

Numerical reconstruction of elastic obstacles from the far-field data of scattered acoustic waves

J. Elschner, G.C. Hsiao, A. Rathsfeld

Workshop on Inverse Problems for Waves: Methods and Applications

Mohrenstrasse 39 · 10117 Berlin · Germany · Tel. +49 30 203 72 0 · www.wias-berlin.de · WIAS, March 29, 2010

1

1 Direct Problem: Elastic Obstacle in Fluid.

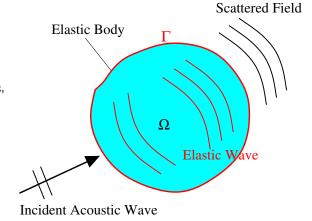
Content

- 1 Direct Problem: Elastic Obstacle in Fluid.
- 2 Inverse Problem.
- 3 Reduction to Optimization Problems.
- 4 Numerical Tests.
- 5 Conclusions.

Numerical reconstruction of elastic obstacles · WIAS, March 29, 2010 · Page 2 (64)

Obstacle and wave.

due to excitation in Ω^c : determine pressure and velocity of fluid in Ω^c , get displacement and stress of elastic body in Ω ,



Compressible Fluid $\Omega^c = IR^d \setminus \Omega \bigcup \Gamma$

Partial differential equations.

Navier equation, time-harmonic Lamé equ., reduced viscoelastodynamic equ.:

Helmholtz equation for scattered field $p^s = p - p^{\text{inc}}$ ($p^{\text{inc}}(x) := e^{\mathbf{i} k_w v \cdot x}$):

$$\Delta p^s(x) + k_w^2 p^s(x) = 0, \quad x \in \Omega^c$$

Numerical reconstruction of elastic obstacles · WIAS, March 29, 2010 · Page 5 (64)

Notation.

where traction *t*:

$$t := t(u) := 2\mu \frac{\partial u}{\partial n} \Big|_{\Gamma} + \lambda [\nabla \cdot u] n \Big|_{\Gamma} + \mu \left\{ \begin{array}{ll} n \times [\nabla \times u] \Big|_{\Gamma} & \text{if } d = 3 \\ \left(n_2(\partial_{x_1} u_2 - \partial_{x_2} u_1) \\ n_1(\partial_{x_2} u_1 - \partial_{x_1} u_2) \right) & \text{if } d = 2 \end{array} \right.$$

- ω frequency ($\omega > 0$)
- ρ density of body ($\rho > 0$)
- λ, μ Lamé constants ($\mu > 0, \lambda + \mu > 0$)
- c speed of sound (c > 0)
- k_w wave number, $k_w^2 = \omega^2/c^2$
- ρ_f density of fluid ($\rho_f > 0$)
- *n* normal at points of Γ exterior w.r.t. Ω

Boundary conditions.

Sommerfeld's radiation condition at infinity for p^s :

$$\frac{x}{|x|} \cdot \nabla p^{s}(x) - ik_{w}p^{s}(x) = o\left(|x|^{-(d-1)/2}\right), \quad |x| \to \infty$$

coupling via transmission condition:

$$t(x) = -\left\{p^{s}(x) + p^{inc}(x)\right\}n(x), \quad x \in \Gamma$$

$$\rho_{f}\omega^{2}u(x) \cdot n(x) = \left\{\frac{\partial p^{s}(x)}{\partial n} + \frac{\partial p^{inc}(x)}{\partial n}\right\}, x \in \Gamma$$

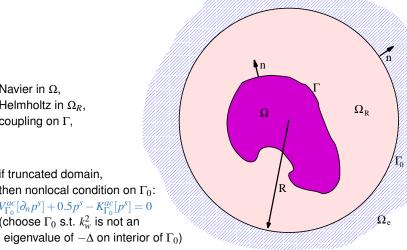
Indeed:
$$\rho_f \partial_t^2 \{ u(x)e^{-i\omega t} \} \cdot n(x) = ma = F = -\nabla \{ p(x)e^{-i\omega t}I \} \cdot n(x)$$

Numerical reconstruction of elastic obstacles · WIAS, March 29, 2010 · Page 6 (64)

Boundary value problem for partial differential equations. FEM.

Navier in Ω . Helmholtz in Ω_R , coupling on Γ ,

if truncated domain. then nonlocal condition on Γ_0 : $V_{\Gamma_0}^{ac}[\partial_n p^s] + 0.5p^s - K_{\Gamma_0}^{ac}[p^s] = 0$ (choose Γ_0 s.t. k_w^2 is not an



variational formulation, FEM (cf., e.g., Márquez/Meddahi/Selgas)

$$\begin{split} \mathscr{B}(\ldots) &= \int_{\Omega} \left\{ \lambda \, \nabla \cdot u \, \overline{\nabla \cdot v} + \frac{\mu}{2} \, \sum_{i,j=1}^{d} \left[\partial_{i} u_{j} \overline{\partial_{j} v_{i}} + \partial_{i} u_{j} \overline{\partial_{i} v_{j}} \right] - \rho \omega^{2} u \cdot \overline{v} \right\} + \int_{\Gamma} p^{s} \, n \cdot \overline{v} \\ &+ \int_{\Omega_{R}} \left\{ \nabla \, p^{s} \cdot \overline{\nabla \, q^{s}} - k_{w}^{2} p \overline{q^{s}} \right\} + \rho_{f} \omega^{2} \int_{\Gamma} u \cdot n \, \overline{q^{s}} - \int_{\Gamma_{0}} \sigma \, \overline{q} \\ &+ \int_{\Gamma_{0}} \left\{ V_{\Gamma_{0}}^{ac} \sigma + \left(\frac{1}{2} I - K_{\Gamma_{0}}^{ac} \right) p^{s} \right\} \overline{\chi} \end{split}$$

Numerical reconstruction of elastic obstacles · WIAS, March 29, 2010 · Page 9 (64)

Integral equation method. Method of fundamental solutions.

