-
nation variable z : [0,7] x I’ — [0, 1], which reflects the current state of the bonding
along I, i.e. for z(¢,2) = 1 the bonding is fully intact at = € I'c at time ¢t € [0, 7],
whereas for z(t,z) = 0 the bonding is completely broken. In [All02] it is suggested
to understand interfaces as the limit of a thin medium, which links two constituents
and which follows its own constitutive law. Such interface models have been exploited
in [PS96a, PS96b] to study delamination in the framework of the adhesion models of
Frémond, see e.g. [Frés8g].

In the present work such a limit is rigorously performed: Starting from a sandwich-
structure composed of three constituents of non-zero thickness, where the middle com-
ponent is exposed to partial, isotropic damage, the delamination of two perfectly un-
breakable specimen glued together with a breakable adhesive of thickness 0 is gained
when flattening the thickness of the middle component to 0, see also Fig. 1. The
damage models applied for this purpose where analyzed in [TM10]. The limit pas-
sage is mathematically performed via a double limit. The first limit models describe
delamination with an energy functional involving the delamination gradient and they
reflect transmission- and noninterpenetration conditions on the displacements v along
the interface, namely

z[u] =0 and Jun;] >0 ae. on T, (1.1)
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where [u] is the jump of u across I'c and n; is the unit normal vector. At this point
we emphasize that the noninterpenetration condition cannot be obtained from any
constitutive relation in the damageable domain. Since the usage of the small strain
tensor presumes infinitesimally small strains and hence excludes interpenetration in
the bulk, this additional unilateral contact condition rather results from an anisotropic
term in the stored energy density on the damageable domain, which involves (tre)™,
the negative part of the trace of the small strain tensor e.

The delamination gradient was also included in the models analyzed in [BBR08, BBR09|.
Due to this term, the delamination variable can attain values between 0 and 1. This
property differs from those of crack-models based on Griffith’ fracture criterion [Gri21],
as studied e.g. in [DMFT04, FL.03, Gia05|. To overcome this discrepancy the gradient
is suppressed in a second limit k — 0 and the delamination model discussed in [RSZ09]
is obtained. In fact, Proposition 4.4 implies that 2z in this model only takes the val-
ues 0 or 1 for the initial datum zy = 1. Then 1 — z is the indicator function of the
crack. Indeed, this model reflects Griffith’ fracture criterion, since it expresses, that a
crack expands as soon as the energy release is bigger than a critical value (the fracture
toughness o in (4.5)) and crack-healing is forbidden.

Both the damage and the delamination processes are considered to be quasistatic and
hence can be analyzed using their so-called energetic formulation. Our general frame-
work will solely be based on the hypothesis that the evolution is governed by a time-
dependent energy functional £ and a dissipation potential R being degree-1 positively
homogeneous, which reflects the rate-independence of the process (i.e. invariance under
any monotone rescaling of time). Both functionals are defined with respect to a suitable
state space Q, which is a Banach space in this work. The triple (Q,&,R) is called a
rate-independent system. A state ¢ = (u,2) € U x Z =: Q is given by the displacement
field v and the inner variable z that describes either damage or delamination. We
assume that R involves only 2, which distinguishes it as a “slow” variable while u is a
“fast” variable. Within the energetic formulation of rate-independent processes one is
interested in so-called energetic solutions, which are defined as follows:

Definition 1.1 (Energetic solution) The process q = (u,z) : [0,T] — Q is an en-
ergetic solution of the initial value problem given by (Q,E,R) and the initial condition
(w0, 20), i 4(0) = (u(0),2(0)) = (o, 20), if tDE(Ea(t)) € L((O.T)), if for all
t € [0,T] we have E(t,q(t)) < oo and if the global stability inequality (1.2S) and the
global energy balance (1.2E) are satisfied for all t € [0,T]:

forallge Q: E(t,q(t)) <E(t,q) +R(Z— 2(t) (1.25)
E(t, ¢(t)) + Dissg(2, 0,4]) = / DEE q(€)de  (12F)
with Dissg(z, [0, t]) —sup{zj L R(2(t5) = 2(tj-1)) | 0=t <ty <...<ty=t, NEN}.

For the limit passages we will apply the abstract result [MRS08, Theorem 3.1| for
sequences of rate-independent systems, which generalizes the classical ideas of I'-
convergence to the rate-independent setting. While the classical I'-convergence, see

[DM93] ensures that minimizers of static functionals converge to minimizers of
a limit functional, if the lim inf-inequality and the existence of a recovery sequence is
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given, these two properties are not sufficient to verify an analogous implication in the
rate-independent setting. In order to guarantee that energetic solutions g, : [0, 7] — Q
of the approximating systems (Q, &y, Ry) converge as h — 0 to an energetic solution
q : [0,7] — Q of the limit system (Q,&,R) the properties (1.2) have to be main-
tained under convergence. The theorem [MRS08, Theorem 3.1|, which guarantees this
and which is the basis of our convergence results, is recalled in Theorem A.1 in the
Appendix. In particular, the conservation of (1.2S) can be verified by the construc-
tion of a so-called mutual recovery sequence, which must preserve the interplay of the
displacements and the inner variable required by the specific form of the functionals.

In the present work the transmission condition in (1.1) makes the construction of the
mutual recovery sequences extraordinarily difficult for both limit passages, since it
requires a strong interaction of the displacements and the inner variables. For the first
limit a reflection technique is applied to the displacements, see Section 3.2, and for the
second limit a generalized Hardy’s inequality is used, see Section 4.2.

Another difficulty lies in extracting the conditions (1.1) when passing from partial dam-
age to delamination, since this entails a loss of coercivity: For the modeling of damage
and delamination it is characteristic that the stored energy density links the unknowns
(linearized strain tensor e, inner variable z) multiplicatively, e.g. as in W (e, 2) := z|e|?.
Thus, the coercivity of the partial damage processes, i.e. z € (¢7,1] with 7 > 0, is lost
as ¢ — 0. Then, in general, regions with z = 0 isolating those with z > 0 from the
Dirichlet boundary may occur, so that Korn’s inequality does not hold. Due to this,
e.g. in [BMRO9] partial damage models result in a complete damage model containing
no information about the displacements. Anyhow to deduce (1.1) we transform the
damageable domains to a unit domain, see Fig. 1, and we use an ansatz ensuring that
the limit z of a bounded sequence (u., 2:).c(0,,] is constant in the direction vanishing
as € — 0, so that no isolated regions with z > 0 can occur.

In Section 2 the setup, tools and an existence result for the partial, isotropic damage
models are introduced. In Section 3, a delamination model involving the delamina-
tion gradient is obtained as the I'-limit of these damage models. Then, in Section
4, it is shown that the gradient delamination models I'-converge to a model describ-
ing Griffith-type delamination, which no longer involves the (artificial) delamination
gradient. Finally, in Section 5 the results are merged to a simultaneous convergence.

Remark 1.2 In [Thol0] the noninterpenetration condition from (1.1) was deduced
from the term ej;, which involves only the first component of the strain tensor e,
and not from the full trace (tre)”, as it is done in this work in order to get closer
to engineering models. Moreover, the transmission condition from (1.1) was deduced
under the assumption that the damage component of states in sublevels of £ is bounded
in Wbr(Qy,) for some r > d, which implies the compact embedding W17 () € C(Qp).
In this work it was possible to generalize the results to r € (1,00). Hence, the limit
passage ¢ — 0 can be done for all » € (1,00) and p € (1, 00), which satisfy a certain
relation, see (3.12). Here, W' (€2y,) is the Sobolev space for the damage variable and
Whr(Q,RY) denotes the Sobolev space for the displacements. Relation (3.12) even
admits the exponents r = 2 and p = 2 for d = 3. However, for technical reasons the
second limit passage x — 0 is carried out as in [Thol0] for p > d. O



2 The Damage Models, Assumptions and Tools

For all € € (0,&0] we consider a domain Q:=(—L, L) x (—H, H)?!, which is the union
of the three cuboid-type Lipschitz-domains Q° = (=L, —¢) x ', Q% := (e,L) xI'¢
for L >1, QF :=(—¢,e)x[c C R? with the interfaces T'q := {+e} x'c C R¥! and
[e:=(—H,H)¥ 1 see also Fig. la. We assume that the domains Q5 are occupied
by a nonlinearly elastic material which is damage-resistive, whereas ) refers to a
material undergoing a rate-independent damage process leading to partial damage of
that specimen. This damage process is assumed to be driven by slow time-dependent
external loadings induced by time-dependent Dirichlet conditions on parts of the outer
boundary Ty, ={L, —L}x¢ with £37}(T}y;,) >0. Throughout this paper £L™(A) denotes
the m-dimensional Lebesgue-measure of the set ACR™ with m = (d—2), (d—1) or d.

Ibir

,,,,,,,,,,,,,,,,,,,,,,,,,

2

T1,Y1

z3

L—e

Fig.1. Geometry and notation of the cuboid-type domains and surfaces used.
a) Domain with a thin subdomain Q5 undergoing possible damage. Loading is
realized through Dirichlet boundary conditions prescribed on the sides I';,.

b) Domain obtained for e=0 with an interface ' undergoing possible delamina-
tion with a subsequent unilateral Signorini condition.

c) Setup for the analysis: the original, e-dependent domains Q2 , Q7 and €O,
are used for the displacements, whereas the auxiliary transformed damageable
domain Qy, of fixed size is used for the damage/delamination variable.

For ¢ = (u, z) the energy of the compound €, see Fig. 1a, is given by:

<‘,~’E"“(t,u,z)::/W(e(u+g(t)))dx +/(WD(e(u+g(t)), z)+%|Vz|T+5[gv71](z)) dz, (2.1)
0 uQs. oz

where 7 € (1,00) and €,k > 0. Since we are going to perform the limit passages
e,k — 0, we restrict our analysis to small values € € (0, ¢] and € (0, k¢] for constants
0<ep < 1, 0< kg < 1. For the stored elastic energy density Wy : R2? x [0,1] — R of
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the damageable region we make a specific ansatz for all e € ]ngxrff and z € [0, 1], namely

Wy(e, z) == zW(e) + p(tre), (2.2)
where tr(e) = 3°%  e;; and where ¢ : R — [0, 00) is convex and satisfies
ca ) <pa) <c((a )P +1)a (2.3)

with constants ¢, ¢ > 0 and an exponent p € (1,p] and a~ := max{0, —a}. Thus, ¢ in
(2.2) only takes into account the negative part of tre and hence punishes compression,
which may trigger less damage than tension. More importantly, the contribution of
p(tre) to Wy, in (2.2) guarantees that even the totally damaged material still resists
compression. As an example for (2.2) one may consider an isotropic material coupled
with damage as follows

Wole,2) = 2(jurle]” + plel” + 3 (tre)*2) + 3 (ere) P,

where A, 1 > 0 are the Lamé constants. Then p = 2 and ¢ = ¢ = A/2 in (2.3). The
properties of W and W are explained in detail in Section 2.1.

In (2.1), u: Q—R? denotes the unknown displacement and e(w):=1(Vw+Vw") the
linearized strain tensor for all w:Q — R Thereby u satisfies homogeneous Dirichlet
conditions on I}, and the given displacement g(t) = g(¢,-) : Q@ — R with t € [0,7]]
incorporates the time-dependent Dirichlet condition. Its properties are specified in
Subsection 2.1. Moreover, z: [0,T]x Q5 — [0, 1] denotes the damage variable. The
functional 55’? allows for partial damage only, which is ensured by the indicator function
djev ) of the interval [¢7, 1] for 7 >0, i.e. djv 1(2) =0 if €7 <z(z) <1 for a.e. x€€) and
djev,1(2) = 0o otherwise. However dj., ) prevents total damage for each € € (0, <), but
it will allow for complete delamination in the limit e =0.

We assume that the damage process is unidirectional, i.e. that healing of the material
is impossible, meaning Z < 0, where Z = 0,z is the partial derivative with respect to
time. The evolution of the damage variable is described by the dissipation potential

Re(v) :=

~ { fQ% —2vdz if v <0 ae. on Qf, (2.4)

o0 otherwise,

for a constant o > 0 and v = 2.

2.1 General Assumptions and Existence Result

We now state general assumptions on the densities W, W and the given data, and
therewith deduce the existence of energetic solutions to the model given by £F and R..

We assume that the Dirichlet data satisfy

g € CY([0, ], W'*(Q,RY)), (2.5
supp g(t) N QY = () for all € [0, T] .
and we set ¢, := ||glc1(o,r,wrr(orey). Note that the second assumption in (2.5) leads

to supp g(t) N Qg = () even for all £ € (0, g¢].
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Furthermore we make the following hypotheses on the energy densities W : ]ngxrff — R,

—~

W :REX? — R of the damage-resistive and of the damageable materials:

(2.6a) Convexity: W, W : R%*4 — R strictly convex.

sym

(2.6b) Coercivity: Ip € (1,00), ¢,¢,C > 0Ve, é € Rg;md :
cleP <W(e) <&(lefr +C), elelr <W(e) <é&el +C).
(2.6c) Continuity of the stresses: 3¢,C > 0 Ve, é € R4

Sym

0:W (e) = 0.W (&) < Cle+ e[~ +[é[P~") e — €.
As a direct consequence of (2.6a,b) one obtains, see [Dac00, Theorem 2.31],

(2.6d) Continuity: W, W:R&d LR continuously.

sym

Moreover, (2.6a,b) imply the following stress control for the densities

(2.6e) Stress control: J¢, C > 0Ve, é € R4 :

Sym

QW ()] < cla.W ()~ +0), 0. ()] < (W ()~ +C).

In view of (2.2) we realize that the composed density

_ . { W(e) ifzeQ U 2

Wyie, z) ifx € Qp
also satisfies (2.6a-e¢) with constants that depend on € and

(2.6f) Monotonicity: Ve € (0,50] 3K >0, K > 0Ve e R 7 <2< 2<1:
Wie,z) <Wl(e, ) < K(W(e,z) + K).

