N\
I\

Weierstrass Institute for
Applied Analysis and Stochastics

Numerical reconstruction of elastic
obstacles from the far-field data of

scattered acoustic waves
J. Elschner, G.C. Hsiao, A. Rathsfeld

S Workshop on Inverse Problems for
TSI N AIRee Waves: Methods and Applications

Content

Direct Problem: Elastic Obstacle in Fluid.

H Inverse Problem.

Kl Reduction to Optimization Problems.

Bl Numerical Tests.

H Conclusions.

Mohrenstrasse 39 - 10117 Berlin - Germany - Tel. +49 30 203 72 0 - www.wias-berlin.de - WIAS, March 29, 2010

Direct Problem: Elastic Obstacle in Fluid.
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Obstacle and wave.

Scattered Field

due to gxcitation in Q°: Elastic Body
determine pressure and I
velocity of fluid in Q¢,

get displacement and

stress of elastic body in Q,

o l

Incident Acoustic Wave

Compressible Fluid
Q°=IR™N\QUT
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Partial differential equations.

Boundary conditions.

Navier equation, time-harmonic Lamé equ., reduced viscoelastodynamic equ.:

Ku(x)+po’ux) = 0, xeQ,
Ku(x) = pAu(x)+A+u)VI[V-u(x)]

Helmholtz equation for scattered field p* = p — p™® (pi"®(x) := etk v):

Aps(x)—o—szps(x) = 0, xeQ°

Sommerfeld’s radiation condition at infinity for p*:

XU ik S _ —(d—1)/2 e
VP @ k@) = o (WTVR),

coupling via transmission condition:

1) = —{P@+p" ) }n(), xer
pro’u(x) n(x) = {aigﬁx) < ap:c(x) } ,xel

Indeed: prd?{u(x)e "} -n(x) =ma=F = —V{p(x)e *®I} -n(x)
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Notation.

where traction :

nx [V xul|p

u
t:=1t(u) ::2”%|F+A[V'u]n|l"+“ 1o (O, U — O, 111 )
n1(Oxyty — Oy )

ifd=3

ifd=2

o frequency (@ > 0)

p density of body (p > 0)

A, Lamé constants (4 >0, A +pu > 0)
¢ speed of sound (¢ > 0)

k,, wave number, k2, = ®?/c?

py density of fluid (o, > 0)

nnormal at points of I" exterior w.r.t. Q
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Boundary value problem for partial differential equations. FEM.

Navier in Q,
Helmholtz in Qg,
couplingon T,

if truncated domain,

then nonlocal condition on I'y:

VE&[9up*] +0.5p° — KE[p] =0

(choose Iy s.t. k2 is not an Qe
eigenvalue of —A on interior of I'y)

variational formulation, FEM (cf., e.g., Marquez/Meddahi/Selgas)
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Variational formulation. FEM. Acoustic potentials in nonlocal boundary value condition.

u v ' 9pinc acoustic double and single layer potential operator (two-dimensional case):
2zl || 4 /p nV+/ gan,
X
1 d 1 —1/2 0G¢ -k
we 1@, ¢ € 1 (@), x € HA(T) o = [ TR g,
T, v(y)
Weow = [ G (nyiki)o0)dny,
0
i
IJ d L L G (x,y;ky) := ZHé )(kw|xfy|)
% /{ E Z [aiujajvi+8,-uj8ivj}—pwzu-v}—l—/l_psn-v
\7 Vq—k gt +pa)/unq—/0q
/ { } 4 o with Hél) the Hankel function of the first kind and order zero
/ I Kac) s}x
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Integral equation method. Method of fundamental solutions. Elastic potential in integral equation method.

d q p

y elastic single layer potential operator (two-dimensional case):
W@ = [ 100f0)dry,
Alternatively,
representation by potentials:
with fundamental Green'’s tensor (Kupradze matrix)
p = fw%’
wo= lgl(_ﬁe
1 1 92(G(x,yiks) — G (x,y:kp)) \
Glxy) = — (G yik) 8+ S b

Integral equations on I™; U ks dx;0x; n

tVlfel G +Viin = — pne
pra’n- Vlff Be— VIO = Oy i

with the compressional wave number k; := pw? /(A +2u) and the shear wave
number k, := pw?/u

(cf., e.g., Barnett/Betcke for Helmholtz equation)
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Jones modes.

for exceptional domains (cf. Hargé and Natroshvili/Sadunishvili/Sigua):

3 eigensolutions = nontrivial solutions of homogeneous equations

For example:

(u,p) =

(u9,0) with Jones mode ug

Kuo(x)+poluo(x) =
() (x

ug(x)-n

0, xeQ
0,xel
0,xel’

up(x1,%2) = x1+x211( [\/’E)( >

overdisc Q = {x € R?:

|x| < rs}, where

N Bessel function of first kind

rJ::w

\/E r9, 19 :=5.135 622 301 840 682 556,
note that r, is a root of the transcendental equ. xJj (x)

= J] (x)
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Far-field pattern.