Alternatively, representation by potentials:

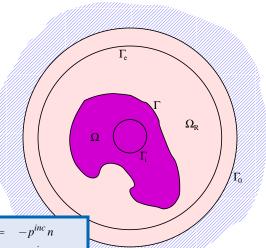
$$p = V_{\Gamma_i}^{ac} \varphi_i$$
 $u = V_{\Gamma_e}^{el} \vec{\varphi}_e$

Integral equations on Γ :

$$tV_{\Gamma_e}^{el}\vec{\varphi}_e + V_{\Gamma_i}^{ac}\varphi_i n = -p^{inc} n$$

$$\rho_f \omega^2 n \cdot V_{\Gamma_e}^{el}\vec{\varphi}_e - \partial_n V_{\Gamma_i}^{ac}\varphi_i = \partial_n p^{inc}$$

(cf., e.g., Barnett/Betcke for Helmholtz equation)



acoustic double and single layer potential operator (two-dimensional case):

$$\begin{split} K^{ac}_{\Gamma_0} p^s(x) &:= \int_{\Gamma_0} \frac{\partial G^{ac}(x,y;k_w)}{\partial v(y)} p^s(y) \mathrm{d}_{\Gamma_0} y, \\ V^{ac}_{\Gamma_0} \sigma(x) &:= \int_{\Gamma_0} G^{ac}(x,y;k_w) \sigma(y) \mathrm{d}_{\Gamma_0} y, \\ G^{ac}(x,y;k_w) &:= \frac{\mathbf{i}}{4} H_0^{(1)} \left(k_w |x-y| \right) \end{split}$$

with $H_0^{(1)}$ the Hankel function of the first kind and order zero

Numerical reconstruction of elastic obstacles · WIAS, March 29, 2010 · Page 10 (64)

Elastic potential in integral equation method.

elastic single layer potential operator (two-dimensional case):

$$V^{el}_{\Gamma_e}u(x) := \int_{\Gamma_e} G^{el}(y,x)\vec{\varphi}_e(y)\mathrm{d}_{\Gamma_e}y,$$

with fundamental Green's tensor (Kupradze matrix)

$$G^{el}(x,y) \quad := \quad \frac{1}{\mu} \left(G^{ac}(x,y;k_s) \delta_{ij} + \frac{1}{k_s^2} \frac{\partial^2 \left(G^{ac}(x,y;k_s) - G^{ac}(x,y;k_p) \right)}{\partial x_i \partial x_j} \right)_{i,j=1}^2$$

with the compressional wave number $k_s := \rho \omega^2/(\lambda + 2\mu)$ and the shear wave number $k_p := \rho \omega^2/\mu$

Jones modes.

for exceptional domains (cf. Hargé and Natroshvili/Sadunishvili/Sigua):

∃ eigensolutions = nontrivial solutions of homogeneous equations

$$(u,p) = (u_0,0)$$
 with Jones mode u_0

$$\Delta^* u_0(x) + \rho \omega^2 u_0(x) = 0, x \in \Omega$$

$$t(u_0)(x) = 0, x \in \Gamma$$

$$u_0(x) \cdot n = 0, x \in \Gamma$$

For example:

$$u_0(x_1, x_2) = \frac{1}{\sqrt{x_1^2 + x_2^2}} J_1\left(\omega\sqrt{\frac{\rho}{\mu}}\sqrt{x_1^2 + x_2^2}\right) \begin{pmatrix} -x_2 \\ x_1 \end{pmatrix}$$

over disc $\Omega = \{x \in \mathbb{R}^2 : |x| < r_J\}$, where

 J_1 Bessel function of first kind $r_J := \frac{1}{\omega} \sqrt{\frac{\mu}{\rho}} r_J^0, r_J^0 := 5.135 622 301 840 682 556,$

note that r_I^0 is a root of the transcendental equ. $xJ_1'(x) = J_1(x)$

Numerical reconstruction of elastic obstacles · WIAS, March 29, 2010 · Page 13 (64)

Far-field pattern.

far-field pattern p^{∞} :

$$p^{s}(x) = \frac{e^{ik_{w}|x|}}{|x|^{(d-1)/2}} p^{\infty} \left(\frac{x}{|x|}\right) + \mathcal{O}\left(\frac{1}{|x|^{(d+1)/2}}\right), \quad |x| \to \infty$$

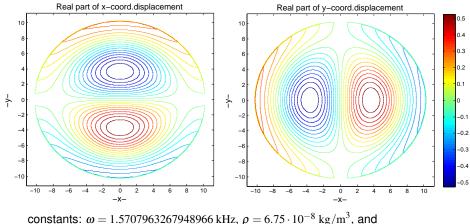
$$p^{\infty}(\hat{x}) = c_{d} \int_{\Gamma_{e}} \left\{ [ik_{w}n_{y} \cdot \hat{x}] p(y) + \partial_{n}p(y) \right\} e^{-ik_{w}y \cdot \hat{x}} dy$$

$$p^{\infty}(\hat{x}) = c_d \int_{\Gamma_e} \left\{ [ik_w n_y \cdot \hat{x}] p(y) + \partial_n p(y) \right\} e^{-ik_w y \cdot \hat{x}} dy$$

where c_d is a constant $(c_2 = e^{i\pi/4}/\sqrt{8\pi k_w})$ and where the right-hand side of the last equation is an integral operator with smooth kernel

Example of Jones mode.

real valued x- and y-components of displacement:

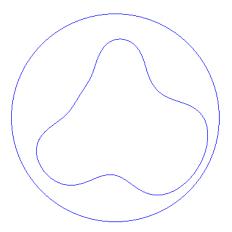


 $\mu = 0.66315 \, \text{Pa}$

Numerical reconstruction of elastic obstacles · WIAS, March 29, 2010 · Page 14 (64)

Example: Non-convex curve.

non-convex curve Γ enclosed by circle Γ_e :



Pressure.

