Weierstrass Institute fo Applied Analysis and Stochastics

Simulation of scattering by periodic surface structures is an important task in optical design. The corresponding boundary value problem for the time-harmonic Maxwell's equations over bounded computational domains includes a non-local boundary condition due to the radiation condition at infinity. Alternatively to the classical approach based on Dirichlet-to-Neumann maps, we follow Huber et al. [1] and replace the boundary condition by a coupling of the FEM with the Fourier-mode expansions in the upper and lower half space, respectively. In other words, the Galerkin method is modified coupling a, hopefully, small number of non-local trial functions through the boundary of the FEM domain via mortar techniques. Thus the Dirichlet-to-Neumann map is approximated by a stable low-rank operator adapted to the approximation properties of the Fourier-mode expansion. Modifying the coupling terms of Huber et al. [1] slightly, we can prove the unique solvability of the variational equation in the classical curl spaces. The FEM coupled with Fourier modes is stable and convergent.

	Scattering by biperiodic grating - Mathematical model
Grating: Incoming wave: Look for:	surface structure in layer $b^{-}<x_{3}<b^{+}$, periodic w.r.t. x_{1} and x_{2} plane wave E^{inc} from above quasi-periodic solution of time-harmonic Maxwell's equation in $H_{\mathrm{qp}}\left(\mathrm{curl}, \mathbb{R}^{3}\right)$, i.e., solution of time-harmonic curl-curl equation for electric field - solution with radiation condition on upper half space, i.e., admitting a Rayleigh series expansion for half space $b^{+}<x_{3}$ similar radiation condition on lower half space or classical boundary condition

Variational formulation including Dirichlet-to-Neumann map

Weak formulation for FEM in domain Ω bounded by upper boundary line $\Gamma_{b^{+}}:=\left\{\vec{x} \in \bar{\Omega}: x_{3}=b^{+}\right\}$
\square Coupling with solution in half space Ω^{+}via BEM technique: \mathscr{R} - Dirichlet-to-Neumann map
\square Troubles: If there is $n \in \mathbb{Z}^{2}$ such that $\beta_{n}=0$, then there exists non-trivial solution $\left[e_{3} e^{i \alpha_{n} \cdot x}\right]$ of homo geneous Dirichlet problem $\left.\left(e_{3} \times E\right)\right|_{b^{+}}=0$ over half space Ω^{+}

- Modification (in red color): Simplifying assumptions
- Small layer $\Omega_{\varepsilon} \subseteq \Omega$ beneath Γ_{b} + filled with cover material of Ω^{+}
- There is only one $n_{0} \in \mathbb{Z}^{2}$ with $\beta_{n_{0}}=0$.

Look for electric field $E \in H_{\mathrm{qp}}(\mathrm{curl}, \Omega)$ and scalar $\lambda \in \mathbb{C}$ satisfying extended variational equation
FEM domain: $\vec{x}=\left(x^{\prime}, x_{3}\right)^{\top} \in \Omega:=\left[0\right.$, per $\left._{1}\right] \times\left[0\right.$, per $\left._{2}\right] \times\left(b^{-}, b^{+}\right)$,
upper half space: $\Omega^{+}:=\left[0\right.$, per $\left._{1}\right] \times\left[0\right.$, per $\left._{2}\right] \times\left[b^{+}, \infty\right]$ with $k(\vec{x})=k^{+}$for $x \in \Omega^{+}$

$\nabla \times \nabla \times E(\vec{x})-k(\vec{x})^{2} E(\vec{x})=0, \vec{x} \in \Omega$
 $E(\vec{x})-E^{\mathrm{inc}}(\vec{x})=\sum_{n \in \mathbb{Z}^{2}} R_{n} e^{\mathrm{i}\left(\alpha_{n} \cdot x^{\prime}+\beta_{n} x_{3}\right)}, \vec{x} \in \Omega^{+}$