W
AS]

Example of Jones mode.

real valued x- and y-components of displacement:

Real part of x—coord.displacement

Real part of y—coord.displacement

—y-

—x—

—x—

constants: ® = 1.5707963267948966 kHz, p = 6.75-10~8 kg/m3, and

1 =0.66315Pa

0.5

0.4

0.3

0.2

0.1

far-field pattern p™:

etk X -
|x\d1/2” <H>+ (

1

|x|(d+1)/2

)7 ] = oo

ca | {any-190)+ 21p00) fe ey

where ¢, is a constant (c; = ei”/4/\/87rkw) and where the right-hand side of the
last equation is an integral operator with smooth kernel
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Example: Non-convex curve.

non-convex curve I" enclosed by circle I',:
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Chosen constants.

Pressure.

frequency
density of body
Lamé constant
Lamé constant
speed of sound
density of fluid

direction of incoming plane wave

o= >T 8
1 |

1.5707963267948966 kHz
6.75-1078 kg/m?
1.287373095 Pa

0.66315 Pa

1500 m/s

2.5-107% kg/m?

(1,07

Real part of pressure

simulated pressure field:

Imag.part of pressure

A 2y
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Displacement field.

simulated x-coordinate of displacement field:

Real part of x-coord.displacement

Imag.part of x-coord.displacement

—N
E=—1\
[
) A —

( ~ — /
\ —
L -
-4 -2 0 2 4
—x—

15

10

180

—x— -X=
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Far field.
far-field pattern
90 4 — - — Imag.Part

Real Part

270
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H Inverse Problem.

Theoretical results.

m Given the far-field pattern p* for all possible directions v of incidence: Find
the shape of the obstacle.
e D. Natroshvili, S. Kharibegashvili, and Z. Tediashvili
uniqueness for domains:
* with simply connected complement
* with parametrizations in e 0<a<l
uniqueness true even in the case of anisotropic elastic obstacle and of
generalized Helmholtz equation in the fluid
e P. Monk and V. Selgas
uniqueness for domains:
* with simply connected complement
* with parametrizations in C?
* for which A Jones modes
uniqueness true even in the case where the Lamé constants depend on
the obstacle
m Given the far-field pattern p* for a single or a finite number of incidence
directions v: Find the shape of the obstacle.
® uniqueness problem open
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Goals of reconstruction.

Goals for a method based on:
— parametric representation of the boundary curve
— local optimization scheme

m Suppose we know the topology of the obstacle:
Q diffeomorphic to ball/disc

m Suppose we know a “good” initial solution.
m Seek a reconstruction with high precision.

m Here, we do not consider alternative methods which determine

the topology and work well even if “good” initial solutions are not available:

cf. e.g. the sampling method for fluid-solid interaction by Monk/Selgas
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Parametrization.

parametrization of star-shaped domain:

r(ei"’) = ao+2{ajcos(j(p)+bjsin(j(p)}
j

parametrization to avoid constraint r; < r(£) < r:

ro= {f®erest ),
() = 42—r,- + ; "l arctan (r(%))

Look for unknown boundary of star-shaped domain: ' ~r ~ {a;,b;}
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Mapping of inverse problem.

fix p™ and consider the mapping

F: H2+8(Sd—1) . LZ(Sd—l)

I=r — p~

where p~ is the far-field of p* and p* is the pressure part of the solution («, p*) to
the direct problem including the interface I' =T™

()

given: p
find:  r,, st F(rso) = p~

Lemma (Continuity)

The “curve-to-far field” mapping F is continuous even at boundaries I for which
there exist Jones modes.

Mapping of inverse problem.

Proof.