Real part of pressure

simulated pressure field:

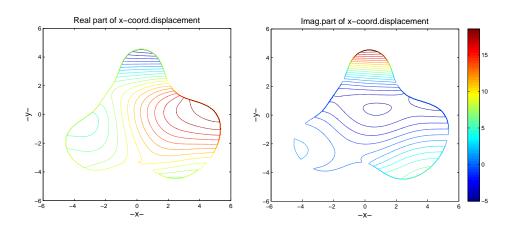
Imag.part of pressure

Numerical reconstruction of elastic obstacles · WIAS, March 29, 2010 · Page 18 (64)

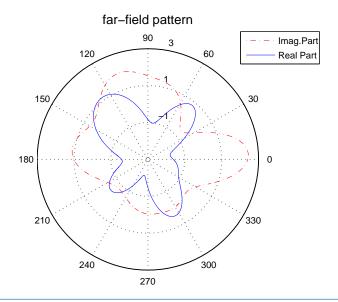
Numerical reconstruction of elastic obstacles · WIAS, March 29, 2010 · Page 17 (64)

Displacement field.

simulated x-coordinate of displacement field:



Far field.



WAS

2

2 Inverse Problem.

Numerical reconstruction of elastic obstacles · WIAS, March 29, 2010 · Page 21 (64)

Goals of reconstruction.

Goals for a method based on:

- parametric representation of the boundary curve
- local optimization scheme
- Suppose we know the topology of the obstacle:
 Ω diffeomorphic to ball/disc
- Suppose we know a "good" initial solution.
- Seek a reconstruction with high precision.
- Here, we do not consider alternative methods which determine the topology and work well even if "good" initial solutions are not available: cf. e.g. the sampling method for fluid-solid interaction by Monk/Selgas

- Given the far-field pattern p^{∞} for all possible directions v of incidence: Find the shape of the obstacle.
 - D. Natroshvili, S. Kharibegashvili, and Z. Tediashvili uniqueness for domains:
 - * with simply connected complement
 - * with parametrizations in $C^{2,\alpha}$, $0 < \alpha < 1$

uniqueness true even in the case of anisotropic elastic obstacle and of generalized Helmholtz equation in the fluid

• P. Monk and V. Selgas

uniqueness for domains:

- * with simply connected complement
- * with parametrizations in C^2
- * for which ∄ Jones modes

uniqueness true even in the case where the Lamé constants depend on the obstacle

- Given the far-field pattern p^{∞} for a single or a finite number of incidence directions v: Find the shape of the obstacle.
 - uniqueness problem open

Numerical reconstruction of elastic obstacles · WIAS, March 29, 2010 · Page 22 (64)

Parametrization.

parametrization of star-shaped domain:

$$\Gamma = \Gamma^{\mathbf{r}} := \left\{ \mathbf{r}(\hat{x})\hat{x} : \hat{x} \in \mathbb{S}^{d-1} \right\},$$

$$\mathbf{r}\left(e^{i\boldsymbol{\varphi}}\right) = a_0 + \sum_{j} \left\{ a_j \cos(j\boldsymbol{\varphi}) + b_j \sin(j\boldsymbol{\varphi}) \right\}$$

parametrization to avoid constraint $r_i < \mathbf{r}(\hat{x}) < r_e$:

$$\Gamma^{\mathbf{r}} := \left\{ \widetilde{\mathbf{r}}(\hat{x})\hat{x} : \hat{x} \in \mathbb{S}^{d-1} \right\},$$

$$\widetilde{\mathbf{r}}(\hat{x}) := \frac{r_e + r_i}{2} + \frac{r_e - r_i}{\pi} \arctan\left(\mathbf{r}(\hat{x})\right)$$

Look for unknown boundary of star-shaped domain: $\Gamma \sim \mathbf{r} \sim \{a_j,b_j\}$

Mapping of inverse problem.

fix p^{inc} and consider the mapping

$$F: H^{2+\varepsilon}(\mathbb{S}^{d-1}) \longrightarrow L^2(\mathbb{S}^{d-1})$$
$$\Gamma^{\mathbf{r}} = \mathbf{r} \mapsto p^{\infty}$$

where p^{∞} is the far-field of p^s and p^s is the pressure part of the solution (u, p^s) to the direct problem including the interface $\Gamma = \Gamma^{\mathbf{r}}$

given: p^{∞}

$$F(\mathbf{r}_{sol}) = p^{\infty}$$

Lemma (Continuity)

The "curve-to-far field" mapping F is continuous even at boundaries Γ for which there exist Jones modes.

Numerical reconstruction of elastic obstacles · WIAS, March 29, 2010 · Page 25 (64)

3

3 Reduction to Optimization Problems.

Mapping of inverse problem.

Proof.

- direct problem, boundary/transmission value problem:
 - * solution (u, p^s) exists
 - * solution (u, p^s) not unique
 - * pressure component p^s is unique
- invariant subspace: subspace orthogonal to Jones modes for frequency ω for all frequencies ω' : unique solutions in this subspace hence, partial solution $(u(\omega'), p^s(\omega'))$ is analytic w.r.t. parameter ω' , i.e.,

$$(u(\omega), p^s(\omega)) = \frac{1}{\pi i} \int_{\gamma} \frac{1}{\omega' - \omega} (u(\omega'), p^s(\omega')) d\omega'$$

with $\omega' \in \gamma$ not a Jones frequency

• pair $(u(\omega'), p^s(\omega'))$ depends continuously on curve Γ

Numerical reconstruction of elastic obstacles - WIAS, March 29, 2010 - Page 26 (64)

Equivalent optimization problem.

first equivalent optimization problem:

find least-squares solution \mathbf{r}_{min} which is a minimizer of the following optimization problem:

$$\inf_{\mathbf{r} \in H^{2+\varepsilon}(\mathbb{S}^{d-1})} \mathscr{J}(\mathbf{r})$$

$$\mathscr{J}(\mathbf{r}) := \|F(\mathbf{r}) - p^{\infty}\|_{L^{2}(\mathbb{S}^{d-1})}^{2}$$

$$\mathscr{J}(\mathbf{r}) := \|F(\mathbf{r}) - p^{\infty}\|_{L^{2}(\mathbb{S}^{d-1})}^{2}$$

"Equivalent" optimization problem.