$\begin{array}{ll}E^{\mathrm{inc}}:=R^{\mathrm{inc}} e^{\mathrm{i}\left(\alpha^{(1)} x_{1}+\alpha^{(2)} x_{2}+\beta_{n} x_{3}\right)}, & \alpha_{n}:=\left(\alpha_{n}^{(1)}, \alpha_{n}^{(2)}\right)^{\top}=\left(\alpha^{(1)}+\frac{2 \pi n_{1}}{\operatorname{per}_{1}}, \alpha^{(2)}+\frac{2 \pi n_{2}}{\operatorname{per}_{2}}\right)^{\top} \\ & \beta_{n}:=\sqrt{\left(k^{+}\right)^{2}-\left|\alpha_{n}\right|^{2}}, \quad R_{n} \perp\left(\alpha_{n}, \beta_{n}\right)^{\top}\end{array}$

$$
\beta_{n}:=\sqrt{\left(k^{+}\right)^{2}-\left|\alpha_{n}\right|^{2}}, \quad R_{n} \perp\left(\alpha_{n}, \beta_{n}\right)^{\top}
$$

$$
\begin{aligned}
& \int_{\Omega}\left[\nabla \times E \cdot \nabla \times \bar{V}-k^{2} E \cdot \bar{V}\right] \mathrm{d} \vec{x}-\int_{\Gamma_{b^{+}}}\left\{\mathscr{R}\left(e_{3} \times E\right)+\lambda \nabla \times\left[e_{3} e^{\mathrm{i} \alpha_{n_{0}} \cdot x^{\prime}}\right]\right\} \cdot\left(e_{3} \times \bar{V}\right) \mathrm{dx} \mathrm{x}^{\prime}-\int_{\Gamma_{b}-} \\
& =\int_{\Gamma_{b^{+}}}\left\{\left(\nabla \times E^{i n}\right)_{T}-\mathscr{R}\left(e_{3} \times E^{i n}\right)\right\} \cdot\left(e_{3} \times \bar{V}\right) \mathrm{ds}, \\
& \int_{\Omega_{\varepsilon}}\left\{E-\lambda\left[e_{3} e^{\mathrm{i} \alpha_{n_{0}} \cdot x^{x}}\right]\right\} \cdot \overline{\left[e_{3} e^{\mathrm{i} \alpha_{n_{0}} \cdot x^{k}}\right]} \mathrm{d} \vec{x} \bar{\eta}=0, \quad \forall V \in H_{\mathrm{qp}}(\operatorname{curl}, \Omega), \forall \eta \in \mathbb{C} \\
& (\mathscr{R} \widetilde{E})\left(x^{\prime}\right):=-\sum_{n_{0} \neq n \in \mathbb{Z}^{2}} \frac{1}{i \beta_{n}}\left[\left(k^{+}\right)^{2} \widetilde{E}_{n}-\left(\left(\alpha_{n}, 0\right)^{\top} \cdot \widetilde{E}_{n}\right)\left(\alpha_{n}, 0\right)^{\top}\right] \exp \left(i \alpha_{n} \cdot x^{\prime}\right) \text { if } \widetilde{E}\left(x^{\prime}\right)=\sum_{n \in \mathbb{Z}^{2}} \widetilde{E}_{n} e^{i \alpha_{n} \cdot x^{\prime}} \\
& \Omega_{\varepsilon}:=\left\{\vec{x} \in \Omega: b^{+}-\varepsilon<x_{3}<b^{+}\right\}, \quad \int_{\Gamma_{b^{-}}} \ldots \text { boundary term for lower boundary }
\end{aligned}
$$

- Idea of Huber et al. [1]: Direct coupling of Rayleigh-mode expansions in Ω^{+}with solution over FEM domain Ω using the technique of Nitsche and Sternberg
- Analysis:
- Modify, slightly, the variational formulation of Huber et al.[1]
in particular change sign and approximate unbounded scalar product of traces by finite rank approximation
- Split H_{qp} (curl, Ω) according to the Hodge decomposition, split Rayleigh expansions into space spanned by TE modes $U_{n, 0}$ and space spanned by TM modes $U_{n, 0}$
Use well-known BEM techniques
- Structure of operator of variational form: Sum of compact operator plus operator which is diagonal w.r.t. splitting, diagonal entries are positively or negatively coercive
Theorem [3]: If there are no non-trivial solutions of homogeneous boundary value problem, then operator of variational form invertible