This is a property of partial damage. Due to (2.6b) we introduce the spaces

Uy = {u e WH(QRY |u=0o0nTy,}, Z:=W(Q), Q.:=U,x 2. (2.8)
and S5(t):={q € Q. | EX(t, q) < 00, EF(t, q) < EF(t, §)+R.(3—2) for all € Q.} denote
the stable sets at time ¢.

For all fixed ¢ € (0, 0], k€ (0, ko) the rate-independent systems (Q., EF, R.) thus fit to
the setting studied in [TM10] so that the existence of energetic solutions is guaranteed.

Proposition 2.1 (Energetic solutions of (Qg,gf,ﬁa), [TM10, Theorem 3.1])
For all ¢ € (0,20] and k € (0, kK| fized, let the rate-independent system (Q.,EF,R.)
be defined via (2.1)-(2.5). Let p, v € (1,00). Then, for (Q., &, R.) and for any ini-

tial state qo € S5(0), there exists an energetic solution q of the initial-value problem
<Q87 5:7 RE? QO)

2.2 The Damage Model in a Fixed State Space

First, k € (0, ko] remains fixed. As ¢ — 0 the d-dimensional domain €2 shrinks to the
(d—1)-dimensional interface I' between the domains Q4, see Fig. 1la, b, and we want
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to show that (Q., gf, 7%6)56(0760] converges to a rate-independent process describing the
delamination along the interface. Thus, it is necessary to reformulate the e-problems
in a fixed state space Q. In particular, for all ¢ € (0, &¢], we use damage variables that
are defined on a fixed domain Q, = (—1,1) x I'¢, see Fig. 1a, c¢. Hence, from now on
we consider z : Q, — [0, 1] and the energy functionals gf have to be adapted. This is
realized with the following mapping:

T.:Qp — Q) Ty = (eyy, s) = x € QF for y = (y1, ) € Qp, (2.9)

with s = (29,...,24) € T'c. For all ¢ € (0,g0] this transformation is welldefined,
continuous and and invertible. Then we introduce the following transformation:

I : LY(QE) — LY(Qy), 2+ 2o T.. (2.10)

In view of (2.9) and (2.10) we obtain that the gradient of Z transforms as follows:

Vx,%(l‘) = vyneg(y)vxy - (%azﬂﬂeg(y)? (vsﬂag(y))—r)—r = EVHEE(y) ) (2'11)

where we used V; := (0y,,...,0,,) .

We are now in a position to define a fixed state space by
U:={uecWPQ_UQ R |u=00nIy}, Z:=L%), Q:=UxZ. (2.12)
With Uy, as in (2.8) the state space for the approximating problems is given by
Zy =W (Qp) with r € (1,00), Qp:=Up x Zp. (2.13)
Therewith we introduce the extended energy functionals £F : [0, T]xQ — Ry,

EN(t,q) if g = (u,2) € Qp,

where

EX(t,q) = {
(2.14)

5| 2] 40,1 (2)) dy.

N

TES(t u, 2) = / W (e(utg(t))da+ | W (e(u), TI-2)da+ /

Q° U0 Qs Qp

Here we used that supp g(t) N Q5 = 0 for all ¢ € (0,¢¢] and all ¢ € [0, T]. Compared
to g’f in (2.1) the functional IIEF allows for z: Q, — [0, 1]. Therefore one has to use
II-'z in in the second integral. Only the integral containing the damage gradient is
transformed from 2% to €. This requires to use ¥z from (2.11) and involves a factor
e, which cancels out 1/¢ in (2.1). Additionally we used that €d-r1(2) = 0v17(2). In
view of the transformations (2.9), (2.10) we note that

e? < z<1lae on(), isequivalentto &7 < H;lz <1 a.e. on Q. (2.15)
As we now use the state space Q we also transform the dissipation potential (2.4)

leading to the potential R : Z — [0, oo with

—ov(y)dy ifv <0 ae. on Qp,
R(v) ::{ Jo, —ov(y)dy ifv <0 ae. on (2.16)

o0 else.



Remark 2.2 Since 0 > 0 we find the coercivity R(v) > ol|v||1qp). Moreover, R :
LY () — [0, 00] is conver and both weakly and strongly lower semicontinuous. How-
ever, the lack of strong upper semicontinuity makes the theory technically difficult.

For all t€[0, 7] we now define the stable sets of the transformed problems by
SE(t):={qe Q| EL(t,q) <oo, EX(t,q) <EL(t, 4)+R(2—=2) for all g€ Q}.

We can rewrite the rate-independent systems (Qa,gf,ﬁe) by the equivalent systems
(Q,&F,R). It remains to transfer the existence result stated in Proposition 2.1 for
(QE,@,RE) to (Q,&F, R). For this we first show that 0,7 (t, q) is well-defined for all
q e Qif EX(t.,q) < oo for some t, € [0,T].

Proposition 2.3 (Well-posedness of 0,E") Keep € € (0,5¢],k € (0, ko] fized. Let
(Q,EF R) be given by (2.12), (2.14) and (2.16) so that (2.5) and (2.6) hold with

p,r € (1,00). Then, for all (t,,q) €0, T]XQ with EF(t.,q) <oo it is E5(-, q) € CH([0, TY])
with

0 EL (¢, q)z/ﬂsouﬂso 0. W (e(u+g(t))):Ore(g(t)) dz . (2.17)

Proof: Because of (2.1), (2.14) and (2.10) it is E(ty, u, 2) = EF(te, u, 11712) < oo.
Since fQD " NVz["dy with z € Z, does not depend on t € [0,7] we conclude that

OEE(t,u, z) = O,E(t, u, I1-12), which is given by formula (2.17). C
This result is used to adapt Proposition 2.1 to the transformed functionals.

Proposition 2.4 (Energetic solutions of (Q,£% R)) For all £ € (0,¢], k € (0, ko]
fized, let (Q,EF,R) be defined via (2.12), (2.14) and (2.16) such that (2.5) and (2.6)
hold with p,r € (1,00). Then, for (Q,EF, R) and for any initial state qo € S¥(0), there
exists an energetic solution q : [0,T] — Q of the initial value problem (Q,EF, R, qo)-

Proof: Consider (Q, &%, R) with the initial state gy = (ug, 20) € S¥(0). By (2.14)
and (2.16) we find that (uo, I1-'2) € S%(0). Then Proposition 2.1 states the existence
of an energetic solution ¢ = (u,2) : [0,7] — Q. of (Q., &%, R.) with (u(0),2(0)) =
(ug, IT-%20). We want to show that (u,II.z) is an energetic solution of (Q,E", R, qq).
To verify that (u(t), I1.z(t)) € S*(t) we use that (u(t),z(t)) € SF(t). The bijectivity of
II.: Z. — Z; and (2.15) imply that g’f(t, u,[1.2) < oo since EF(t, 1, Z) < co. Applying
II. and transforming the integrals in stability condition (1.2S) yields the stability
of (u(t),I.z(t)), i.e. EX(t,u(t), [loz(t)) < EF(t, u, 11.2) + R(II.2—11.2(t)). The energy
balance (1.2 E) follows directly from Dissg (Il.z, [0,]) =Dissz (2, [0,¢]) and Proposition
2.3, since QEX(t, u(t), I.z(t)) = B,EX(t, u(t), =(1)). -

2.3 The Topologies 7, 7y and a uniform Korn’s Inequality

In the following we specify a suitable topology on the fixed state space Q, which allows
us to show that a subsequence of energetic solutions of (Q, &, R) converges to an
energetic solution of the limit system as ¢ — 0 and as k — 0 respectively.
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For the analysis we will consider sequences of systems (Q, £, R)cc(0,c,] and sequences
(te, ge)ec(0,0) C [0, 7] x Q. The notation e € (0, o] always stands for countably many
indices € € (0,¢0] satisfying ¢ — 0. The indications (Q,E", R).e(0,00] a0 () xe(0 0]

have to be understood similarly.

Since (., ue, 2z.) < E for some E € [0,00) implies that ||2:[[1=y) < 1, a suitable
topology on Z=L>(£;,) is the weak*-topology of L>(€2;,). In view of (2.14) and (2.6b)
we obtain that ||e(u-+g(t.))]

(2.6) and Korn’s inequality on each of the domains Q° U Q% we find a constant E

LP(QF UQS Rixd) < E. By the triangle inequality, assumption

such that Hu5||W1,p(QiUQide) < F, provided that the constants in Korn’s inequality are
uniformly bounded, which is ensured below. Therefore the convergence of a sequence
(Ue, 22 )ee(0,20) t0 @ limit (u, z) has to be understood as follows

u. — win WH(Q2 U QY RY) for all v € (0, &),

o (218)
ze = zin L™®(Qp).

(uE,ZE)L(u,z) YN {

With the functions u.(z) = tanh(z/e) one can see that u. — u in W?(Q” UQY) for
all v € (0, 0] does not imply u. — w in W'P(Q_UQ,).

To specify the convergence of sequences of pairs (t.,q.) € [0,T] x Q we define
(teyqe) 2 (tq) & t.—t and g ——q. (2.19)
As already mentioned a uniform Korn’s inequality is required for the domains (2 U< .

Theorem 2.5 (Korn’s inequality for a family of domains) For all 0 < ¢ < g
let Q5. C Q. be the Lipschitz domains depicted in Fig.1a and let p € (1,00). Then
there is a constant cx > 0, such that for all 0 < e < gy and all v € WHP(Qu, RY) with
v =0 on Iy, in the trace sense we have

[vllwieg rey < cclle(v)||zrs raxa) - (2.20)

Proof: It suffices to prove the result for {25 and Q¢ separately. We restrict ourselves
to Q2 the proof for )¢ is analogous.
We transform QF = (¢, L) x I'c into Q1 = (0, L) x I'¢ via the invertible mapping
.y — QL (y1,8) = (e4+a(e)yr, s), where afe) = (1—¢/L). (2.21)
For v, :=vor. € W'P(Q, R?) we obtain that
V,0:(y) = Vou(r-(y))V,me(y) and  Vyo(z) = V. (. (z)) Voo (), (2.22)

where V,7. = diag(a(e),1,...,1), ¥y = (y1,s) € Q4 and z = (21,s) € Q5 with
x1 = e+a(e)y.

Using these relations and exploiting Korn’s inequality on {2, results in a uniform Korn’s
inequality for all € € (0, &¢] :

oIy ) = 0 Zog0sy + 1VavlGos ) = (@) (vl ) + Vv Ver I, )
< a(e) " (el o,y + 1Vl Lo, ) < aleo) P CRIle(@)lZo,)
< afeo) POk [le() Loz ) - .



3 The first I'-limit: Gradient Delamination

Our aim for this section is to show that (Q, £, R)-c(0,-,] I'-converges to the limit system

) ~e

(Q,&" R) as e — 0, see Fig. 1b, where £ : [0,T] x Q — R, is given by

/W(e(u+g(t))) dx +/<$|Vz|r+5[071](z)) dy if g=(u, 2)€Q,

E"t,q): =4 & va, On (3.1)
Zo={2€ W"(Qp) |0,z =0} with r € (1,00), (3.2)

Q. = {q = (u,2) €U X Z¢ }Tcz[[u]] =0 and [[u-nlﬂ >0 a.e. on FC} (3.3)

with ¢ from (2.12). Moreover, T,z = z|r. in the trace sense, which is well-defined in Z,
and [-] denotes the jump of a function defined on Q_UQ, across I'c in the trace sense.
The constraint T¢.z[u] = 0 a.e. on T'¢ incorporates a transmission condition, namely
[u] = 0 whenever T;,z > 0. This condition was already used in [Fré88|. Furthermore

1:=(1,0,...,0) stands for the unit normal vector to I'c. Thus the condition [u-n;] >0
a.e. on ' prevents the interpenetration of the material of {2_ and 2.

If (u,z) € Q¢ and v € Z, we find that £%(¢,q) and R(v) equivalently read

EF(t,u,z)= /W(e(u+g(t))) dz + 2/<f|VSTCz|T+5[071] (Tcz)> ds, (3.4)
Q_UQy I'c

2/ —oTwv(s)ds if Too <0 L4 -ae. on [,
e

R(v)= (3.5)

00 otherwise

with s := (29,...,24) and Vs := (04, - . ., 0y, ). This shows that the limit system indeed
models delammatlon along I'c. For all t€[0, 7] we introduce the stable sets
<

S*(t):={q=(u,2)€ Q| E"(t,q) <00, E"(t,q) <E"(t,q)+R(z—=) for all ¢=(u,2)e Q}.

The convergence result, which will be proven in the next subsection, is the following:

Theorem 3.1 (I'-convergence of the damage problems) Let assumptions (2.5)
and (2.6) be valid with r,p € (1,00), and v € (p—1, P) satisfying (3.12) and (3.9).
Keep k € (0, k] fized. For all € € (0,e0] let g- : [0,T] — Q be an energetic solution
of (Q,E5,R) given by (2.12), (2.14) and (2.16). If the initial values satisfy g5 z, 90
and E£(0,q5) — £7(0,q0), then the damage problems (Q,EF, R)eco,e, I'-converge to
the delamination problem (Q,E",R) given by (2.12), (3.1) and (2.16) in the sense of
Theorem A.1.

Proof: Theorem 3.1 is proven by checking the assumptions (A.1)-(A.3) of Theorem
A.1. The lower I'-limit of R, i.e. condition (A.3-C4) here follows from the weak se-
quential lower semicontinuity of R on Z. Conditions (A.1), (A.3-C1) and (A.3-C3) are
shown in Subsection 3.1 and condition (A.3-C2) is verified in Subsection 3.2.