first "equivalent" optimization problem:

find approximate solution \mathbf{r}_{min} which is a minimizer of the following optimization problem:

$$\inf_{\mathbf{r} \in H^{2+\varepsilon}(\mathbb{S}^{d-1})} \mathscr{J}_{\gamma}(\mathbf{r})$$
$$\mathscr{J}_{\gamma}(\mathbf{r}) := \|F(\mathbf{r}) - p_{noisy}^{\infty}\|_{L^{2}(\mathbb{S}^{d-1})}^{2} + \gamma \|\mathbf{r}\|_{H^{2+\varepsilon}(\mathbb{S}^{d-1})}^{2}$$

where γ is a small regularization parameter

Suppose

$$\|p^{\infty} - p_{noisy}^{\infty}\|_{L^{2}(\mathbb{S}^{d-1})}^{2} < const.\gamma$$

Numerical reconstruction of elastic obstacles · WIAS, March 29, 2010 · Page 29 (64)

Last "equivalent" optimization problem.

third "equivalent" optimization problem:

fix Γ_e and Γ_i and find approximate solution $(\mathbf{r}_{min}, \varphi_{i,min}, \vec{\varphi}_{e,min})$ which is a minimizer of the following optimization problem:

$$\begin{aligned} \inf_{\mathbf{r} \in H^{2+\varepsilon}(\mathbb{S}^{d-1}), \boldsymbol{\varphi}_{i} \in H^{-1}(\Gamma_{i}), \vec{\boldsymbol{\varphi}}_{e} \in [H^{-1}(\Gamma_{e})]^{d}} \mathscr{J}_{\boldsymbol{\gamma}}(\mathbf{r}, \boldsymbol{\varphi}_{i}, \vec{\boldsymbol{\varphi}}_{e}) \\ \mathscr{J}_{\boldsymbol{\gamma}}(\mathbf{r}, \boldsymbol{\varphi}_{i}, \vec{\boldsymbol{\varphi}}_{e}) &:= c \left\| \operatorname{far-field} \left(V_{\Gamma_{i}}^{ac} \boldsymbol{\varphi}_{i} \right) - p_{noisy}^{\infty} \right\|_{L^{2}(\mathbb{S}^{d-1})}^{2} + \\ \left\| t V_{\Gamma_{i}}^{el} \vec{\boldsymbol{\varphi}}_{e} + V_{\Gamma_{i}}^{ac} \boldsymbol{\varphi}_{i} \boldsymbol{n} + p^{inc} \boldsymbol{n} \right\|^{2} + \\ \left\| \rho_{f} \boldsymbol{\omega}^{2} \boldsymbol{n} \cdot V_{\Gamma_{i}}^{el} \vec{\boldsymbol{\varphi}}_{e} - \partial_{n} V_{\Gamma_{i}}^{ac} \boldsymbol{\varphi}_{i} - \partial_{n} p^{inc} \right\|^{2} + \\ \boldsymbol{\gamma} \| \boldsymbol{\varphi}_{i} \|_{H^{-1}(\Gamma_{i})}^{2} + \boldsymbol{\gamma} \| \vec{\boldsymbol{\varphi}}_{e} \|_{[H^{-1}(\Gamma_{e})]^{d}}^{2} \end{aligned}$$

where γ is a small regularization parameter

WAS

Next "equivalent" optimization problem.

second "equivalent" optimization problem:

find approximate solution $(\mathbf{r}_{min}, u_{min}, p_{min})$ which is a minimizer of the following optimization problem:

$$\inf_{\mathbf{r} \in H^{2+\varepsilon}(\mathbb{S}^{d-1}), u \in [H^1]^d, p \in H^1} \mathcal{J}_{\gamma}(\mathbf{r}, u, p)$$

$$\mathcal{J}_{\gamma}(\mathbf{r}, u, p) := \|\text{far-field}(p) - p_{noisy}^{\infty}\|_{L^2(\mathbb{S}^{d-1})}^2 + \|\Delta^* u + \dots - 0\|^2 + \|\Delta p + \dots - 0\|^2 + \|t(u) + pn + \dots\|^2 + \|u \cdot n - \dots\|^2 + \|V(\partial_n p|_{\Gamma_0}) + \dots\|^2 + \|V(\partial_n p|_{\Gamma_0}) + \dots\|^2 + \gamma \|\mathbf{r}\|_{H^{2+\varepsilon}(\mathbb{S})}^2 + \gamma \|u\|_{[H^1]^d}^2 + \gamma \|p\|_{H^1}^2$$

where γ is a small regularization parameter

Numerical reconstruction of elastic obstacles · WIAS, March 29, 2010 · Page 30 (64)

Comparison of three approaches.

- first method:
 - smallest number of optimization parameters
 - complicated objective functional
 - computation of objective functional requires solution of direct problem
 - we have implemented this FEM based Newton iteration using
 - grid generator "netgen" (cf. Schöberl)
 - solver "pardiso" (cf. Schenk/Gärtner/Fichtner)
- second method:
 - huge set of optimization parameters
 - solution of direct problem not needed (good if ∃ Jones mode)
 - not implemented
- third method:
 - large but not huge set of optimization parameters
 - solution of direct problem not needed (good if ∃ Jones mode)
 - additional difficulties due to ill-posed potential representation
 - possible: advanced algorithm with Γ_i and Γ_e updated during iteration process (compare, e.g., You/Miao/Liu & Ivanyshyn/Kress/Serranho)
 - we have implemented this Kirsch-Kress algorithm

$$\mathscr{J}_{\gamma}(\mathbf{r}) = \|F(\mathbf{r}) - p_{noisy}^{\infty}\|_{L^{2}(\mathbb{S}^{d-1})}^{2} + \gamma \|\mathbf{r}\|_{H^{2+\varepsilon}(\mathbb{S}^{d-1})}^{2} \longrightarrow \min$$

Theorem (FEM based Newton iteration)

Assume the noise satisfies $\|p^{\infty} - p_{noisy}^{\infty}\|_{L^{2}(\mathbb{S}^{d-1})}^{2} < constant \gamma$.