® direct problem, boundary/transmission value problem:

* solution (u, p*) exists
* solution (u, p*) not unique

* pressure component p* is unique

® invariant subspace: subspace orthogonal to Jones modes for frequency

for all frequencies ’: unique solutions in this subspace

hence, partial solution (u(@'),p*(@')) is analytic w.r.t. parameter @', i.e.,

(W) rw) = & f

1

e (1(@), (o)) o

with @’ € y not a Jones frequency

® pair (u(w'),p*(@’)) depends continuously on curve I'
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El Reduction to Optimization Problems.
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Equivalent optimization problem.

first equivalent optimization problem:

find least-squares solution r,,;, which is a minimizer of the following optimization

problem:

inf
rcH2te (Sd—l )

S () = IF () = p*lI72(ga1y

S (r)
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“Equivalent” optimization problem. Next “equivalent” optimization problem.

) ) o second “equivalent” optimization problem:
first “equivalent” optimization problem:

find approximate solution (ruin, Umin, Pmin) Which is @ minimizer of the following

find approximate solution r,,;, which is a minimizer of the following optimization optimization problem:
problem:
inf r,u,
inf Fy(r) reH>¢(S4-1) uc[H'|4,peH! A P)
r€H2+£(Sd—l)
Fy(E) 1= |F(r) = Py |22 gy Y2 Aeup) = |farfield(p) = proisy 1) +
Y = - isyll72(sd-1 2+e (Qd—1
reR TS TS |&u+...— 0|2+ [ Ap+...— O]+
leG) + prt- o P 4 Juen— |2+
where vy is a small regularization parameter IV (Ouplr,) +--- 7+
o) e
7/||r||%12+g(§) + 7||”||[2H1]d +1llp Iz

Suppose |2 — Proisy ||i2(§d—l) < const.y

where v is a small regularization parameter
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Last “equivalent” optimization problem. Comparison of three approaches.

m first method:

smallest number of optimization parameters

complicated objective functional

computation of objective functional requires solution of direct problem
we have implemented this FEM based Newton iteration using

— grid generator “netgen” (cf. Schoberl)

third “equivalent” optimization problem:

fix I', and I'; and find approximate solution (¥, @i min, @e,min) Which is a
minimizer of the following optimization problem:

inf Iy, 01, 8) — solver “pardiso” (cf. Schenk/Gartner/Fichtner)
reH? (84, grel ! (I), g€ [HH L)) m second method:
. e - 2 e huge set of optimization parameters
Ar(r,0i,0) 1= CHfaI'ﬁeld (VE°0) = Piioisy 2(s1) v e solution of direct problem not needed (good if 3 Jones mode)
. w ine |12 e not implemented
HZVFI' e VE @intp=n ‘ + m third method:
prw2n-vlfi’¢'e — Vi — dup™ 2 + ] Iarge. but not. huge set of optimization paramgters
e solution of direct problem not needed (good if 3 Jones mode)
YH‘PiH%i—l(ri) + 7’||‘7’6H[2H4(r¢)]d e additional difficulties due to ill-posed potential representation
e possible: advanced algorithm with I'; and ', updated during iteration
process (compare, e.g., You/Miao/Liu & Ivanyshyn/Kress/Serranho)
where v is a small regularization parameter e we have implemented this Kirsch-Kress algorithm
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Convergence of FEM based Newton iteration.
HAy(r) = ||F(r) —P?uisy”iZ(Sd—l) +7’Hr||%12+s(gd—l) — min

Theorem (FEM based Newton iteration)

Assume the noise satisfies ||p™ — py;, 12, (ge-1) < constant Y.

i) Vy > 0: 3 minimizer rZ’wl.sy of optimization problem.

i) y—0: /V(rr)lloisy) - infrEHZ“:(Sd’l) /0(1‘)
ili) Suppose 3 solution r*:

%
3 subsequence Tpoisy such that

a) Ky, — 1 strongly in H**€/2(S4°1) for n — e

b) r}l, — v weakly in H*¢(S*"1) forn — oo

C) F (r**) — poo
iv) Suppose 3 unique solution r*:
a) I'Zm-sy —r* strongly in HXT/2(S%-1) fory — 0

b) rl,,, — " weakly in H**£(S4~1) fory — 0

Convergence of Kirsch-Kress algorithm.

el =

y(r,0;,@) = cl|farf. (Vlgic(Pi) _p;ooiSy”Z + Htransm.cond.(Vﬁ"(pi,Vl-e (Pe)|1“r||2
+710il* +71@e)>  — min
Theorem (Kirsch-Kress algorithm)