The existence of a subsequence (2:).¢(o,c, 18 obtained by repeating the arguments of
[MMO05, Theorem 3.2, using the bound (3.7b), Helly’s selection principle and the fact
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that min{R(z; — 2), R(z — z)} — 0 implies z; — in L>(€2,). For the corresponding
subsequence (u.).c(o,r] the bound (3.7a) provides a further subsequence wuz(t) — u(t)
in Wh?(Q” U Q7 R?) uniformly for a countable choice of indices v — 0 and Lemma
3.9 implies that (u(t),z(t)) € S"(t) for all ¢ € [0, T]. Due to the strict convexity of W
by (2.6a) the functional £%(t,, z(t)) has a unique minimizer, so that u(t) is the only
accumulation point, i.e. u.(t) — u(t) in WHP(Q2 U QY RY) for all v € (0,¢0 and all
t € [0, T] even for the whole subsequence. n

3.1 Compactness of Sublevels, Lower I'-limit, Conditions on 9,£, 9,E"

In the following we verify the conditions on the energy functionals complying with
(A.1), (A.3-C1) and (A.3-C3). As a direct consequence of stability (1.2S) one obtains
that the energetic solutions of the approximating problems have an equibounded en-
ergy; to see this one may check (1.2S) for the energetic solutions and the states (4, 2.)
with « = 0 and 2. = 7. To ensure that the equiboundedness of the energies implies
the equiboundedness of the corresponding states we establish the following a priori
estimates as a consequence of the coercivity (2.6b).

Lemma 3.2 (A priori estimates uniform for « € [0, x¢|) Let (2.5), (2.6) hold, let
t €10,T] and keep k€0, ko] fized. For alle €(0,e0], allv € [,e0] and all ¢ = (u, z) € Q
with EX(t, q) < oo it is

K e K T
86 (ta Q) > 261’): HUH%/I,p(QliLJQiJRd) + ?HEVZ L™(Qp) ¢ (36)

with C=ccly and || V2|7, o, gy = IV2 750 0p may = ||z||%1,T(QD)—£d(QD) for all e €(0, g).
Moreover, E£(t,q) < oo implies that ||| L (ap) < 1.

Proof: Let g = (u,z) € Q with ££(t,¢) < co. Keep v € (0, g¢] fixed. Then Q¥ UQ C
Q2 UQ7 for all ¢ < v. From hypothesis (2.6b), (2.5) and the uniform Korn’s inequality

3

(2.20), where we exploit the Dirichlet-conditions on the Lipschitz-domains 4, we infer

EX(tq) = | Wie(utg(t))) dz + 2|V z2l|7 qp rey
QZUQi
Z CHG(U—'_g(t))Hip(QILUQLRdxd) + %HVZ

221’%”6@)H}zp(ﬂ"_uﬂi,ﬂ&dxd) — ccg+ 2lIV2Lrp ra)

T
LT(QD,Rd)

1—
Z QCPKPCHU/H@VLP(QZUQiJRd) - ch + %HZH?{/VIJ(QD) _ %Ed(QD) ;

where we used that e=! > 1 for all 0 < £ < 1. The last statement of the lemma directly
follows from 0~ 1)(2(y)) = oo if 2(y) ¢ [€7,1] in (2.14). "

Proposition 3.3 (A priori estimates for energetic solutions) Let (2.5) as well
as (2.6) hold. Keep k€ (0, ko] fized. For all e €(0,e0] let g- : [0,T] — Q be an energetic

solution of (Q,EF,R,q5). Then there are constant E,C independent of k and e, such
that for allt € [0,T] and for all fized v € (0,&] the following uniform bounds are valid

uclwsogrn < o @)l < 1, (3.72)
Dissg (ze, [0,t]) < C'. (3.7b)
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Proof: For all € € (0,g¢] the function ¢. : [0,7] — Q is an energetic solution of
(Q,E5 R). Hence, for all t € [0,T] they satisfy £F(¢,¢-(t)) < oo, which implies that
e’ < z(t,x) < 1lforae. z € Qyp, forallt € [0,7] and all € € (0,0]. Stability inequality
(1.25) with ¢.(t) and ¢ = (0,£7) yields (¢, q.(t)) < EL(t,q) + R(Z—2.(t)) < E for
all t € [0, 7] by (2.5), so that (,q-(t))zc(o,r] is a stable sequence and their energies are
equibounded for all ¢ € [0, 7. Using estimate (3.6) finishes the proof of (3.7a).

Because of ££(0,¢-(0)) < C and f(f DX (E,q.(€)) dE < ¢, T(¢E + CLY)) for all t €
[0, T, which is due to stress control (2.6¢), energy balance (1.2 E) yields (3.7b). "

With Proposition 3.4 we then ensure that the equiboundedness of sequences enables
us to extract subsequences converging with respect to 7 to an element in Q., given by
(3.3). The Items (1.) and (2.a) in Proposition 3.4 result from the coercivity inequality
(3.6), which yields uniform boundedness of u. in W'P(Q” U Q7 R?) for all fixed v €
(0, 0] and hence, using Cantor’s diagonal process, the convergence of a subsequence for
all fixed v. Moreover, (2.b) results from the uniform boundedness of the gradient term
for fixed k € (0, Kg]. Item (2.c¢) can be gained from the term (tre(u.))” included to
W, see (2.2), using the Lebesgue-Besicovitch differentiation theorem to express [u'] €
LY(T.) in the Lebesgue points § € I' and then Gauss’ theorem on balls B,(3) C T.
In this context we use the following relation for the trace mapping

- { Whr(4) — L7(04), { p<d and 1<¢ <(d—1)p/(d—Dp),

(3.8)

u— ulga, p=d and ¢ €[l,00),

to obtain that )faA S ue-nday da) < (20) 09 L2(DA) el ot (1. <o) — 0, where

A= B.(8) and |luc| w10z ray < Ce™ /P by 7'z, €[¢7,1]. This leads to the following
condition on 7:

(p—1)d/(d—1) ifp<d,

] (3.9)
P ifp>d.

v < P, where P:{

Moreover, for v < p—1 one obtains that

p—1—vy

HvugHLl(Q%Rdxd) < Ce » — O,
which implies that jumps are prevented. In order to admit nontrivial displacement

jumps in points where z = 0 we thus have to assume v > p—1.

Item (2.d) is equivalent to ch |Tez[u]]|ds = 0. This is obtained by considering the
traces of the approximating sequence (u.).c(0,c,) On {£r} xI'c and by passing to 0 first
with &, then with v. To estimate the traces TeII-'z. on {0} x T’ we use that

7 <TI7'2. <1 L%ae in Q) = & <T.dl7'2 <1H T ae on {0} x . (3.10)

This is due to the fact that O can be extended to a Lipschitz domain Q O Q.
Moreover, C(£2) is dense in W(Q) and {v : Q — [0,1]} is a closed subset both of

C(Q) and of W(2). Then (3.10) follows by density arguments.
When proving that ch |Tt.z[u]| ds = 0, we have to handle terms of the form

/Q e | }H;lzg(g) - TCH;125’ ds < HueHLq/(Q%,Rd)Ha:rlnglszHLq(Q%) J

€
D
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where ¢ = q/(q—1). We need ¢ < r for II-'2. € WI(QF) to show that the second
factor can be estimated by ce®||TI-"z||w1r(qs) With some o > 0. Hence, we have to
ensure that u. € L7 (QF,RY) using the embedding

p<d and 1<¢ <dp/(d—p),

3.11
p=d and ¢ €]l,00), (3:11)

WP, RY — LY(Q5, RY) if {
see [AdaT75, Th. 5.4]. This leads to the following admissible combinations of r and p:

re(l,d) and p€[rd/(rd—d+r),00) or } (3.12)

red,oo) and pe€ (1,00).

Thus, the transmission condition (2.d) can be verified using implication (3.10) together
with the conditions (3.12) and (3.9) on r, p and 7.

Note that not every combination of r, p < d is admissible. But the cased =3, r =p =2
is included in the first line of (3.12), since then 3 > r =p =2 > rd/(rd—d+r) = 6/5.

Proposition 3.4 (Properties of sequences with equibounded energies) Let the
enerqgy functionals EF be given by (2.14) such that the assumptions (2.5) and (2.6) hold.
Let k € (0, ko| fized and (t.)ec0,0) C [0,T]. Let r,p € (1,00) and v € (p — 1, P) such
that (3.12) and (3.9) hold. Assume that EF(t.,ue, z.) < E for all e € (0,e0]. Then
(1.) there is a subsequence (ue, z.) Z (u,z) as e — 0,
(2.) the limit satisfies (u,z) € Qc, i.e.

(2.a) we WHP(Q_UQ, , RY), u=0 on Iy, in the trace sense,

(2.b) z€ WH(Qp), 0 < 2(y) <1 and 9y, 2(y) =0 for all y € Qp,

(2.¢) [uni] >0 a.e. on g,

(2.d) Tez[u] =0 a.e. on T¢.

Moreover, for v < p—1 jumps are prevented, i.e. [u] =0 a.e. on T'.

Proof: Recall Q from (2.12), £F from (2.14) and Q. from (3.3).

Ad (1.) and (2.a): From Ef(t.,q.) < E we infer that €7 < z. <1 a.e. in Q. Since
the unit ball of L>(Qp), which is the dual space of L'(€Qp), is weakly* sequentially
compact by the theorem of Banach-Alaoglu we find a subsequence z. = z in L>(Qp).

The equiboundedness of the energies together with coercivity estimate (3.6) yields that
[l wipr uoy ra) are uniformly bounded for all e < v. For a countable set of indices v
with ¥ — 0 we obtain by Cantor’s diagonal process that there is a subsequence u. — u
in WP(Q” UQy, R?) as e — 0 for all v, due to the reflexivity of W'?(Q” UQ7, R?). As
v — 0 we conclude that v € WH(Q_ UQ,,R?) with u = 0 on I}, in the trace sense.

This proves the existence of a subsequence ¢. z, q.

Ad (2.b): The equiboundedness of the energies together with (3.6) yields that
||z€||£V1,T(QD1) < r(E+LYQp)) /K as well as 10y, 2270 o) < €' E/K. Due to the reflex-
ivity of W'(Qyp) there is a subsequence z. — z in W'(Qp) with 9,z = 0 a.e. in
Q. Because of the compact embedding W (2,) € L"(Qp) and Riesz’ convergence
theorem there is a subsequence [¢7,1] 3 z.(y) — z(y) € [0, 1] pointwise for a.e. y € Q.
Hence, z € [0, 1] a.e. in Qp,.
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Ad (2.c): To verify that [u'] > 0 a.e. on ' we use the Lebesgue-Besicovitch differ-
entiation theorem, see [AFP05, Corollary 2.23|, stating for [u'] € L'(T') that

1 .
[[U :l] = l—>0 m /T [[U ):l] ds for a.a. §¢€ FC (313)
with B,(5) :={s € I'c | |s — §] <r}. Hence it suffices to show that

/ [u'(s)] ds >0 fora.a. § €l andall r <r(3). (3.14)
B(3)

Omitting to indicate the dependence of v on s we first deduce the following relation

/ [u'] ds=1lm [ (u'(v) —u'(=v))ds =limlim [ (ul(v)—ul(-v))ds (3.15)

v—0 v—0e—0

B,.(3) Br(3)

for the subsequence u. — w in Wh(Q” U Q4 RY) for all v € (0,0] obtained in (1.)
from the equiboundedness of £7(t., u., z.). Moreover, note that the first equality results
from the fact that the linear, continuous trace operators S= : WP(Qy) — LY(T),
SEv=(v(+v, s)—vs), for v being the trace of v]g, € WHP(Q1) onto I'¢, satisfy the
estimate [|SZ|| < z/pr%l(ﬁdfl(ljc))pr%l, which follows with Holder’s inequality.

Now it remains to verify that the expression in line (3.15) is positive. Using Gaufy’
theorem we obtain that

[t —uicvo)yas= [ [ avudeds— [ [ nda,

B (8) By (3) 9B (8)

with n as the outer unit normal vector to (—v, v)x0dB,(s). Hence, (3.14) holds true, if

lim lim/ / divu. dzids > 0 (3.16)
v—0e—0 By (3)

and lim lim/ / us-nda —0. (3.17)
v—0e—0 8BT a v

For (3.16) we decompose divu. = (divu. ) T—(divu.) ™ with (divu. )™ =max{0, divu.} and
(divue)™ = max{0, —divu.}. Showing lim, o limsup,_,, fBT(§) J7 (divu.)” dzyds = 0
we are done. To do so, we choose a subsequence in € which attains the limit superior.
Due to (2.2) and the coercivity inequalities (2.3) and (2.6b) for ¢ and W the equi-
boundedness of £ (L., u., 2.) yields that [[(divu) || 1) < C for all € € (0,£¢] on the
domain © with p € (1, pl, see (2.2). Thus, we find a further subsequence (divu.)™ — b
in LP(Q) and obtain

lim lim/ / (divu.)” dzyds = lim/ / bdx;ds =0.
v—0e—0 Br(8) J—v v—0 - (8) J—v

Hence (3.16) is established.

For the proof of (3.17) we decompose the integral as follows

/ / us-ndxlda:/ (/ —i—/ —i—/ )ug-ndxlda. (3.18)
OB (8) J—v OB (3) —v —e 5
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First, let p < d. Using Holder’s inequality we obtain that

+v
‘ i/ / ue -ndry da| < :I:/ / |ue| dzy da
0B, (3) OB, (3

< (V—e) T *(0B,(5 / /83 |u5|q dadx1>_/,

which tends to 0 as e < v — 0 by property (3.8) for either A = (—v, —¢) x 9B,(8) or
A= (g,v) x OB,(3).

