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Simulation of scattering by periodic surface structures is an important task in optical design. The corresponding boundary value problem for the time-harmonic Maxwell’s equations over bounded computational domains
includes a non-local boundary condition due to the radiation condition at infinity. Alternatively to the classical approach based on Dirichlet-to-Neumann maps, we follow Huber et al. [1] and replace the boundary condition
by a coupling of the FEM with the Fourier-mode expansions in the upper and lower half space, respectively. In other words, the Galerkin method is modified coupling a, hopefully, small number of non-local trial functions
through the boundary of the FEM domain via mortar techniques. Thus the Dirichlet-to-Neumann map is approximated by a stable low-rank operator adapted to the approximation properties of the Fourier-mode expansion.
Modifying the coupling terms of Huber et al. [1] slightly, we can prove the unique solvability of the variational equation in the classical curl spaces. The FEM coupled with Fourier modes is stable and convergent.

Scattering by biperiodic grating - Mathematical model

Grating: surface structure in layer b−< x3 < b+, periodic w.r.t. x1 and x2

Incoming wave: plane wave E inc from above

Look for: � quasi-periodic solution of time-harmonic Maxwell’s equation in Hqp(curl,R3), i.e.,
solution of time-harmonic curl-curl equation for electric field

� solution with radiation condition on upper half space, i.e., admitting a Rayleigh
series expansion for half space b+< x3

� similar radiation condition on lower half space or classical boundary condition

FEM domain: ~x = (x′,x3)
>∈Ω := [0,per1]× [0,per2]× (b−,b+),

upper half space: Ω+ := [0,per1]× [0,per2]× [b+,∞] with k(~x) = k+ for x∈Ω+
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Variational formulation including Dirichlet-to-Neumann map

Weak formulation for FEM in domain Ω bounded by upper boundary line Γb+ := {~x ∈Ω : x3 = b+}
� Coupling with solution in half space Ω+ via BEM technique: R - Dirichlet-to-Neumann map
� Troubles: If there is n ∈ Z2 such that βn = 0, then there exists non-trivial solution [e3 eiαn·x′] of homo-

geneous Dirichlet problem (e3×E)|Γb+
= 0 over half space Ω+

� Modification (in red color): Simplifying assumptions
• Small layer Ωε ⊆Ω beneath Γb+ filled with cover material of Ω+

• There is only one n0 ∈ Z2 with βn0 = 0.
Look for electric field E ∈ Hqp(curl,Ω) and scalar λ ∈ C satisfying extended variational equation
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Ωε := {~x ∈Ω : b+− ε < x3 < b+},
∫

Γb−
. . . boundary term for lower boundary

Variational formulation using coupling with Fourier-mode expansion

� Idea of Huber et al. [1]: Direct coupling of Rayleigh-mode expansions in Ω+ with solution over FEM
domain Ω using the technique of Nitsche and Sternberg

� Analysis:
• Modify, slightly, the variational formulation of Huber et al. [1]

in particular change sign and approximate unbounded scalar product of traces by finite rank
approximation
• Split Hqp(curl,Ω) according to the Hodge decomposition, split Rayleigh expansions into space

spanned by TE modes Un,0 and space spanned by TM modes Un,0
• Use well-known BEM techniques
• Structure of operator of variational form: Sum of compact operator plus operator which is

diagonal w.r.t. splitting, diagonal entries are positively or negatively coercive
Theorem [3]: If there are no non-trivial solutions of homogeneous boundary value problem,

then operator of variational form invertible
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Numerical analysis

� Discretize field over Ω: Use finite element functions with collective compactness property,
e.g., Nédélec’s edge elements over regular FEM grids

� Truncate Rayleigh expansions: ∑n∈Z2 ∑
1
l=0 cn,lUn,l 7→ ∑n∈Z2: |ni|<N ∑

1
l=0 cn,lUn,l

• Experiments show that only small number of Rayleigh modes significant
• Coefficients of Rayleigh modes decay exponentially for |n| → ∞ if b+ is chosen a bit larger.
• Typically, number of modes much less than number of DOFs in FEM over Γb+

� Analysis:
• Use structure of operator in variational form
• Show that discretized operators of non-compact off-diagonal operators tend to zero

Theorem [4]: If there are no non-trivial solutions of homogeneous boundary value problem,
then Galerkin method with FEM and truncated Rayleigh expansions is stable and
convergent for meshsize h→ 0 and truncation threshold N→ ∞.
Approximation error proportional to error of best approximation.
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Echelle grating Blaces

Echelle:
N+

1 =22, N+
2 =2

N−1 =32, N−2 =2
quadratic splines

meshsize e+−2,0 e+0,0 e−1,0 e−2,0
125.0 nm 4.82 0.0027 43.23 3.78
62.5 nm 4.530 0.0022 45.0080 4.1289
31.2 nm 4.5039 0.0019 45.0559 4.1142

2D code 4.5025 0.0019 45.0630 4.1145

efficiencies (in %):
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Blaces:
N+

1 =22, N+
2 =2

N−1 =32, N−2 =2
quadratic splines

meshsize e+0,0 e+0,0 e+1,0 e+1,0 e−0,0 e−0,0 e−1,0 e−1,0
125.0 nm 2.8328 3.0985 0.1661 0.1661 75.2800 76.289 10.1503 10.1465
62.5 nm 2.8172 2.8333 0.1918 0.1918 75.5412 75.553 10.7248 10.7197
31.2 nm 2.8119 2.8136 0.1944 0.1944 75.4717 75.490 10.7787 10.7711

Simple example

� Echelle grating - designed to deflect line into the direction specular w.r.t. the faces
� Idea of Blaces - for b less and h larger than wavelength of light λ , similar effective medium distribution

like echelle grating, Blaces are of higher stability (cf. Elfström et al. [2])
� We compare the new 3D coupling algorithm applied to the 2D echelle grating with the reliable results

of the 2D FEM code solving the Helmholtz equation.
λ = 500nm, period l = 10 µm, height h = 0.5 µm, illuminated exactly from above, TE polarization

� We compare the new 3D coupling algorithm applied to the blaces grating with the results of the
algorithm by Huber et al. [1]
period per1 = l = 10 µm, period per2 = b = λ/2, other parameters like echelle
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