- i) $\forall \gamma > 0$: \exists minimizer $\mathbf{r}_{noisy}^{\gamma}$ of optimization problem.
- ii) $\gamma \to 0$: $\mathcal{J}_{\gamma}(\mathbf{r}_{noisy}^{\gamma}) \to \inf_{\mathbf{r} \in H^{2+\varepsilon}(\mathbb{S}^{d-1})} \mathcal{J}_{0}(\mathbf{r})$
- iii) Suppose \exists solution \mathbf{r}^* :
 - \exists subsequence $\mathbf{r}_{noisy}^{\gamma_n}$ such that
 - **a)** $\mathbf{r}_{noisy}^{\gamma_n} \to \mathbf{r}^{**}$ strongly in $H^{2+\varepsilon/2}(\mathbb{S}^{d-1})$ for $n \to \infty$
 - b) $\mathbf{r}_{noisy}^{\gamma_n} \to \mathbf{r}^{**}$ weakly in $H^{2+\varepsilon}(\mathbb{S}^{d-1})$ for $n \to \infty$ c) $F(\mathbf{r}^{**}) = p^{\infty}$
- iv) Suppose \exists unique solution \mathbf{r}^* :
 - **a)** $\mathbf{r}_{noisy}^{\gamma} \to \mathbf{r}^*$ strongly in $H^{2+\epsilon/2}(\mathbb{S}^{d-1})$ for $\gamma \to 0$
 - **b)** $\mathbf{r}_{noisy}^{\gamma} \to \mathbf{r}^*$ weakly in $H^{2+\varepsilon}(\mathbb{S}^{d-1})$ for $\gamma \to 0$

Numerical reconstruction of elastic obstacles · WIAS, March 29, 2010 · Page 33 (64)

Convergence of Kirsch-Kress algorithm.

Proof.

$$\mathcal{B}: \begin{pmatrix} \vec{\varphi}_e \\ \varphi_i \end{pmatrix} \mapsto \begin{pmatrix} tV_{\Gamma_i}^{el} \vec{\varphi}_e + V_{\Gamma_i}^{ac} \varphi_i n \\ \rho_f \omega^2 n \cdot V_{\Gamma_i}^{el} \vec{\varphi}_e - \partial_n V_{\Gamma_i}^{ac} \varphi_i \end{pmatrix}$$

$$\mathcal{B}: [L^2(\Gamma_e)]^d \times L^2(\Gamma_i) \longrightarrow [L^2(\Gamma)]^d \times L^2(\Gamma)$$

$$\mathscr{B}: [L^2(\Gamma_e)]^d \times L^2(\Gamma_i) \longrightarrow [L^2(\Gamma)]^d \times L^2(\Gamma)$$

Essential lemma: The image im \mathcal{B} of operator \mathcal{B} is dense in the subspace

$$\Big\{ \big(\vec{\varphi}, \varphi \big)^\top \in [L^2(\Gamma)]^d \times L^2(\Gamma) : \ \langle \vec{\varphi}, u_0 \rangle = 0, \ \forall \ u_0 \ \mathrm{Jones \ mode} \Big\}.$$

$$\begin{split} \mathscr{J}_{\gamma}(\mathbf{r}, \varphi_i, \vec{\varphi}_e) &:= c \| \text{far-f.} \left(V_{\Gamma_i}^{ac} \varphi_i \right) - p_{noisy}^{\infty} \|^2 + \| \text{transm.cond.} (V_{\Gamma_i}^{ac} \varphi_i, V_{\Gamma_e}^{el} \vec{\varphi}_e) |_{\Gamma^{\mathbf{r}}} \|^2 \\ &+ \gamma \| \varphi_i \|^2 + \gamma \| \vec{\varphi}_e \|^2 \longrightarrow \min \end{split}$$

Theorem (Kirsch-Kress algorithm)

Assume: There is a solution \mathbf{r}^* .

- The number k^2 is not a Dirichlet eigenvalue for $-\Delta$ in interior of Γ_i .
- The noise satisfies $\|p^{\infty} p_{noisy}^{\infty}\|_{L^{2}(\mathbb{S}^{d-1})}^{2} < constant \gamma$.

Then: i) $\forall \gamma > 0$: \exists minimizer $(\mathbf{r}_{noisy}^{\gamma}, \phi_{i.noisy}^{\gamma}, \vec{\phi}_{e.noisy}^{\gamma})$ of optimization problem.

ii)
$$\gamma \to 0$$
: $\mathcal{J}_{\gamma}(\mathbf{r}_{noisy}^{\gamma}, \boldsymbol{\varphi}_{i,noisy}^{\gamma}, \vec{\boldsymbol{\varphi}}_{e,noisy}^{\gamma}) \to \inf_{\mathbf{r},\boldsymbol{\varphi}_{i},\vec{\boldsymbol{\varphi}}_{e}} \mathcal{J}_{0}(\mathbf{r},\boldsymbol{\varphi}_{i},\vec{\boldsymbol{\varphi}}_{e})$

iii) \exists subsequence $\mathbf{r}_{noisy}^{\gamma_n}$ such that

a)
$$\mathbf{r}_{noisy}^{\gamma_n} \to \mathbf{r}^{**}$$
 strongly in $H^{2+\varepsilon/2}(\mathbb{S}^{d-1})$ for $n \to \infty$

b)
$$\mathbf{r}_{noisy}^{\gamma_n} \to \mathbf{r}^{**}$$
 weakly in $H^{2+\varepsilon}(\mathbb{S}^{d-1})$ for $n \to \infty$

c)
$$F(\mathbf{r}^{**}) = p^{\infty}$$

iv) Suppose \exists unique solution \mathbf{r}^* :

a)
$$\mathbf{r}_{noisy}^{\gamma} \to \mathbf{r}^*$$
 strongly in $H^{2+\epsilon/2}(\mathbb{S}^{d-1})$ for $\gamma \to 0$

b)
$$\mathbf{r}_{noisy}^{\gamma} \to \mathbf{r}^*$$
 weakly in $H^{2+\varepsilon}(\mathbb{S}^{d-1})$ for $\gamma \to 0$

Numerical reconstruction of elastic obstacles · WIAS, March 29, 2010 · Page 34 (64)

Derivatives and Quadrature

Derivatives for gradient based optimization schemes

- derivatives for FEM based Newton method:
 - shape optimization techniques
 - get gradients by solving the FEM system of the direct problem with new right-hand side
 - 2D case: direct solver with LU factorization
- derivatives for Kirsch-Kress method:
 - reduces to simple differentiation of Green's kernels
 - fourth order derivatives of Helmholtz kernel

Quadratures for Kirsch-Kress method

- no quadrature!
 - layer functions φ_i and $\vec{\varphi}_e$ in $H^{-1}(\Gamma_i)$ and $[H^{-1}(\Gamma_e)]^2$, respectively
 - layer functions φ_i and $\vec{\varphi}_e$: linear combinations of Dirac δ functions

Optimization algorithm.