For the integral over I. = (—¢,¢) in (3.18) we proceed as in estimate (3.19). The
equiboundedness of the energies, the assumptions (2.6b), (2.5), II-'2. > &7, Korn’s
inequality on € and property (3.8) imply the following estimate for all € € (0, &)

(3.19)

vk
el o (1. xom, (o) ety < Clittellwrnagrey < €77 (55 + &g)ec(@C (3.20)
Under the assumption that v € (p—1, P) with P = (p—1)d/(d—1) if p < d, see (3.9),

we now conclude
L
’/ / ue - ndry da| < (25) 7L (0B, ( / / |u.|? day da
aBT(S 887‘ -
<70 -0, (3.21)

/

where we use that ||uc|| 1o (1. vop, 5 rt) < clltellwip@g re for ¢ = (d—1)p/(d —p). The
requirement ‘1/(1—71—% > 0 then yields v < (p—1)d/(d— ) as stated in condition (3.9).

Assume now that p > d. Then W?(Q,R?) € C(Q, R?). Due to this, we can set ¢ = oo
in the above estimates. Moreover, ¢’ — 1/¢' = 1, so that (3.21) implies that v < p.

Alltogether we have verified (3.16) and (3.17), hence [u - ny] a.e. on I'¢ by (3.14).
Ad (2.d): In the following we verify Tt.z[u] = 0 a.e. on I'¢ for the limit state (u, z).

Verifying 7¢.z[u] = 0 a.e. on I'¢ for the limit state (u, z) is equivalent to showing that
ch |Tt.z[u]| ds = 0. For this, we approximate u on the interface {0} x I'¢ from the left
and the right by the traces of the approximating sequence on the lines {+v} x T'c and
we exploit that z is constant in y;-direction, so that z(+v,s) = z(0,s) for all s € I'.
and all v € (0,¢¢]. In particular, we use

/ }Tcz [u] } ds = hm/ ’Tcz (—V))’ ds
< lim ( Z }T 2 (u(ww) — u(ie) ’ds + A ’z(e)u(e) - z(—»s)u(—e))‘ ds)

v—0
we{—+}’Te

ghmhm</yn ze(e)u(e) — IIZ ' ze(—)us(—¢)| ds (3.22)

v—0e—0
+ Z }TH Ze (ue () — ue(ee)) }ds) (3.23)
Le{— +}
In (3.23), with ¢ € {—,+}, we apply that |TeII-'z.| < 1 a.e. on I'¢ by (3.10). With

partial integration and Holder’s inequality we find

- p=1
’TCHE Y2 (uo(£v) — us(ie))’ ds < HazluEHLI(Q;\QVi’Rd) <(v—ge)r H@zlugHLp(stRd),
e
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which tends to 0 as ¢ < v — 0, since the norms are uniformly bounded, as can be seen
from (3.6).

When estimating the term in (3.22) we apply partial integration on % and we use that
[uellwrrs ray < Ce™ /7 due to IIZ'z. € [¢7,1]. In particular, we obtain

/FC I 2 ()ue(e) — T 2 (—e)uc(—e) | ds = /FC /_i O, (- 2210, ) day | ds

< / ds + /
F(; FC

For the first term in (3.24) we use again Holder’s inequality with the exponent ¢ = r for

z.and ¢ = r/(r—1) for u.. Now, we exploit the embedding WhP(Q R?Y) — L7(Q, RY)

for p < d and p < ¢ < dp/(d—p). Because of these relations we find the condition

q =r/(r—1) <dp/(d—p) which leads to p € [rd/(rd—d+r),d) in (3.12).

To estimate the second term in (3.24) we use that [ W,(IIZ'z, e(u.)) < C due
D

to the equiboundedness of the energies, and additionally that 17122 < TIZ'z. for
-1z € [¢7,1] and p € (1,00). Thus, with Holder’s inequality we obtain

J.

Hence, Ttem (2.d) is proven for r € (1,00) and p € [rd/(rd—d+ r),d).

For p = d we can apply the embedding W'?(Q RY) — L9(Q,R%), which holds for
all ¢ € [p,00) and in particular for all ¢ € [1,00). For p > d we have the compact
embedding W1?(Q: RY) € C(Qg,R?). Thus, in both cases the choice ¢/ = r/(r—1)
in the above Holder estimates is admissible. Note that, if r > d we may use the
exponent 7 = d instead of r in the above estimates. Then the lower bound on p is

7d/(rd—d+r) = 1. This finishes the proof of Item (2.d).

Ad [u]: By (1.) there is a subsequence u. — u in WP(Q” U Q4 R?) for all fixed
v € (0,g0]. Using partial integration we obtain for the ith component that

/ (00, 12120 )ue dy ds. (3.24)

—&

/ H;lzgamug dxq

—&

/Hglzgaxlus day

—E

ds < /Halz€|(9xlus| dr < Ed(QED)p’l WD(Hglzg, e(us)) — 0.

o5 5

/|u§(y,s)—u§(—y,s)|ds§/|8m1ui|dx§/|Vug|dx+ / \Vu.|dz. (3.25)
e (914 Q5

Qp\Qp

With estimate (3.20) and Holder’s inequality we find for the first term in (3.25) that

p—1

p=1 _ p=1 1 =
IV ttel| 1 (g raxey < €7 L7 Te) 7 e (Q)Eve™ (3.26)

Since 7 <p—1 we conclude from (3.26) that |[Vuc|| 1oz maxay — 0.

Additionally the equiboundedness of the energies and the coercivity of W provide a
constant €' > 0 such that [|[Vue| oo uos rixey < C. Thus, application of Holder’s
inequality on the second term in (3.25) yields
p1
P I Vue] o as uas )\ @v vay ) rixa) — 0.

/QV o Vu.|dz < ((v—e) L (T0))

Repeating the ideas of (3.15) we obtain ch [[ullds = 0, if [|[Vue| 11z gaxay — 0. =
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The next lemma summarizes the properties of the limit energy £%, which guarantee
the existence of minimizers in the direct method of the calculus of variations, such as
coercivity and lower semicontinuity. They yield the compactness of the sublevels of £".

Lemma 3.5 (Properties of the limit energy) Let the assumptions (2.5) and (2.6)
hold. Then, for all t€[0,T] and all k€ (0, ko| the energy functional E%(t,-): Qc — Ru
given by (3.1) and (3.3) is coercive and weakly sequentially lower semicontinuous on
Qc. In particular, (3.6) holds also for e = 0, i.e. Q_ U Q.. Moreover for all E € R
the sublevels L5, (t) == {q € Q|E"(t,q) < E} of the functional E%(t,-) : Q@ — Ry, are
sequentially compact with respect to T from (2.18).

Proof: Keep k€ (0, ko] and ¢ € [0,7] fixed. If (¢;)jen C Q\Qc, then E%(t, ;) = 00
for all j € N. Thus, for |u;llwiroruay rey — oo for some v € (0, the property
E"(t,qj) — oo is trivially satisfied. Coercivity inequality (3.6) with ¢ = 0 follows from
(2.6) for all g€ Q.. Thus E¥(t,-) is coercive both on Q. and on Q.

In order to show lower semicontinuity we assume that g; 7, q. 1f ¢; € Q\Q, for
almost all j € N then there is an index j, € N such that ¢; € Q\Q. for all j > jj
and hence liminf; . £%(t,q;) = oo > £"(t,q). Assume that there is a subsequence
(¢j)jen C Qo with u; — win WP(Q_ U Q. RY) and z; — z in W'(Qp). Let u;, u*
denote the traces of uj|g,, u|q, on I'c. Then the compactness of the trace operators
T : W (Qp) — L'(T) and Ty : WHP(Qy, RY) — LP(T'¢, R?) implies that Ti.z; u; —
Tezu® in LY(T¢,R?) and u]i — u* in LP(T'¢, RY), each containing a subsequence that
converges pointwise a.e. on I'c. Hence [u-n;] > 0 and Ttz[u] = 0 a.e. on I'g, ie.
(u,2) € Qc. Furthermore {z € W' (Q,)]|0 < z < 1 a.e. on Qp} is a closed subset of
Whr(Qyp). Together with (2.6) one obtains lower semicontinuity of £%(¢,-) on Q.

Let now (g;)jen C L% (t). By coercivity (3.6) there are constants ¢, (E), ca(E) such that
luillwio@ va, g < c(E) and ||z;]|wir@p) < c2(E). Since WHP(Qy, RY) and W ()
are reflexive Banach spaces there are subsequences u; — u in W'?(Q_ U Q. ,R%) and
zj = z in W' (Qp). From the lower semicontinuity of £%(¢,-) on Q. we now infer
E > liminf, . £"(t,q;) > £"(t,q), which proves that the sublevels of £ : Q@ — R,
are compact in with respect to 7. m

As a consequence of Proposition 3.4 and Lemma 3.5 we obtain condition (A.1-E1).

Corollary 3.6 Keep x € (0,r¢| fized and let the assumptions (2.5) and (2.6) hold
true. Then, for all € € (0,e0] the sublevels LZ"(t) := {q € Q| EL(t,q) < E} as well as
the sublevels Ly (t) := {q € Q| E"(t,q) < E} are compact and the unions Usc (o0 L7 ()
are precompact with respect to the topology T, which is defined by (2.18).

Proof: For all € € (0,g9] and k € (0, ko] fixed the weak sequential compactness of
the sublevels LZ"(t) in WP(Q, R?) x W () is due to [TM10, Proposition 3.4], since
the composed density W from (2.7) satisfies hypotheses (2.6). Since 7 is coarser than
the weak topology of W1P(Q,R?) x WT(€y) we conclude the compactness of L3"(¢)
with respect to 7. The precompactness of unions of sublevels in 7 directly follows from
Proposition 3.4 for t. =t and the compactness of L%, (¢) is due to Lemma 3.5. n

In the following we prove the I'-lim inf-inequality (A.3-C3) for £F. The main idea in the
proof is to exploit the lower semicontinuity of £5(¢, -) on LP(Q¥ UQY , R¥*?) x L7 (0, RY)
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for all fixed v € (0,e0]. The use of this space is admissible since the lower I'-limit only
has to be verified for stable sequences, so that their energies and hence the damage
gradients are uniformly bounded.

Lemma 3.7 (Lower I'-limit of the energy functionals) Keep k€ (0, ko] fized. Let
(tg,ue,zg)g(t,u, z) as e—0 and (ug, z.) €SF(t.) for all e€(0,e0]. Then

EX(t,u, z) < lim iglf EX(te, ue, ze) - (3.27)

Proof: 1In view of (2.5) it holds g(t.) — g(t) in W'P(Q_ U Q,,R?). Since (u.,2.) €
SH(t.) we find a constant £ > 0 so that E(t.,u., 2.) < E for all ¢ € (0,g0]. From
Proposition 3.4 then follows that the limit (u, z) € Q.. Moreover there is a subsequence
z. — z in WHT(Q,,) such that we obtain

hmiglf/ngsrdy > nmionf/gwszgrdy z/gwszrdy :/ngrdy, (3.29)
Qp Onp Qp Qp

where the last equality is due to 9, 2=0. Furthermore, we observe that [, .., W(-)dz
=g

is weakly sequentially lower semicontinuous on LP(Q” UQY; R?*9) by (2.6a) and (2.6d).
In view of (2.6b) and Proposition 3.4, Ttem (1.) it holds for all v > 0

iminf [ W(e(utg(t.))) dz > /Q L Wlelutg)de. (329

e—0
QZUQi

Putting together (3.28) and (3.29) we obtain the desired lim inf-estimate as v — 0,
since u€ WhP(Q_UQ, ,RY) by Proposition 3.4, Item (2.). ]

3

derivatives of both the approximating and the limit energy functional.

Next, we verify the conditions (A.1-E2), (A.1-E3) and (A.3-C1) concerning the time-

Lemma 3.8 (Properties of 0,E", 0,£%) The functionals EF, E* : Q — Ry satisfy
(A.1-E2). In particular, 0,£%(t,q) takes the same form as O,EL(t,q) in (2.17). More-
over, E" satisfies (A.1-E2) and, as e — 0, (A.3-C1) holds true.

Proof: Recall ,E8(t, q) from (2.17). Condition (A.1-E2) can be proven by repeating
the arguments of [TM10, Theorem 3.7]. The proof mainly uses the stress control (2.6¢)
to derive a Gronwall estimate for the energy. Furthermore it relies on the assumptions
(2.5) for g and on the coercivity inequalities (2.6b). Since 0,E" is independent of x also
the constants cg, ¢; do not depend on k. Due to the uniform Korn’s inequality (2.20)
these constants are also independent of ¢ € (0,¢0] and hence also apply to the limit
energy, so that 9,E"(t, q) is also given by (2.17).

Conditions (A.1-E3) and (A.3-C1) result from (2.6¢). An analogous proof can be found
in [TM10, Theorems 3.11, 3.9). n
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3.2 Conditioned Upper Semicontinuity of Stable Sets

We now verify condition (A.3-C2), saying that the limit of a stable sequence is stable.
This will be done by verifying that for all sequences (f.,q.)cc(0,c0) C [0,7] x Q with

(q-) €85 (t.) and (i, q.) I, (t,q) and for all (§) € Q there is a sequence (G.)ce(0,e] C o
satisfying (g.) z, (q) such that

lim sup (E5(1e, )+ R(2a—z2)) < E(1, @)+ R(2—2) (3.30)
e—0

To gain that R(2.—z.) — R(£Z—2) we must ensure R(Z.—z.) < oo for all £ € (0, &¢].

Moreover, 4. € WHP(Q, R?) must hold for all € € (0, g¢] to assure that E7(¢., ., 2.) < 0o,

whereas the limit @ € W' (Q_UQ,, R?), only. We will construct (de, 2.)-c(0,s,] in such

a way that E7(t., u., 2.) — E(t, 4, 2). This requires an interplay of 4. and Z..