Numerical analysis

- Discretize field over Ω : Use finite element functions with collective compactness property, e.g., Nédélec's edge elements over regula FEM grids

■ Truncate Rayleigh expansions: $\sum_{n \in \mathbb{Z}^{2}} \sum_{l=0}^{1} c_{n, l} U_{n, l} \mapsto \sum_{n \in \mathbb{Z}^{2}: \mid n_{i}<N} \sum_{l=0}^{1} c_{n, l} U_{n, l}$

- Experiments show that only small number of Rayleigh modes significant
- Coefficients of Rayleigh modes decay exponentially for $|n| \rightarrow \infty$ if b^{+}is chosen a bit larger.
- Typically, number of modes much less than number of DOFs in FEM over $\Gamma_{b^{+}}$
- Analysis:
- Use structure of operator in variational form
- Show that discretized operators of non-compact off-diagonal operators tend to zero

Theorem [4]: If there are no non-trivial solutions of homogeneous boundary value problem, then Galerkin method with FEM and truncated Rayleigh expansions is stable and convergent for meshsize $h \rightarrow 0$ and truncation threshold $N \rightarrow \infty$
Approximation error proportional to error of best approximation.

Simple example

Echelle grating - designed to deflect line into the direction specular w.r.t. the faces
Idea of Blaces - for b less and h larger than wavelength of light λ, similar effective medium distribution like echelle grating, Blaces are of higher stability (cf. Elfftröm et al. [2])

- We compare the new 3D coupling algorithm applied to the 2D echelle grating with the reliable results of the 2D FEM code solving the Helmholtz equation.
$\lambda=500 \mathrm{~nm}$, period $l=10 \mu \mathrm{~m}$, height $h=0.5 \mu \mathrm{~m}$, illuminated exactly from above, TE polarization
We compare the new 3D coupling algorithm applied to the blaces grating with the results of the algorithm by Huber et al. [1]
period $\operatorname{per}_{1}=l=10 \mu \mathrm{~m}$, period $\operatorname{per}_{2}=b=\lambda / 2$, other parameters like echelle

$$
\begin{aligned}
& \begin{aligned}
a\left(\left(E, E^{+}, E^{-}\right),\left(V, V^{+}, V^{-}\right)\right)= & -a\left(\left(0, E^{\text {inc }}, 0\right),\left(V, V^{+}, V^{-}\right)\right), \quad \forall\left(V, V^{+}, V^{-}\right) \in \mathbb{H} \\
a\left(\left(E, E^{+}, E^{-}\right),\left(V, V^{+}, V^{-}\right)\right):= & \int_{\Omega^{2}}\left\{\nabla \times E \cdot \nabla \times \bar{V}-k^{2} E \cdot \bar{V}\right\} \mathrm{d} x-\int_{\Gamma_{b^{+}}} \nabla \times E^{+} \cdot e_{3} \times \bar{V} \mathrm{~d} s \\
& +\int_{\Gamma_{b^{+}}} e_{3} \times\left(E-E^{+}\right) \cdot \nabla \times \overline{V^{+}} \mathrm{d} s
\end{aligned} \\
&+\sum_{n \in \mathrm{Y}} \int_{\Gamma_{b^{+}}} e_{3} \times\left(E-E^{+}\right) \cdot\left(e_{3} \times \bar{U}_{n, 0}\right) \mathrm{d} s \int_{\Gamma_{b^{+}}} e_{3} \times\left(V-V^{+}\right) \cdot\left(e_{3} \times \bar{U}_{n, 0}\right) \mathrm{d} s+\int_{\Gamma_{b^{-}}} \ldots \\
& \mathbb{H}:=H_{\mathrm{qp}}(\operatorname{curl}, \Omega) \times Y^{+} \times Y^{-}, \quad Y^{+}:=\operatorname{span}\left\{U_{n, l}: n \in \mathbb{Z}^{2}, l=0,1\right\}, \quad\|\cdot\|_{Y^{+}}:=\|\cdot\|_{H\left(\operatorname{curr}, \Omega_{b}^{+}\right)}, \\
& \Omega_{b^{+}}^{+}:=\left\{\vec{x} \in \Omega^{+}: b^{+}<x_{3}<b^{+}+1\right\}, \quad U_{n, 0}:=\left(-\alpha_{n}^{(2)}, \alpha_{n}^{(1)}, 0\right)^{\top} e^{i\left(\alpha_{n}: x^{+}+\beta_{n} x_{3}\right)}, \quad U_{n, 1}:=\nabla \times U_{n, 0}, \\
& \int_{\Gamma_{b^{-}}} \ldots \text { boundary terms for lower boundary }
\end{aligned}
$$