Which optimization scheme?

- FFM based Newton method:
 - small number of parameters
 - Gauss-Newton method
- Kirsch-Kress method:
 - larger number of parameters
 - conjugate gradient method (nonlinear variant)
 - Gauss-Newton and Levenberg-Marquardt method: solve linear systems of dimension larger than those of the direct solver

Numerical reconstruction of elastic obstacles · WIAS, March 29, 2010 · Page 37 (64)

4 Numerical Tests.

Scaling of optimization scheme

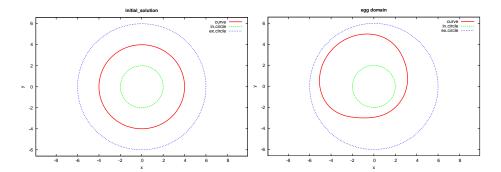
- number of necessary iteration depends on conditioning of optimization problem
- natural scaling
 - scale far-field values in accordance with measurement uncertainties
 - scale parameters in accordance with the reconstruction requirements
- scaling for a fast iterative solution adapted in accordance with numerical tests
 - calibration constants before the several terms of the objective functional (e.g. constant c and regularization parameter γ)
 - replace optimization parameters by multiple of parameters in order to get gradients with components of equal size

$$\mathbf{r} = \mathbf{r}/c_{\mathbf{r}}, \quad \mathbf{\varphi}_i = \mathbf{\varphi}_i/c_i, \quad \mathbf{\vec{\varphi}}_e = \mathbf{\vec{\varphi}}_e/c_e$$

Numerical reconstruction of elastic obstacles - WIAS, March 29, 2010 - Page 38 (64)

Reconstruction of egg domain.

initial solution and egg domain:



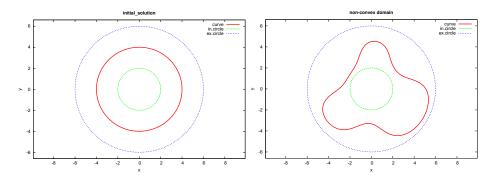
Fourier coefficients:

$$a_0 = 0$$

 $a_1 = -1$ $a_2 = 0.1$ $a_3 = 0.01$ $a_4 = -0.001$ $a_5 = 0.0001$
 $b_1 = 1$ $b_2 = 0.1$ $b_3 = 0.01$ $b_4 = 0.001$ $b_5 = 0.0001$

Reconstruction of non-convex domain.

initial solution and non-convex domain:



Fourier coefficients:

$$a_0 = 0$$

 $a_1 = 1$ $a_2 = 0.10$ $a_3 = 0.04$ $a_4 = 0.016$ $a_5 = 0.008$
 $b_1 = -1$ $b_2 = 0.02$ $b_3 = -1.500$ $b_4 = -0.010$ $b_5 = 0.008$

Numerical reconstruction of elastic obstacles · WIAS, March 29, 2010 · Page 41 (64)

Reconstruction results.

Results:

- Good reconstruction with FEM based Newton method for both domains even without regularization terms ($\gamma = 0$)
- Good reconstruction with Kirsch-Kress method for egg domain
- No reconstruction with Kirsch-Kress method for non-convex domain
 - Regularized solution of direct problem obtained with the Tikhonov term in our optimization scheme is bad
 - Regularization with truncated SVD representation and for a suitable very small range of regularization parameters: reasonable regularized solution of direct problem
 - Inverse crime (compute far-field data via integral equations): Good reconstruction with Kirsch-Kress method for non-convex domain
- Good reconstruction with Kirsch-Kress method for non-convex domain if curves Γ_i and Γ_e are close to unknown curve Γ

Data and Scaling.

far-field data:

- simulated far-field data
- computed in 80 uniformly distributed direction
- FEM computation over finer FEM triangulation (meshsize smaller at least by factor 0.25)

scaling:

• for Kirsch-Kress method with 44 discretization points on each curve: c = 4000, $c_r = 1$, $c_i = 0.1$, $c_e = 0.005$

Numerical reconstruction of elastic obstacles · WIAS, March 29, 2010 · Page 42 (64)

Reconstruction by FEM based Newton method.

Convergence of FEM based Newton

far-field data simulated by FEM computation on higher level: reconstruction error $\mathbf{err} := \|\mathbf{r} - \mathbf{r}_{FEM}\|_{L^{\infty}}$ and number of iterations it depending on meshsize \mathbf{h} of FEM discretization

h	err	it
	1.2596	0
0.5	0.0759	6
0.25	0.0247	8
0.125	0.00876	8
0.0625	0.00329	10
0.03125	0.00156	10

egg domain

h	h err	
	1.5733	0
0.25	1.1435	20
0.125	0.00924	17
0.0625	0.00401	15
0.03125	0.00157	18

non-convex domain

Reconstruction by Kirsch-Kress method for egg domain.

Different optimization schemes for Kirsch-Kress method

Method of conjugate gradients: too slow or different limit

Gauss-Newton method with regularization: GNw

Levenberg-Marquardt method with regularization: LMw Levenberg-Marquardt method "without" regularization: LMo

(code and standard choice of parameters by M. Lourakis)

pnts.	γ	GNw		LMw		LMo	
on Γ							
		1.2596	(0)	1.2596	(0)	1.2596	(0)
22	$4 \cdot 10^{-8}$	0.05427	(13)	0.05461	(30)	0.06793	(30)
44	$2.5 \cdot 10^{-13}$	0.002136	(13)	0.002007	(320)	0.002095	(320)
88	$4 \cdot 10^{-14}$	0.0002126	(13)	0.0002107	(80)	0.0001997	(160)

Error $||{f r}-{f r}_{KK}||_{L^\infty}$ and number of iterations for Kirsch-Kress method egg domain

Numerical reconstruction of elastic obstacles · WIAS, March 29, 2010 · Page 45 (64)

Reconstruction by Kirsch-Kress method for non-convex domain.