The difficulty is to construct ('&8)86(0780] in a way which allows it to prove that

/ 7' W (e(d.)) do — 0.
05

This construction will be based on reflecting both 4_ = d|q_ and 4y = 1|, at the
interface I'c, i.e. 1 = 0, and on subsequent interpolation on the interval (—&, ). This
method guarantees that 4. € WP(Q_UQ,,R?), in such a way that Vi, are uniformly
bounded for (z1,s) € (—¢,&] x (I'c\Nf) and bounded by e~ on (—¢,e] x Nf, where
Nf :={sel.|Tez(s) = 0}.

Lemma 3.9 (Mutual recovery sequences) Keep r € (0, ko] fized. Let (Q,EF,R)
and (Q,E% R) be defined by (2.12), (2.14), (2.16) and (3.1). Assume that (2.5) and
(2.6) hold true. Moreover, let v > (p—1), p € (1,00) and r € (1,00). Then, for all
(te, Ge)eco,e0) C [0, 1] x Q with (t.,q.) I, (t,q) ase — 0 and q. € SF(t.) and for every
g € Q there is a sequence ({:)ec(0,c0] Such that (3.30) holds true.

Proof: Let §=(u,2) € Q and let (., q.) I, (t,q) as ¢ — 0 with ¢. € SF(t.). Hence
their energies are equibounded and Proposition 3.4 can be applied. Thus, ¢€ Q. with
0<z<1 ae. in Qp, so that £%(¢,q) is at least finite. For an arbitrary ¢ € Q we will
now construct the mutual recovery sequence (G:)zc(0,e,] With ¢e = (e, 2.).

If § € Q\Qc, then E%(t.,q) = oo for all € € (0,e] so that (3.30) holds for ¢. = ¢. Let
now ¢ € Qc. If 2> z a.e. in Qyp, then R(2—2) = oo and (3.30) trivially holds.

Hence, assume 2 < z a.e. in Q. In order to keep EF(t, e, 2.) + R(2-—z.) finite, the
sequence (2 )qc(0,¢,) has to satisfy €7 < 2. < z.. Furthermore it is required that . € Uy,
ie. 4. € WhH(Q,RY) with 4. = 0 on [}, whereas @ € WP(Q_ U Q,, R?) with 4 = 0
on Iy, Te2[u] = 0 and [a-ny] > 0 a.e. on I'c, only. We will first construct (£.).c(0.z]
and prove the convergence of the energy terms which solely depend on the damage
variable. Then we will construct (t.)zc(0,,) in such a way that the interplay of @. with
Z. makes the remaining energy terms converge.

Step 1 (Construction of 2.): For every ¢ € (0,g9] we now construct Z. in such a
manner that 2. € Z; and R(2.—z.) < o0, i.e. the property e < Z. < z. a.e. in Qp
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has to be ensured. For this, we adapt the ansatz used in [TM10, Th. 3.14] and we
introduce

Z. = max {¢”, min{z, 2 — 6.} }, (3.31)
where d. = o([[2. — 2[|}-(q,,)) is determined by Markov’s inequality (M) to ensure

D r !
LY[|2e — 2] >6.]) < 6-7||]= — Ze||zrpydz — 0. (3.32)
Here and in the following we use the notation [f > a] = {y € Q| f(y) > a} with
a similar meaning for >, <, < . Note that 2. = &7 if 2 — §. < ¢” and in particular,
if 2 = 0. Using a composition lemma for W' -functions and Lipschitz-functions, see
[MM72], one obtains as in [TM10, Th. 3.14|

Vé(y) if Yy e As )
e WY(Q) with Vi(y) =< Vz(y) ifye B., (3.33)
0 if (RS QD\(Ae U BE) )

where A, = [¢7 < 2 — 0. < 2] and B, = [z. < 2 — 0.]. Because of (3.32) we have
6e — 0, L4(B.) — 0 and one can prove that 2. — 2 in W"(Q,,) as in [TM10, Th. 3.14,
step 1]. Because of the compact embedding W' (Qy) € L"(Qp) we immediately see
that R(2. — z.) — R(Z — 2).

With the same arguments as in [TM10, Th. 3.14, step 2| we see that

limsup (IV2[lzr @) = V22 @) < limsup V27, — Iminf Ve |z .oc)

e—0

where [|[VZ[[7, 4y < [[VE][}r gy for all € € (0,&]. Moreover, to increase the estimate,
we may drop the sets C. in the — liminf-term. We define W(I,Z) = 1|Z|" and intro-
duce C(1, 2) fﬂ W(I,Vz)dy, where I stands for the indicator function of a subset
in Q5. Hence, C(IAg,zg) = |Va|lrany) = 1 1a.Vae||1rp). Since L4UA.) — L4Q) by
(3.32), we have that 14, — Iq, strongly in L4(Qp) for any ¢ € [1,00) and Vz. — Vz
weakly in L"(Qp, R?). Hence, by the lower semicontinuity result [Dac00, p. 96, Theorem
3.23] it is liminf. o C(1a,, 2:) > C(dn, 2) = V27 qp)-

Step 2 (Construction of .): For every € € (0,50] we now determine (tc).c(,c,) in
such a way that 4. € Uy, see (2.8). Since (4, 2) € Q¢ we have 4 € WHP(Q_ U Q,, RY),
=0 on Iy, Te2[a] = 0 and [an;] > 0 a.e. on T'.

Let a* = dlqg,, set I := [0,¢) and 7 := [—¢,0). For our construction we reflect
U*|+ o, and 47|, along the interface {0} x I'c and take the additive mean of
these functions. Therewith we obtain an interpolated function @° € W'P(QF R?),
which has the form

0 (w1, 8) = A (£x1, ) + ST (Fay, s) for ay € I, (3.34)

ile. 1°(—¢e,s) = u (—e,s), U°(e,s) =
compose the functions uE € Wlp R

at(e,s), a°(0,s) = $(a*(0,s) + a(0,s)). We
) as follows

(3.35)

.I'l,

5)

Q,
0 (zy,8) if (x1,s) € 5,
e (xy,s) if (xq1,s) € QF.
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By construction it is 4. € W'?(Q,R?) and, since dic|os = @fqs , we have
Wie(te+g(t)) dz = | Wi(e(ut+g(tc)))de — [ W(e(a+g(t))) dz, (3.36)
951 Q5 Qx

where we used (2.5) and the dominated convergence theorem.

Step 3 (Proof of [,. Wy(e(t.),II-"2.) dez — 0): From the construction (3.31)
D

recall that 1712, (z) = &7 if 2(z) = 0 for all € € (0,g0]. In view of the decomposition
Q= A, U B.UC. and (2.6b) we have

/H;lé€|e(ﬂ€(x1, s)) [P dz

€

g/ Y2—0.)|e(a (a1, 8))|P da + B|e(115(x1,s))|pdx+/€7|e(ﬁ€(as1,s))\pdx.

Ce

Let NY :={s € 'c|Tt2(s) = 0}. For y € B. = [ — 6. > 2] we have 2(y) > &7, which
implies that B. NT'¢ C ['c\N{. Similarly, we find

A =" <2-0.<z|=["4+0 <2<z +0] Cle" <2,

i.e. also A. N T C T'o\NS. Moreover, C. = [2 < &7 + 4] and hence NY C C. N Te.
Because of this, we can estimate

/Hslé€|e( “(21,8))|Pde < / /5”| )P day ds + / 0°)|P day ds,
Q5 Lc\NE

where |e(@)[P < 2071 (]0,,4°[P + |V,a°|P). For notational simplicity denote by a* also
their even extensions to Q by reflection at z; = 0. In particular, a* € W1P(Q, R).
Using that 0 < (e+x1)/(2¢) <1 on IZ U I} we find

95| o0 o562y < 2098 s ere ey + 2V8 ozt are ey — 0. (337)

Moreover, 0,,u° = G} + G5 with

E— I
2e

E+ T

G5 =
! 2¢e

0y,

Op, i and G5 = (2¢) Hat —a7). (3.38)

Again, |G| Lrg rey — 0 as in (3.37), while G5 needs special consideration.

Since @ € WHP(Q\NY) it holds for a.e. s € Tc\NS that a7(0,s) = 4 (0,s) and hence
we find using Holder’s inequality

@ (21, 5) — 0 (21, 5)] < ] / laga+<s,s>dg'+ / lagws,s)ds]
0 0

(3.39)
p=1 X .
< ol (100 My + 100 oMo )
Dividing by 2¢ and integrating over (z1,s) € (I7 U 1) x I'c\N¥ yields

HGEHLP( I UI+)><F0\NC RY) S ("azlu+" P (5, RY) -+ Hazl Hip(Q%JRd)) — 0 (340)
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as € — 0, since the constant C, is independent of ¢.

For s € NY we have in general 47 (0,s) # 4~ (0, s). Then we find
|07 (21, 8) — 4~ (21, 8)]

)
< [[a](s)| + ' O’fl e (€, 5) dg’ N ’ /Owl oi-(6.9) di’ (3.41)

Handling the last terms as in (3.39) leads to

IG5}

Lr((I7 UIF)x NE Rd)

< Cglpr [4] ] oo rd) T C*(Hahm’ P

Oy ™ |[7

(3.42)
L”(Q%,Rd) + H Lp(Qs Rd)) ’

where the second term tends to 0 as in (3.40). Using that II-'2. = &7 on IZ U} x Nf
with v > p—1, we obtain that the term in W, related to the first term in (3.42) will
tend to 0 as € — 0.

In order to show that also fQE (tre(a®)) de — 0 we apply the upper growth estimate
D

in (2.3) and we use that |( tre(a)) }p < 207 H(0,,a5) P + 2P~ VL af P with p e {p, 1}.
The integral on QF over the second term tends to 0 as in (3.37). For the integral over
the first term we use that (9,,45)" < (G§Y)™ + (GS!)~, where G5! denotes the first
component of G5 € R4, i € {1,2}. We obtain that the integral on Qf over |(G5')~ [P
tends to 0 again as in (3.37). For the term involving (G5')~ we use that

(a;r<x173) —'11{(951,3))
< (@ (w1, 8)—0(0,)) + ([a-n](s)) + (@ (0,8)—a (z1,5))

where ([@'n;]) =0 since £7(¢, 4, 2) <oo. On the remaining terms we apply integration
by parts, Jensen’s and Hélder’s inequality and find

||G€1||Lp(([ UI+)><NC R4) C*(Hamla—’—nlzﬁ(ﬂf JR) + ||a$1 ||LP(QE ]Rd)) - 07

due to pe (1, p] and [|(9,,4F)~

5 ||Z£p(Q’Rd) < C by the equiboundedness of the energies. m

4 The Second I'-limit: Griffith-type Delamination

In this section we prove that the gradient delamination models (Q,E",R).ec(0,x, ap-
proximate a model (Q, &, R) for Griffith-type delamination as k — 0. Here, R: Z —
[0, 0¢] is given by (2.16) and

£t q)m { Jo o Wlelutg(®))de it q = (u,2) € Qo )
00 if g € Q\Qq,

Zo={2€ L>®(Qp)|0<2<1and dy,z=0a.e. in Qp}, (4.2)

Q= {(u,z) cU x Z, [[u-nl]] > (0 and Tcz[[u] =0 a.e. on FC}, (4.3)
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with ¢ as in (2.12) and with 7Tt explained by (4.4). For sequences (uy, 2 )re (0,50 With
equibounded energies there is a subsequence z, — z in L®(Qo) and due to d,,z, =0
a.e. in Qy, for all k€ (0, ko] we find that z € L>(€;,) is constant a.e. in y;-direction. By
the definition of the weak derivative we can verify that d,,2=0 a.e. in Qj, is the weak
y1-derivative of z € L*°(Qy). This allows us to define the trace of z on I by

1

Tez(s) = %/ 2(y1, s) dy; (4.4)

1

Then, for all z € Z. from (3.2) definition (4.4) coincides with the trace in the usual
sense and for all v € Z it is

R(v) = { 2frc —oTrvds if Tov <0 a.e. on I, (4.5)

%) otherwise,

so that (Qg, &, R) indeed models delamination along the interface I'.
For all t€[0,T] the stable sets of (Q,£",R) and (Q,E,R) are given by

S(t):={q¢=(u,2)€ Q| E"(t,q) <oo, E"(t,q) <E"(t,§)+R(2—=) for all =(u,2)c Q},
S(t):={q=(u,2)€Q|E(t,q) <0, E(t,q) <E(t,§)+R(2—=z) for all §=(u, 2) € Q}.

Because a function f € L>®(T) is only defined L% !-a.e. on T'¢, its support supp® f
and its zero set N7 have to be defined with care. Using the ideas of [Fed69, p. 60] we
introduce

supp” f :=N{A C Tc| A closed, L7 ({s € ['c| f(s)#0}\A) = 0}, (16)
Ny :=Tc\supp® f = U{O C T| O open, Edil((/) N{sele|f(s)#0}) =0}.

Clearly, supp® f is closed and Ny is open and they are well-defined for equivalence
classes f € L*°(I'¢). The following lemma is a direct consequence of (4.6), see [Tho10,
Lemma 4.3.1].

Lemma 4.1 Let f € L>(T), g € C°%(T¢) and let OSg := {s € T'c| g(s) # 0} denote
the open support of g. Then

f(8)g(s) =0 for a.e. s € T s equivalent to  supp® fNOSg=10. (4.7)

The following example emphasizes the interaction of w and z for (u, z) € Q. and shows
that the proper definition of N_ is crucial.