$a\left(\left(E_{h}, E_{N}^{+}, E_{N}^{-}\right),\left(V_{h}, V_{N}^{+}, V_{N}^{-}\right)\right)=-a\left(\left(0, E^{\text {inc }}, 0\right),\left(V_{h}, V_{N}^{+}, V_{N}^{-}\right)\right) \quad \forall\left(V_{h}, V_{N}^{+}, V_{N}^{-}\right) \in \mathbb{H}_{h, N}$

Echelle grating

Echelle:
$N_{1}^{+}=22, N_{2}^{+}=2$
$N_{1}^{-}=32, N_{2}^{-}=2$
quadratic splines

| meshsize | $e_{-2,0}^{+}$ | $e_{0,0}^{+}$ |
| :--- | :--- | :--- | $e_{1,0}^{-}$ | meshsize | $e_{-2,0}^{+}$ | $e_{0,0}^{+}$ | $e_{1,0}^{-}$ |
| :---: | :--- | :--- | :--- |
| 125.0 nm | 4.82 | 0.0027 | $e_{2,0}^{-}$ |
| 13.23 | 3.7 | | |

 2 D code $\mid 4.50250 .001945 .06304 .1145$

Blaces
$N_{1}^{+}=22, N_{2}^{+}=2$
$N_{1}^{-}=32, N_{2}^{-}=2$
quadratic splines
meshsize $\begin{array}{lllllllll}e_{0,0}^{+} & e_{0,0}^{+} & e_{1,0}^{+} & e_{1,0}^{+} & e_{0,0}^{-} & e_{0,0}^{-} & e_{1,}^{-} & e_{-}^{-}\end{array}$

Blaces
efficiencies (in \%):
$e_{n}^{+}:=\frac{\beta_{n}}{\beta_{(0,0)}}\left|R_{n}\right|^{2}$ $e_{n}^{-}:=\frac{\left|k^{+}\right|^{2} \sqrt{\left(k^{-}\right)^{2}-\left|\alpha_{n}\right|^{2}}}{\mid k^{-}-\beta^{2} \beta_{(0,0)}}\left|R_{n}\right|^{2}$

 \begin{tabular}{l|lllllllll}
62.5 nm \& 2.8172 \& 2.8333 \& 0.1918 \& 0.1918 \& 75.5412 \& 75.553 \& 10.7248 \& 10.7197

31.2 nm \& 2.8119 \& 2.8136 \& 0.1944 \& 0.1944 \& 75.4717 \& 75.490 \& 10.7787

10.7711
\end{tabular}

References:

[1] Huber, M., Schoeberl, J., Sinwel, A., and Zaglmayr, S., 2009, Simulation of diffraction in periodic media with a coupled finite element and plane wave approach, SIAM J. Sci. Comput. 31, $1500-1517$.
2] Elfström, H., Kuittinen, M., Vallius, T., Kleemann, B.H., Ruoff, J., and Arnold, R., 2006, Fabrication of blased gratings by area-coded effective medium structures, Optics Communications 266, 697-703.
[3] Hu, G. and Rathsfeld, A., 2012, Scattering of time-harmonic electromagnetic plane waves by perfectly conducting diffraction gratings, WIAS Preprint 1694.
[4] Hu, G. and Rathsfeld, A., 2012, Convergence analysis of the FEM coupled with Fourier-mode expansion for the electromagnetic scattering by biperiodic structures, in preparation.