- What shall we do with an initial solution like the disc?
- curves Γ_i and Γ_e must be close to iterative solution: update Γ_i and Γ_e during the iterative solution process
 - choose Γ_i and Γ_e by their radial functions:

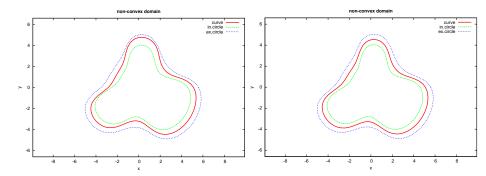
$$\mathbf{r}_i = \mathbf{r} - \frac{1}{2}$$
 $\mathbf{r}_e = \mathbf{r} + \frac{1}{2}$

with **r** the radial function of the last iterative solution $\Gamma = \Gamma^{\mathbf{r}}$

- * Note that this is the setting for which the Kirsch-Kress method is convergent according to the previous test!
- for fixed Γ_i and Γ_e : perform one step of Gauss-Newton method, but reduce the iteration step s.t. solution curve remains between Γ_i and Γ_e
- if the iteration step remains small: fix Γ_i and Γ_e and perform more Gauss-Newton steps

Reconstruction by Kirsch-Kress method for non-convex domain.

initial solution and non-convex domain:



For
$$\gamma = 10^{-8}$$
, $c = 10\,000$, $c_{\mathbf{r}} = 1$, $c_i = 1$, $c_e = 0.2$, and 352 discretization points on each curve:

initial deviation of radial functions: 0.296

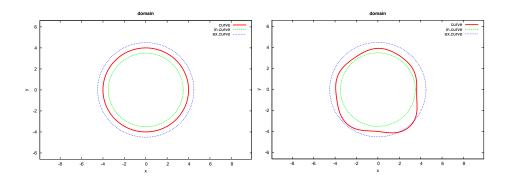
number of iterations: 11

reconstruction error: 0.000 279

Numerical reconstruction of elastic obstacles · WIAS, March 29, 2010 · Page 46 (64)

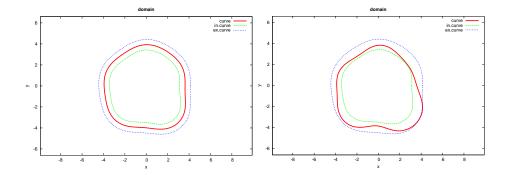
Reconstruction by Kirsch-Kress method for non-convex domain.

1st step: initial solution and first iterate of Gauss-Newton method



Reconstruction by Kirsch-Kress method for non-convex domain.

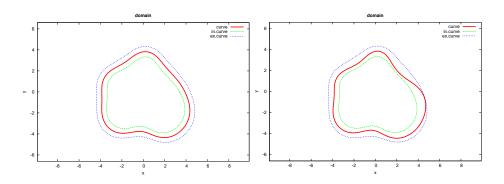
2nd step: initial solution and first iterate of Gauss-Newton method



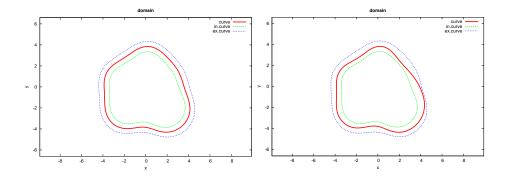
Numerical reconstruction of elastic obstacles · WIAS, March 29, 2010 · Page 49 (64)

Reconstruction by Kirsch-Kress method for non-convex domain.

4th step: initial solution and first iterate of Gauss-Newton method



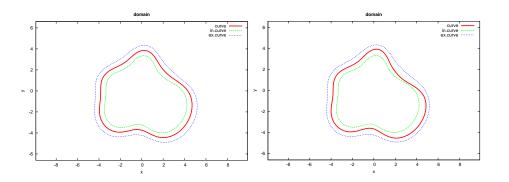
3rd step: initial solution and first iterate of Gauss-Newton method



Numerical reconstruction of elastic obstacles · WIAS, March 29, 2010 · Page 50 (64)

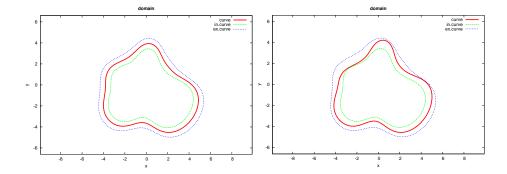
Reconstruction by Kirsch-Kress method for non-convex domain.

5th step: initial solution and first iterate of Gauss-Newton method



Reconstruction by Kirsch-Kress method for non-convex domain.

6th step: initial solution and first iterate of Gauss-Newton method

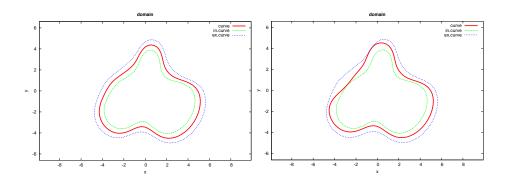


Numerical reconstruction of elastic obstacles · WIAS, March 29, 2010 · Page 53 (64)

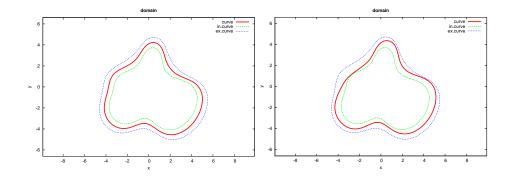
WA

Reconstruction by Kirsch-Kress method for non-convex domain.

8th step: initial solution and first iterate of Gauss-Newton method



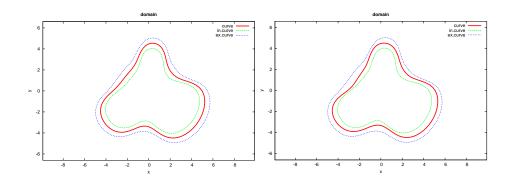
7th step: initial solution and first iterate of Gauss-Newton method



Numerical reconstruction of elastic obstacles · WIAS, March 29, 2010 · Page 54 (64)

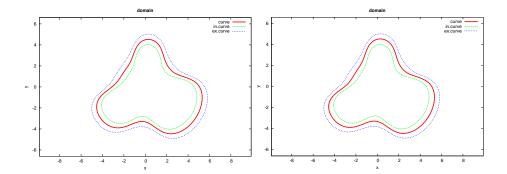
Reconstruction by Kirsch-Kress method for non-convex domain.