Example 4.2 Let M C I'¢ be closed and nowhere dense, i.e. M has an empty interior.
Let 0 < L3774 M) < L3 YT.). Such a set can be constructed similarly to Cantor’s
middle third set, see e.g. [Els02, p. 70 & Exercise 8.9]. Consider z = 1 — Iy € L=(T'¢),
ie.z=0o0on M and z =1 on I'c\M. Then N° = # M. Let (u,z) € Qg. Thus, it
holds [u] = 0 on T, \M and [u] > 0 on M. Because of p>d we have that [u] € C°(T¢)
and {s € T'c | [u] >0} is open. By int M = ) we conclude that {s € ' | [u] >0} = 0,
i.e. [u] =0 on I'c. Thus, if z = 0 holds only on a nowhere dense subset of I'c, then u
cannot jump on I'¢ at all, although possibly £471(M) > 0. O

23



As can be seen from (4.1), the values of £(t,u,z) are independent of the particular
values of z. Moreover Example 4.2 shows that, for p>d, only the set NV, is of importance.
In the following we prove that the system (Q,&,R) for Griffith-type delamination
favours energetic solutions (u, z) with either z(¢,y) = 0 or z(¢,y) = 29(y), where 2 is
a given initial condition.

Lemma 4.3 (Stability of majorants) Let (u,z) € S(t). Consider Z > z such that
{ye Q| z2(y) =0} ={y € Q| 2(y) = 0}. Then also (u,2) € S(t).

Proof: We check the stability condition (1.2S) for an arbitrary state (u, 2). If 2 > 2
on a set of positive measure, then R(Z—Z2) = oo and (1.29) is trivially satisfied. Hence
it remains to investigate the case 2 < zZ a.e. on (2y,.

If 2 <2< Z ae., then we have already E(t,u,2) > E(t,u, 2), so that (1.2S) holds for
this choice of (1, 2). Assume now that 2 < z < Z. The stability of (u, z) and the fact
that z > z then yield

E(t,u,2)=E(t,u,2) <E(t,0,2)+R(2—2) <E(t0,2) +R(:2—2).

Finally consider 2 such that 2 <z < Zon A C Qp and Z > Z > z on Q,\ A for a set
A C Qp with £4(A) > 0. We introduce a function z such that z := 2 in A and z := 2
in Q,\A. From the stability of (u, z) we obtain

E(tu,2) =E(tu,2) <E(,0,2)+R(Z—2) <E(t,u,2)+R(2—2),

due to R(Z—2) = [,(z—2)dy < [,(2—2)dy < R(Z - 2). n

Proposition 4.4 (Griffith-crack property) Let (Q,€,R) be given by (2.12), (4.1)
and (2.16) such that assumptions (2.5) and (2.6) hold true. Let (ug, z9) € Q be a given
initial value such that (ug, z9) € S(0). Let (u,z) : [0,T] — Q be an energetic solution
of (Q,E,R). Then (u,Zz) is also an energetic solution, where

é(t,y) = { Zo(y) if Z(t, y) >0,

0 else.

Moreover, for allt € [0,T] it is z(t,-) = Z(t,-) € L=(Qyp).

Proof: Since (u(t),2(t)) € S(t) Lemma 4.3 implies that also (u(t), 2(t)) € S(t). Thus,
it remains to verify the energy balance (1.2 E). We have E(t, u(t), 2(t)) = E(t, u(t), z(t))
and 0,E(t,u(t), 2(t)) = :E(t, u(t), 2(t)). Moreover, due to the monotonicity of Z and z
with Z > z it holds that

Dissr(Z,[0,t]) = R(2(t) — 20) < R(z2(t) — z9) = Dissg(z, [0,]) . (4.8)

Hence, the upper energy estimate for (u,z) : [0,7] — Q follows. The lower energy
estimate, which is a direct consequence of stability (see e.g. [FMO06, p. 70| for a proof)
then yields equality in (1.2 E). This implies equality in (4.8) and for all £ € [0,7] we
conclude that 2(t,-) = z2(¢,-) € L>=(T'y). n

We now state the I'-convergence result from gradient to Griffith-type delamination.
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Theorem 4.5 (I'-convergence of the delamination problems) Let the assump-
tions (2.5) and (2.6) hold with p > d and r € (1,00). For all Kk € (0,k], let
¢ : [0, T] — Q be an energetic solution of (Q,E%,R). If the initial values satisfy

qy z, qo and £7(0,q5) — £(0,q0), then the delaminalion problems (Q,E", R)e(0,x]
[-converge to the limit delamination problem (Q,E,R) in the sense of Theorem A.1.

Proof: We proceed as for Theorem 3.1. Since R : Z — [0, oo] is independent of , Re-
mark 2.2 also proves condition (A.2-D2) as k — 0. Furthermore, for all ¢ with finite en-
ergy it holds 0,E(t, q) = 0,E"(t, q) given by (2.17), so that conditions (A.1-E2), (A.1-E3)
and (A.3-C1) hold due to Lemma 3.8. The existence of a subsequence (gy)xe(0,x0) Of
energetic solutions to (Q, ", R, q¢f) converging in 7 for all t€[0, 7] can be established
as for Theorem 3.1. Conditions (A.1-E1), (A.1-E2) and (A.3-C2) will be shown in the

subsequent sections. n

4.1 Compactness of the Energy Sublevels and Lower I'-limit

In Lemma 3.5 it has been verified that the sublevels of the functionals £%(t,-) are
compact in the topology 7. In order to complete the proof of (A.1-E1) it remains
to show that unions of sublevels with respect to xk are precompact in 7. Moreover,
we will show that the sublevels of £ are even compact in the weak topology of O, i.e.
in WP(Q_ U Q,,R?) for the displacements, which is important for the proof of the
[-lim inf-inequality.

Theorem 4.6 (Sequences with equibounded energies) For all k € (0,ko] let
E" 1 [0,T]x Q — Ry be given by (3.1) so that (2.5) and (2.6) hold. Moreover, let
EeR and (te)neoro C [0,T]. Assume that E%(t,, uw, 2.) <E for all k€ (0, ko]. Then

(1.) there is a subsequence (g, z.) — (u, z) in Q and hence also (u,, z,) Z (u,2) as
Kk — 0,

(2.) for the limit holds (u, z) € Qq, see (4.3), and 0 < Tez <1 a.e. on .

Proof: Ad (1.): From &E%(t.,u,, z:) < E and coercivity estimate (3.6) we obtain
that (w.)re(o.r) 15 equibounded in WhP(Q_UQ,, R?). Since Y € WP(Q_UQ,, RY) is
a reflexive Banach space there is a subsequence u,, — « in U and in WHP(2” Uy, R%)
for all v € (0,&¢]. Furthermore, the equiboundedness of £%(t,,u,, z.) implies that
|2k || Lo (p) < 1 for all k€ (0, ko]. By Banach-Alaoglu’s theorem there is a subsequence
z, — z in L>(Qy,). This proves that the subsequence (w, 2x) e (0,50 CONVerges to (u, z)
both in the weak topology of Q and in 7.

Ad (2.): For the limit (u, z) of the subsequence (s, 2x)rec(0,0] C U X Z¢ from above
we now show that (u,z) € Qg. Since U is a Banach space it clearly holds u € U.
For z, = z in L®(Qp) with z, € W (Qp), 9,2, = 0 and 0 < 2, <1 ae. in Q, it
remains to prove that z € Z., see (4.2). We first verify that 0 < z < 1 a.e. in Q.
Testing the weak*-convergence with L (Qy) = {p € L'(Qp) | » > 0 a.e. in Q,,} yields
0 <limy g fo p2edy = [ wzdy for all ¢ € L} (). To conclude that z > 0 a.e.
on Q, we assume that z <0 on A C Q, with £L%(A) > 0. For the indicator function
I5:Q,—{0,1} of the set A holds I, € L (Qp,), but [,zdy <0, which is a contradiction
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to fQDgoz dy >0 for all p € L! (). Hence it indeed holds that z >0 a.e. in Q. With
the same arguments we obtain that 0 <lim, .o [ ¢(1-2,)dy= [, ©(1—2)dy for all
e LY (Qyp), which yields that z<1 a.e. in Q.

Now we prove that z is constant a.e. in y;-direction. For all k€ (0, ko] we obtain 0 =
— an Oy 2updy = fﬂn 2,0y, p dy for all p € CF(€2,). Hence by the weak*-convergence
it holds 0=1lim, .o [ 2.0y, 0 dy = [, 20, dy for all p € CF(Qy). The fundamental
lemma of the calculus of variations then yields that z is constant a.e. in y;-direction.
Moreover, since 0<z<1 a.e. in €}y we obtain that 0=T,0<T.z < T 1=1.

To show (1.1) we use testfunctions fe L*(£2,,) with f(y,s)=f(s) and we find
/ f(s)Ttze(s)ds = fz.dy;ds — fzdyds = 2/ f(s)Tt2(s) ds
QD QD FC

This proves in particular that 0 = fFCTC'ZﬁH[uH]H ds — fFCTCzH[u]H ds, since the com-
pactness of the trace operator W'P(Q_ U Q. RY) — LP(I'¢,R?) yields [u,] — [u]
strongly in LP(T'¢, R?). Therefore we find a subsequence which converges pointwise a.e.
on I'c and hence 0 < lim,_oJu,-n;] = [u-n;] a.e. on T'c. n

For t, = t fixed the above theorem states the precompactness of unions of energy
sublevels both in the weak topology of Q and in 7. It remains to verify the compactness
of the sublevels of the limit functional £(t, -).

Lemma 4.7 (Properties of the limit energy) Let & be given by (4.1) such that the
assumptions (2.5) and (2.6) hold true. Then E(t,-) : Q@ — Ry, is coercive and weakly
sequentially lower semicontinuous on Q for all t € [0, T]. In particular, (3.6) holds for
k=0 and QL = Qx. Moreover for all E € R the sublevels Lg(t) .= {q € Q|E(t) < E}
of the functional E(t,-) : Q@ — Ry, are sequentially compact in the weak topology of Q
and hence in T .

Proof: Estimate (3.6) is a direct consequence of (2.6b), (2.5) and Korn’s inequality
(2.20). This estimate together with the fact that £(t,u, 2) = 00 if || 2| Lo (r) > 1 proves
the coercivity of £(t,-) on Q. Lower semicontinuity follows from convexity (2.6a) and
the closedness of Qg N {(u,z) € WHP(Q_ UQ, , RY) x L®(Qp) |0<2<1 ae. in Qp} in
Whr(Q_ UQ,, RY) x L>®(€yp), which can be shown as in the proof of Lemma 3.5 using
the ideas of the proof of Theorem 4.6, Item (2.) Then the compactness of the sublevels
in the weak topology of Q directly follows from the lower semicontinuity and coercivity
as in the proof of Lemma 3.5. Since 7 is coarser than the the weak topology of Q the
compactness of the sublevels in 7 follows. m

To establish the I'-liminf-estimate for (Q,£",R) we use that stable sequences have
equibounded energies, which yields a subsequence even converging weakly in Q.

Theorem 4.8 (Lower I'-limit of the energy functionals) Let £ and £ be given

by (3.1) and (4.1) such that the assumptions (2.5) and (2.6) hold. Let (t,qx) I, (t,q)
as k — 0 with g, € S§"(t,) for all k € (0, ko|. Then

E(t,q) <lim iélf E™(tw, ) - (4.9)
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Proof: Since ¢, = (ux, 2.) € 8"(t,) for all k € (0, ko] there is a constant F > 0 such
that E%(t,, Uy, z.) < E. Thus, Theorem 4.6 can be applied and yields the existence of
a subsequence (u,, z,) — (u, z) in Q with (u, z) € Q.

Due to assumptions (2.6) we obtain that the functional fQ,um W (-)dz is weakly se-

quentially lower semicontinuous on W1P(Q_ U Q, RY). Together with (2.5) we deduce
liminf, o fo o, Wie(ue + g(t))) dz > fQ_UQ+ We(u + g(t)))dz. Furthermore it
clearly holds liminf, o % [;. [Viz|"ds > 0, which establishes (4.9). C

4.2 Conditioned Upper Semicontinuity of the Stable Sets

We show condition (A.3-C2) by proving the existence of a mutual recovery sequence,
i.e. for any sequence (t,,q.) I, (t,q) with ¢ = (u,2) and with g, = (u,, z,) € S*(t,)
for all k € (0, ko] and for all §= (4, 2) € Q our task is to construct a mutual recovery
sequence (Gr)re(0,x0] With ge = (1, 2;) such that

limsup (E%(tw, Gu) + R(Ze—2x) — E%(tnr a)) < E(, Q) + R(2—2) — E(t,q) . (4.10)

rk—0

In order to constitute (2, )se(0,0) C W' (Qp) for a given function 2 € L°(€;,) we have
to mollify 7.2 by a sequence of suitable mollifiers (1, )s(0.5) C Cg°(R*™!) in such a way
that ch §(|VTC2’,§|T — |VTCZ,€|T) ds vanishes. For this, we use mollifiers of the form

. {cexp<—1/<1—|y|2>> if 5] < 1,

0 otherwise ﬁp(s) = pdl—,lﬁ1(8/p), Ny = ﬁp(/{), (4_11)

where ¢ is defined in such a way that ||7[|,1(ge-1) = 1 and p(x) — 0 as k — 0 suitably.

For Toz € L*(I'¢c) the mollification guarantees that 7.2, — T2 in LI(I'.) for all
q € [1,00), see [Ada75, p. 29, Lemma 2.18|. Moreover, by [Jan71, p. 33, Theorem 39.1]
we have

supp(7c2 *17,) C supp® 2+ B;(0) = {s + 5| s € suppcz,5 € B;(0)}, (4.12)
where Bf(0) C T'¢ is the closed ball of radius p around 0 and supp® 2 = supp T¢.2.

We define Z,(y1, ) = Tt2.(s) for a.e. (y1,s) € Qp, so that 2, € Z.

Since in general N ¢ N¢, it is necessary to modify @ so that the modified functions
satisfy [[@,.] >0] C Ng . In order to verify (4.10) we want that £%(t,, i, 2.) — E(t, 1, 2).
This can be guaranteed if @1, — 4 strongly in WH(Q_ U Q,,R9). In the following we
prove the existence of this sequence for the case p > d, since the continuity of [u]
on I'c then allows us to conclude from Lemma 4.1 that (@, 2) € Qg is equivalent to

supp® 2 N OS [[a] = 0. We will apply a Hardy inequality according to [Lew88, p. 190].

Proposition 4.9 Let M C T be closed and let Qr C R? as in Fig. 1. Assume that
p>d. Let dy(z) := min,_y |v — &| for all z € Qy. For all u € Wﬁp(ﬂi,Rd) with
WP, RY) = {a € W(Qu, RY) |[a=0 on M UTy,} it holds (u/dy) € LP(Qx, RY).
In particular, there is a constant Cy, > 0 such that

Hu/dMHLP(Qi,]Rd) S 01\7[ ||VU||Lp(Qi7Rd><d) . (413)
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We now construct a sequence () qe(o,x] such that T¢2.[t,] = 0 a.e. on I'¢. For this,
let Ggym(z1,8) = S(0(z1,8) + @(—2z1,5)) and Ganii(z1,8) = 5 (A(z1,5) — A(—a1, ).
Then, Gy € WP(Q,R?) and dap; € WHP(Q- UQ, RY), which satisfies (0, ) =0
if and only if [u](s) = 0 for s € I'¢, in particular, G = 0 on M = supp® 32, i.e.
Uanti € Wl’p(Q,UMUQJF,Rd). We use cut-off functions that push t,,; to 0 in a
suitable neighborhood of M. Thanks to Proposition 4.9 we can show for p > d that this
construction converges strongly in WHP(Q_ U Q. R?) as the size of the neighborhood
tends to 0.

Corollary 4.10 Letp > d and aewlvp(Q_uMum, R?) with t=0 on Ty, in the trace
sense. With €)' () := min {%(dM(x) — p)+, 1} set

0P (21, 8) := Usgm (21, 5) —i—§ (xl, S) Uanti (1, S) - (4.14)
Then the following statements hold:

(i) U° — 4 strongly in WHP(Q_ U Q. RY),
(ii) & € WYP(Q_UMUQ, RY) = a0 € WY(Q_ U(M+B,0))UQ,,RY with
B,(0) C RY,
(iii) [t -m] >0 = [@#-ny]> 0.

Proof: Recall that tgm € Whe(Q, ]Rd) is fixed in @”, so that it suffices to verify the

statements for 4 ; = &) liany. From fM positive and [un] > 0 it follows [u? ,n;] >0,
which proves (7ii). Note that
=0 if dy(x) <p, -
o i dy(2) < p i 0 ifwe M,
£, () €(0,1) if p<dy(x) <2p, and &7 (z):= . (4.15)
1 otherwise.

=1 if 2p < dy(2),
Hence @, = 0 in M + B,(0). This implies @* € W'?(Q_U(M + B,(0))UQ,,R?), so
that (77) holds.

It remains to prove (7). From (4.15) we see that fsz — &M pointwise in Q. With
A, = dy(z) <pl, B, :=[p <dy(z) <2p|]and C, := [2p < dy,(x)] we obtain by the
dominated convergence theorem that

125 = fanti 1%y gty = / [ / (€ — €M)ty dor + / 0P dz — 0,
A, B, c,
due to L([dy(z) < p]) — 0, L([p < dy(z) < 2p]) — 0 and [¢} — V| < 1 for all

p > 0.

By the chain rule we calculate that Vi’ . = §£ZVfLanﬁ + ﬁam®V§gAf. Thus,

anti
IV (@ =)o < (1) Vit 20+ s V€ 2
where ||(1 — géM)V’&antiHLp(Q_UQ_HRdXd) — 0 again by dominated convergence.
It remains to show that H’&anﬁ®v€é\%HLP(Q_UQ_‘HRdXd) — 0. We obtain that
0 if 0 < dy(z) <p,

IV (@) =1 1/p if p<dy(z) < 2p,
0 if2p<dy(z),
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i.e. \Vé’ifﬂ <1/p. Since dy,(x)€[p,2p] it holds 1/p< dl\;(x) for all €. We conclude

~

Uan 1(1’)
< 2p/ ant
P(Q_UQ, RAxd) Ba, (NM)\B, (M) dM(x)

since || Uanti/d ;|| Lr_ua, re) is bounded by Corollary 4.9 and since

. P
"ﬁanti®V€y"i dxr — 0,

£4(Bay(NO\B,(31)) — 0 for Boy,(M)\B,(NI) = {x € Q| p<dyy () <2}

With these tools at hand we now prove the existence of a mutual recovery sequence un-
der the assumption that r € (1, 00). In particular we have to determine the mollifiers ),
in such a way that their slopes grow sufficiently slow, so that [, E(IV 2" = V") dy
vanishes. In order to verify this, we will exploit the Lipschitz-continuity of | - |".

Theorem 4.11 (Mutual recovery sequences) Let (Q,E" R) and (Q,E,R) be gi-
ven by (2.12), (3.1), (2.16) and (4.1), such that the assumptions (2.5) and (2.6) hold

true with p>d and r € (1,00). Then, for all (t.,qx) I, (t,q) with q.€S"(t.) for all
k€ (0, ko] and for every € Q there is a sequence (Qx)re(0xo] Such that (4.10) holds.

Proof: Let (t.,us, 2x) I, (t,u, z) with ¢, = (uy, 2,) € S*(t,) for every k € (0, ko).
Consider § = (4,2) € Q. If § € Q\Qq, then &(t,,¢) = oo for all k € (0, kp] and
(4.10) trivially holds. Hence, assume that ¢ € Q. Additionally let 0 < 2 < z a.e.
in Qp, otherwise R(2—z) = oo. For every x € (0, ko] we now have to construct the
mutual recovery sequence (., Zx)re(o,x0] C @ in such a way that ¢, = (i, 2,) € Qc and
R(2:.—2,) < oo for all k€ (0, kg]. This means in particular that z, € W' (), whereas
ze€ L>(Qyp), only. Additionally it is required that Z, < z, a.e. in Q. The construction of
(2x)re(0,50) Will be done in Step 1. In Step 2 we verify that fQD E(IV 2| =V z|") ds — 0.
Finally, in Step 3, we specify u, using Corollary 4.10.

Step 1 (Construction of 2.): For all x € (0, k9] we now construct z,. We have
ze€ L>(Qp) with 0<2<1 being constant a.e. in y;-direction, whereas Z, has to satisfy
2, €W (Qp) with 9,2, = 0 and 0 < 2, < 1. First, we put

{ 2(y)/=(y) if 2(y) >0,

)= 0 if z(y) = 0.

(4.16)
Due to the assumption 0 < 2 < z it clearly holds that 0 < ¢ < 1 a.e. in Q5. We
mollify T.¢ by convolution with the sequence (7,)xe(0.x0] C C&(RY™) of (4.11), where
the dependence of p from x will be specified below. For all € (0, ko] the convolution
leads to functions ¢, = Tu( * 1, which satisfy (. — T.( strongly in Li(T) for all
q € [1,00) by [Ada75, Lemma 2.18], since 2/z € L9(Qp). Then we set (.(y1,s) = (o(s)
for all (y1,s) € Qp. As the final recovery sequence we introduce

Ze = 2x(, forall k € (0, ko], (4.17)

which satisfies 0 < %, < z.. Since z, — z in L>(Qy) by assumption, (. — T.( in
LY(T.) and thus ¢, — ¢ in L'(Qp) we have Z, — 2 in L'(Qyp), and hence

lim R(Z,—z,) = lim g/ (zx—25)dy = R(2—2). (4.18)
Qp

k—0 k—0
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Application of the chain rule yields that V2, = V((e2x) = V2 +2.V(: € L7 (Qp, RY)
as well as 0y, 2, =0 due to 0,,2,=0 and 9,,(,=0.

In order to ensure that §{|VZ.[|}, o gay = 0 as £ — 0 we now determine the radius
p(r) for the mollifiers 7, = 7),(,) suitably. For 7, from (4.11) we have

IV (TG (g 211y < NTeC e IVl L e oty < IVl G re anyo ™"

(4.19)

Hence, p(x) has to be chosen in such a way that xp~"(@=1)

p(r)=rkYCrd=1) We define 1, =1,

— 0. This is satisfied e.g. for

Step 2 (Cancellation argument): Up to now our construction makes sure that
IVGlLr i rey < Crp "4 -0 as Kk — 0. Since V2l may is only uniformly
bounded by the properties of stable sequences, we conclude that %HV'QHHZT(QD,RC!) may
not vanish completely. However, in the lim sup-estimate (4.10) we can compensate the
remaining terms by the term —{|Vz.[[7, o ga) that occurs in £ (L., i, 2). In order
to show that these terms indeed cancel out we use the following Lipschitz-estimate for
w(x) = |z|" with r € (1,00) and = € R, which can be obtained by a Taylor expansion:
1
wla) = w)] = | [ W+ ala—b)a=bdal <27 a4 e bl (120
0
for all a,b € R. Using 0 < (, < 1l and 0 < 2z, < 1 a.e. in ), estimate (4.20) and
Hoélder’s inequality imply

/Q %(|v25|r_|vzﬁ|r) dy < / f((|VCn|+|VZn|)T—|VZnV) dy
D

Qp

<o / EVGT + 27V VG dy
Qp

227‘72

r 2r—1 —1/r r— r
< 22 VGl @ty + ok Y el ey 5TV Gl

. (et — 0,

since K[|V (|
properties of stable sequences.

Lraprey — 0 by construction and /{1*1”||Vz,€||27(19D’Rd) < C due to the

Step 3 (Convergence of £%(t.,q.)): Because of Z, = 2.(, we find supp® z, =
supp® z,. Nsupp® (., C supp®( + BIS(H)(O). Hence, for £%(ty, §x) < oo it suffices to show
that [a,] = 0 on supp T¢2,. Since p>d we can apply Corollary 4.10 and set

~

i, =P with M = supp® 2. (4.21)

where p(k) is determined by (4.19). From (4.12), Corollary 4.10 (i) and Lemma
4.1 we infer that T.2.[us] = 0 on I'c. By Corollary 4.10 (i) we have 4, — @ and
(ttg(te)) — (a+g(t)) strongly in WIP(Q_ U Q. RY) by (2.5). Because of (2.6b),
a Taylor expansion gives [, o Wi(e(itg(ts)))dz — [y o W(e(atg(t)))dz. This
finishes the proof of the lim sup-estimate (4.10). "

5 Simultaneous Convergence

In the Sections 3 and 4 we proved that energetic solutions of the Griffith-type delam-
ination problem (Q,&,R) can be approximated by energetic solutions of the partial
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damage models (Q,E%,R) via a double limit (first ¢ — 0 and then x — 0). That
is, we performed the intermediate step of first approximating energetic solutions of
the gradient delamination problems (Q, ", R) as € — 0. In this section we show that
one can merge this double limit passage to a simultaneous convergence. For this, we
have to prove the existence of a k-dependent upper bound G : (0,k¢] — (0,&] for
the parameter . The growth of this function G is on the one hand determined by the
assumption £'/@=1) /p(k) — 0, which is needed to control the gradient of the molli-
fied delamination variable for the construction of the recovery sequence as k — 0, see
formula (4.19). On the other hand it stems from the fact, that the property d,, 2z = 0 on
Qp, for the limit 2 € L®(Qy,) of a sequence (25)ec(0.eome(0mo] C W () with 25 = 2
requires that ¢/x'/" — 0 as (g, k) — (0,0), as can be seen from formula (3.6). These
two requirements imply that

e < kYT < kYUY « p(r)  for 0<k <Ky 1. (5.1)
For the upper bound on ¢ we choose a function G : (0, ko] — (0,&0] with the property
G(r)/kY" =0 as k—0. (5.2)

This relation is essential to show the simultaneous limit. Moreover, to obtain this
result for sequences (¢, k) — (0,0) simultaneously, the crucial step is the construction
of a joint mutual recovery sequence. We formalize this construction with the aid of
so-called recovery operators, which are defined as follows.

Definition 5.1 (Recovery operators) A family (Rn)ne(o,no with Ry : Qx QA x Q —
Q for all h > 0 is called a family of recovery operators, if for a given stable sequence
(th, Gn)ne(0,no] With (th, qn) I, (t,q) and any testfunction ¢ € Q the sequence G, =
Ri(4,q, qn) provides a mutual recovery sequence, i.e.

hf}? S(l)lp (Enth, dn) + R(Gn — an) — Enlth, an)) < E,Q) +R(G—q) — E(t.q).