9th step: initial solution and first iterate of Gauss-Newton method



Reconstruction by Kirsch-Kress method for non-convex domain.

Last step: 10 Gauss-Newton iterations



Numerical reconstruction of elastic obstacles · WIAS, March 29, 2010 · Page 57 (64)

Noisy data.

Perturbation of far-field data

perturbed far-field data of egg domain: Add random number uniformly distributed in $[-\varepsilon, \varepsilon]$

ε	$ \mathbf{r} - \mathbf{r}_{FEM} _{L^{\infty}}$
0.	0.001 568
0.001	0.002637
0.005	0.007 156
0.01	0.01368
0.05	0.05433
0.1	0.1087

FEM with stepsize 0.03125

ε	γ	$ \mathbf{r}-\mathbf{r}_{KK} _{L^{\infty}}$
0.	$2.5 \cdot 10^{-13}$	0.002 136
0.0001	$2.5 \cdot 10^{-11}$	0.003 640
0.001	$2.5 \cdot 10^{-8}$	0.02041
0.003	$2.5 \cdot 10^{-7}$	0.05686
0.005	$1 \cdot 10^{-6}$	0.09997

Kirsch-Kress with 44 points on Γ

Reconstruction of curve with 14 Fourier coefficients.

Curve with 14 Fourier coefficients: Reconstruction with only 10 coefficients.

- additional non-zero coefficients for the non-convex domain: $a_6 = 0.004$, $a_7 = 0.001$, $b_6 = -0.004$, and $b_7 = 0.001$
- radial deviation of curve with 14 Fourier non-zero coefficients to curve with 10 is 0.0075
- initial solution $a_i^{ini} = 0.75 a_i$ (for $a_i^{ini} = 0$: convergence only for h = 0.03125)

h	err	it
	1.57	0
0.5	0.1147	7
0.25	0.03812	8
0.125	0.01878	7
0.0625	0.01688	7
0.03125	0.01678	7

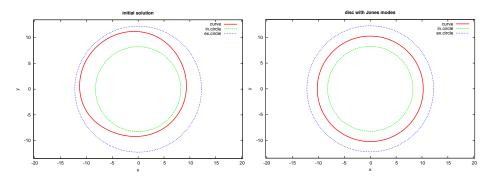
FEM based Newton iteration for non-convex domain with 14 coefficients

Kirsch-Kress method for Γ_i and Γ_e close to Γ : reduces radial deviation error to 0.00898 after 12 iteration

Numerical reconstruction of elastic obstacles - WIAS, March 29, 2010 - Page 58 (64)

Reconstruction of domain with Jones modes.

initial solution and non-convex domain:



- Kirsch-Kress algorithm:
 - nmb.discr.pnts. 176, $\gamma = 4 \cdot 10^{-14}$, c = 200, $c_r = 1$, $c_i = 5$, $c_e = 0.05$
 - initial deviation 1.26, 8 iterations, reconstruction error 0.000 814
- FEM based Newton iteration:
 - direct solver "pardiso" yields partial solution of variational system,
 - initial deviation 1.26, 13 iterations, reconstruction error 0.000 492

Numerical reconstruction of elastic obstacles · WIAS, March 29, 2010 · Page 61 (64)

References.

Uniqueness results:

- D. NATROSHVILI, S. KHARIBEGASHVILI, AND Z. TEDIASHVILI, *Direct and inverse fluid-structure interaction problems*, Rend. Mat. Appl., VII Ser., Roma, **20** (2000), pp. 173–198.
- P. MONK AND V. SELGAS, An inverse fluid-solid interaction problem, Inverse Problems and Imaging, 3 (2009), pp. 173–198.

Numerical schemes:

- A.H. BARNETT AND T. BETCKE, Stabilty and convergence of the method of fundamental solutions for Helmholtz problems on analytic domains, J. Comput. Physics, **227** (2008), pp. 7003–7026.
- O. IVANYSHYN, R. KRESS, AND P. SERRANHO, Huygens' principle and iterative methods in inverse obstacle scattering, Advances Comput. Math., to appear.
- J. ELSCHNER, G.H. HSIAO, AND A. R., An Inverse Problem for Fluid-Solid Interaction, Inverse Problems and Imaging, 2 (2008), pp. 83-120.
- P. MONK AND V. SELGAS, An inverse fluid-solid interaction problem, Inverse Problems and Imaging, 3 (2009), pp. 173–198.
- J. ELSCHNER, G.H. HSIAO, AND A. R., An optimization method in inverse acoustic scattering by an elastic obstacle, SIAM J. Appl. Math., **70** (2009), pp. 168–187.
- J. ELSCHNER, G.H. HSIAO, AND A. R., Comparison of numerical methods for the reconstruction of elastic obstacles from the far-field data of scattered acoustic waves, WIAS-Preprint, **1479**, 2010.

Conclusions.

- Advantage of Kirsch-Kress method:
 - high accuracy of reconstruction.
 - fast computation.
- Disadvantages of Kirsch-Kress method:
 - sensitive to small perturbations of the far-field data.
 - sensitive to scaling of optimization problem: a lot of parameters to be adapted.
 - ill-posed integral equations: The Kirsch-Kress method does not require
 the solution of the direct problem. However, it works only if the direct
 problem is solvable by the ill-posed integral equations. To decrease the
 ill-posedness, the outer and inner curve should be chosen closer to the
 unknown curve.
 - The conjugate gradient method is too slow for the Kirsch-Kress method.
 Advanced optimization schemes solve linear systems of equations which are larger than those of the direct solvers.
- Algorithms work also for domains with Jones modes.

Numerical reconstruction of elastic obstacles · WIAS, March 29, 2010 · Page 62 (64)

Thank you for your attention!