Speaking in this notion the recovery sequence constructed in Lemma 3.9 as ¢ — 0 is
formed by recovery operators R. = (RY,RZ): Q x Q x Q — Q with

R QxQOx Q—U, RY(G,q,q) = Tle = Ugym + Al (5.3)
RZ: O x Q% Q— Z,RZ(4,q,¢-) = 2 = max {e”, min{Z — 0, 2.} } , (5.4)

i.e. here, the recovery operators do not depend on all the components of the state ¢, the
elements of the stable sequence ¢. and its limit ¢. In (5.3) it is 6. = o(||2- — 2|z p))-
Moreover, for @ € WP(Q_UQ,, R?) we introduced gym (1, 5) = L (@(21, s)+i(—21, 5))
and Uapi(21,5) = %(ﬁ(ml,s) —ﬁ(—xl,s)). Clearly, tgym € W'P(Q,R?) and dany €
WhP(Q_uUQ,,RY). Then, omitting to indicate the dependence of A.i(zy,s) on s € T,
we set

Aa(xy) 3 (@F(21) — a7 (1)) if (x1,s) € Q7
€ 1) — ~ ~ edx1 [~ " X
(a7 (Fa) — at (Fa) + H2 (0 (Fa) — 07 (£21)) i 2 € 17,

with 4% = 1], , I = (—¢,0] and I = [0, ¢).
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The recovery sequence from Lemma 4.11 for k — 0 is similarly formed by recovery
operators R, = (RY RZ): Q x Q x Q — Q with

RL:QxQx Q—U, RY(G.q,qx) = e = lgym + 55upp R (5.5)
9{5 OXOxQ— Za %f(qAa Q>QK) - 73/@ = Zrllp(r) * TC<Z/Z) ) (56)

where kp(k)~"@ 1 — 0 and 5;1(151’ 2 as in Corollary 4.10. Again, we see that these

operators do not depend on all the components of ¢, ¢. and q.
For the simultaneous limit we now have to compose these two recovery operators R? =
R, o R. to get a joint mutual recovery sequence by ¢& = R, o R.(q,q,q"), where

qF € SE(tr) with (7, ¢F) I (t,q). In particular, we have to specify how the composition
o has to be understood in our context. From the construction (5.3)-(5.6) we see that the
recovery operators R, and ‘R, of our problems do not depend on all the components of
O x Q x Q. Moreover, to get a finite energy it is necessary that the recovery operators
map to a subspace of 9, that is Q. for R, and Q. for R, respectively. For the same
reason, also @ x Q x Q is restricted to subspaces, namely R, : Q¢ X Q¢ X Qn, — Qp
and R, : Oy X Qg X Q¢ — Q.. For the simultaneous limit passage we now want
to plug in testfunctions ¢ € Qg, elements of stable sequences ¢ € SF(tf) C Qp
for all e € (0,e0], k € (0,rK0] and their limit ¢ € Q. and we need that R. o R,

QX Qs x 9, — Qp. Recall from (5.6) that 25 (y1,s) = 25 (y1, 8) (o) ¥ Te(2/2))(s), i.e.
Doy *Te(2/2) € C*(T'¢) and multiplication with z& € W7 (Q,) leads to 25 € W ().
Since 9,,2° # 0, in general, we have RZ(q, q, ¢%) = 25 € Z;, with the property 2& < 2~

Y1~k
Hence, in view of (5.4) and (5.6), we can define RZ, = RZ o R7 as follows

RZ,.(4.q.¢7) =RZ o RZ(G,q,¢%) = RZ(RZ (4,4, 45), ¢, ¢¢) = max{e”, 2}, (5.7)

From (5.3) and (5.5) we see that RY(-,q, %) : Qc — Uy and RY(-, 2,4, %) : Us — U
are linear operators. Here, we define the composition R, = RY o RY by

~ K A K A K ~ Ssu CZA A~
R (0,4,65) = RL o NG, q,¢5) = RY (R4, 4,65)) = Uogm + 0y “Actt,  (5.8)

Now we are in a position to show that R, , given by (5.7) and (5.8) is a joint mutual
recovery operator for the simultaneous limit passage (¢, ) — (0,0).

Corollary 5.2 (Joint mutual recovery operators) Let (¢,x) — (0,0) under the
condition that 0 < ¢ < G(k) with G : (0, ko] — (0,e0] satisfying (5.2). Assume that
r,p € (1,00) and v € (p—1, P), such that (3.12) and (3.9) are satisfied. Let (2.5) and
(2.6) hold. Then, the operators RE = (RY,,RZ,) : QxQxQ — Q defined by (5.7) and
R) and (Q,E,R).

(5.8) form joint mutual recovery operators for the systems (Q,EF,

Proof: Let § € Qg and (t°,¢%) —% (t,q) as k — 0 with (t5,¢%) € S5(¢*). Then,
gt € Qp for all k € (0, kg|. For the proof we set M = supp® Z and in the arguments of
the recovery operators (5.3)-(5.6) we only indicate the quantities they depend on.

By (5.7) and (5.8) it is R, (i1, M) = tlyyy + £ Actt. Hence €3 At = 0in By (M),
while supp SRZ(Z z,28) C (—1,1) x (BC(,_G)(M)), so that RZ, (2,2, 28) = 7 in (—1,1) X

Lo\ (B (M 1)). Moreover, we have

e(i)‘igﬁ( )) Viiggm + & p(ﬁ) e(A.a) + (A u®V§M + (A, u®V§p(H)) N (5.9
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Recall that the assumption x'/(@=1) /p(k) — 0 is needed to control the gradient
of the mollified delamination variable for the construction of the recovery sequence
as k — 0, see formula (4.19). Moreover, to preserve that d,,z = 0 on 2, requires
g/k'" — 0 as k — 0, as can be seen from formula (3.6). Thus, relation (5.1) follows.
By the assumptions (5.2) and ¢ < G(k) we have ensured that e/x'/" — 0. Hence,
clearly R7Z (:2 z,28) > 2, so that R(ERZ (2,2, 25)—2) — R(2—z). Moreover, both
€2, 1V By (M) # 0 and 5 01 By (1) # 0.

In the following we omit indicating the dependence of € and p on k. Using the positivity
of W given by (2.6b), the fact that A.ti|gs = ani|og , Corollary 4.10 (7), (2.5) and the
dominated convergence theorem we find

Qi

/ W (e(RY (i, M) +g(t.))) dz < / W (et +€ s+ 9(1)))
e
— W(e(fb—i—g(t))) dZL‘
Q4
In view of (5.9) we obtain on Qf
/ ['RZ (2, 2, 25)W (e(RY, (4, M))) da

) (5.10)
<3le / (IViisym|” + TIZTRE (2, 2, 28) le(Acttanu) P + |Aca © VEY|") da
D

where the first term obviously tends to 0 as ¢ — 0. For the third term we proceed as
in the proof of Corollary 4.10, i.e. with D,(M) = Bsy,(M)\B,(M) we have

/}Au@avg )" da < /QPrpdxg /2?

oz Q2ND, (M) Q5,ND, (M)

Uanti

dyy ()

p
dz — 0,  (5.11)

since ||Uanti/d (%) || Lo _ua, re) is bounded by Proposition 4.9. Moreover, we have used
that (e £ x1)/(4e) < 1/2 for x; € I, where I. = (—¢,¢).

Furthermore, the second term in (5.10) can be estimated using that

/He_li)‘ifﬁ(é, z, 28 |e(Aca)|P de < /57|6(A6ﬁ)|p dz + / le(Atiang) [P da .
Qp I x(Dc\BS (M)) (I x BS (M))\B, (M
By repeating the estimates (3.37)-(3.42) we conclude that this term tends to 0.

To verify that also fﬂ% cp(e(i)figﬁ(ﬁ, M))) dr — 0 we use the upper growth estimate

in (2.3) and again formula (5.9). Moreover, since |tr A] < |A| for all A € R™? we
see that the terms containing tr Vi, and tr(Aazl®V§g4) tend to 0 with the same
arguments as above. To prove that also the term containing tre(A.a) tends to 0 one
has to repeat the corresponding arguments in the proof of Lemma 3.9.

Finally, for the gradient of the delamination variable it is

(H vsﬁz (2,2 ZH)HZT(QD,Rd) - Hé:‘VZ?HZT(QD,Rd))
< “(H sz(z Z % )HZT(QD,Rd) - Hé:‘VZgHzT(QD,Rd)) :
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Then formula (4.19) and the cancellation argument lead to the desired result, since

/<¢1*1/7"||6Vz§||27(19n7Rd) < C due to the properties of stable sequences. C

The existence of a joint mutual recovery sequence by Corollary 5.2 implies that the
limit (¢, q) of a stable sequence (t%,¢%) Ir, (t,q) as (e,k) — (0,0), satisfies ¢ € S(t),
that is E(t,q) < E(t,q) + R(zZ — z) for all ¢ = (u,2) € Q. This yields that £(t,q) < oo
and hence g € Q. In particular, this means that ¢ = (u, z) satisfies the transmission
and the noninterpenetration condition, see (4.3).

Since ¢f € SF(tf) for all ¢ € (0,e0], K € (0,x] implies the equiboundedness of the
corresponding energies one obtains the existence of a subsequence ¢ z, q by Lemma
3.2 and the definition of 7. Thus, we may state the following corollary.

Corollary 5.3 Let the assumptions of Corollary 5.2 hold true. Consider a family
(5, UL, 25) (0,00 me(0,00) With 0 < & < G(k) and G as in (5.2), such that (uf, 25') € SE(tF)

gy Ve ~e g ~e
‘ T
and tf — t. Then, there is a subsequence (ufr, 2f*) — (u, 2) as (e, kx) — (0,0) and
(u,z) € Qq, so that the transmission and the noninterpenetration condition (1.1) are

satisfied.

Moreover, the simultaneous lower ['-limit can directly be adopted from Lemmata 3.7
and 4.8. Lemma 3.8 concerning the properties of the partial time-derivatives of the
energy functionals and Lemma 4.7 on the limit functional and are valid as well. Hence,
we are in a position to conclude with the simultaneous convergence result.

Theorem 5.4 (Simultaneous convergence) Let the assumptions of Corollary 5.2
hold. For all € € (0,e0], k € (0,Ko] let ¢ : [0,T] — Q denote energetic solutions of
the systems (Q,E5,R) and the initial values q5", which satisfy E5(0,q5") — £(0, qo).
Then every subsequence (qgj (t))keN with 5;6//@,1 " — 0, which converges for allt € [0,T]

with respect to the topology T, has an energetic solution of (Q,E, R, qo) as its limit.

Proof: The stability inequality (1.2S) for ¢ : [0,7] — Q and (Q,&,R) is a direct
consequence of Corollary 5.2. To verify the energy balance (1.2 E) one may repeat the
arguments of [MRS08, Theorem 3.1|. Alltogether, this implies that ¢ : [0,7] — Q is
an energetic solution of (Q, &, R, o). ]

A Appendix: Abstract I'-convergence Result

In [MRS08| the theory of I'-convergence was adapted to the framework of the energetic
formulation of rate-independent processes. In the following we introduce sufficient
conditions guaranteeing that a subsequence of energetic solutions of the approximating
systems (Q, £;, R;) converges to an energetic solution of the limit system (Q, £, Reo)-
Let the topology for the convergence of the energetic solutions be denoted by 7. Then

i.e. we want to obtain that g;(¢) Z q(t) for all t € [0, 7.

For all j € N, = NU {oco} we introduce the stable sets
Sj(t) :={q € Q[&(t,q) < o0, Vg = (u,2) : &(t,q;) < &(t, q) + R;(3—2)}.
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In order to ensure the I'-convergence of the systems (Q, &;, R;) en the following condi-
tions have to be satisfied by the energy functionals &; : [0, 7] x @ — R, for all j € N.

Compactness of energy sublevels: Vt€[0,T|V E€R :
Vj € Ny : Li(t) = {qg € Q|&(t,q) < E} is compact wrt. T, (A1-E1)
Uiz, L7, (t) is relatively compact wrt. T,

Uniform control of the power:
JepeR F ;>0 V) € NV (1, ¢)€[0, T x Q with E(t,,q) < oo : (A.1-E2)
E(,q) € M([0,T]) and |0:E(t, q)| < c1(co+E(t, q)) for all t€[0,T],

Uniform time-continuity of 0,€+ :
Ve >0VE € R30 >0Vq € Q with £(0,¢) < E': (A.1-E3)
|t1 —t2| <) = |3t800(t1,q) —8tgoo(t2,Q)| <e€.

Furthermore the dissipation distances D; : Z X Z — [0, 00] with D;(z,2) = R;(2—=2)
for all z, Z € Z must fulfill for all j € N:

Quasi-distance:
VjeNoV2,20,23€ Z: Dj(z,20) =0 & 21 = 25 and (A.2-D1)
Dj(Zl, 2’3) S Dj (21, 22) —+ Dj(ZQ, 23) s

Semi-continuity:

. . o (A.2-D2)
VjeNy: Dj: ZxZ — [0,00] is lower semi-continuous wrt. 7,
Positivity of Dy :
V compact A C Z, V(zj)jen C A
: T.
min{D;(z;, 2), Dj(2,2))} =0 = 2z Sz, (A.2-D3)

where 7z is the restriction of 7 to the z-component of ¢ = (u, 2) .

Additionally the following compatibility conditions have to be satisfied:
Forall t; — tin [0,7], ¢; = (uj, 2;) = ¢ = (u, 2) with ¢; € S;(t;) for all j € N it holds

Conditioned continuous convergence of 0,&; :

(A.3-C1)
atgj(tjy Qk) - atg(t7 Q) ’
Conditioned upper semi-continuity of stable sets: (A.3-C2)
q € Sxolt),
Lower I'-limit fml’ 5]: : (A.3-C3)
E(t,q) <liminf; . &;(t;,q)),
. ey T
Lower T'-limit for D; : Let additionally ¢; = (u;, 2;,) — ¢ = (4, 2)
y T (A.3-C4)

with qu S Sj(t]),] S N,
The theorem below states the convergence result. A proof is given in [MRS08, Th. 3.1].
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Theorem A.1 (I-convergence of (Q,&;,R;);en) Let conditions (A.1), (A.2) and
(A.3) hold and for all j € N let ¢; : [0,T] — Q be an energetic solution of (Q,&;, R;) in
the sense of Def. 1.1. If ¢;(t) KR q(t) for allt € [0,T] and if £;(0,¢;(0)) — £x(0,¢(0))
then q : [0,T] — Q is an energetic solution of (Q,Ex, Reo)-

Moreover, for allt € [0,T] it is £;(t, q;(t)) — E(t, q(t)), Dissg, (g;, [0,]) — Dissg (g, [0, t])
and 0,E;(t, q;(t)) — 0:E(t,q(t)) for a.a. t € [0,T]. Furthermore, for Q being a separable,
reflerive Banach space, the energetic solution q is measurable with respect to time.
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