Assume: m There is a solution r*.
m The number k* is not a Dirichlet eigenvalue for —A in interior of T';.
n The noise satisfies ||p= — PfoisyH%Z(Sd,l) < constant .
Then: i) ¥y > 0: 3 minimizer (cl,;. . @} ... 8L 0is,) Of Optimization problem.
i) y— 0: /’Y(rz:gis)ﬂ (pl?:ngisy7 @Znoisy) H infr,(p[,('pe 2o(r, 01, @)
iii) 3 subsequencer” . = such that

noisy
h in E2+e/2(gd—1
a)rl. — 1 strongly in H*¢/2(S*"1) forn — e

b) 1}, — r** weakly in H¢(S*"1) forn — oo

c) F(r ) = p=
iv) Suppose 3 unique solution r*:
a)r! . —r* strongly in H*¢/2(S=1) fory — 0

noisy

b)r? . —r* weakly in H>*¢(S?"1) fory— 0

noisy
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Convergence of Kirsch-Kress algorithm.

Proof.

2 [ %) VE B+ Vipin
o; pro*n-VE @, — 3,V o

B L)) x L(T7) — LX)} x LA(T)

Essential lemma: The image im % of operator Z is dense in the subspace

{(¢7 )" € L2 x L2(T) : (,uo) =0, ¥ ug Jones mode}.
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Derivatives and Quadrature.

Derivatives for gradient based optimization schemes

m derivatives for FEM based Newton method:
e shape optimization techniques
e get gradients by solving the FEM system of the direct problem with new
right-hand side
e 2D case: direct solver with LU factorization
m derivatives for Kirsch-Kress method:

e reduces to simple differentiation of Green’s kernels
e fourth order derivatives of Helmholtz kernel

Quadratures for Kirsch-Kress method

B no quadrature!
e layer functions ¢; and @, in H~'([;) and [H~(T,)]?, respectively
e layer functions ¢; and @,: linear combinations of Dirac & functions
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Optimization algorithm. Scaling.

Scaling of optimization scheme

Which optimization scheme? m number of necessary iteration depends on conditioning of optimization

problem
m natural scaling
= FEM based Newton method: e scale far-field values in accordance with measurement uncertainties
e small number of parameters e scale parameters in accordance with the reconstruction requirements

¢ Gauss-Newton method m scaling for a fast iterative solution adapted in accordance with numerical

m Kirsch-Kress method: tests
e larger number of parameters e calibration constants before the several terms of the objective functional
e conjugate gradient method (nonlinear variant) (e.g. constant ¢ and regularization parameter )
e Gauss-Newton and Levenberg-Marquardt method: solve linear systems e replace optimization parameters by multiple of parameters in order to
of dimension larger than those of the direct solver get gradients with components of equal size

r = I‘/Cr, ¢ = (Pi/ci: (ﬁe = (ﬁe/ce
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4 Reconstruction of egg domain.

an T initial solution and egg domain:
umerical Tests.

initial_solution egg domain

6| curve ] 6| e curve ]
in.circle ------- e in.circle ~------
excircle L . excircle -
4 4
2 2
> 0 > 0
2 2
4 4
oL T s T
8 6 4 2 0 2 4 6 8 8 6 4 2 0 2 4 6 8

Fourier coefficients:

ap= 0
ag=—1 a = 0.1 a3 = 001 a4 = —-0.001 a5=0.0001
b= 1 by = 0.1 b3y = 001 by = 0.001 b5=0.0001
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Reconstruction of non-convex domain.

initial solution and non-convex domain:

initial_solution non-convex domain

. curve i 6L e curve
..... 5 o %

in.circle - in.circle
excircle -+ L e excircle

-8 6 -4 2 0 2 a 6 8 -8 6 -4 2 0 2 a 6 8

Fourier coefficients:

ap= 0
ag= 1 a = 010 a3 = 004 a4 = 0016 as5=0.008
bi=—1 by = 002 b3 = —1.500 by = —0.010 b5=0.008
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Reconstruction results.

Results:

m Good reconstruction with FEM based Newton method for both domains
even without regularization terms (y = 0)
m Good reconstruction with Kirsch-Kress method for egg domain
m No reconstruction with Kirsch-Kress method for non-convex domain
e Regularized solution of direct problem obtained with the Tikhonov term
in our optimization scheme is bad
e Regularization with truncated SVD representation and for a suitable
very small range of regularization parameters:
reasonable regularized solution of direct problem
e Inverse crime (compute far-field data via integral equations): Good
reconstruction with Kirsch-Kress method for non-convex domain

m Good reconstruction with Kirsch-Kress method for non-convex domain if
curves I'; and I, are close to unknown curve I

Data and Scaling.

far-field data:

m simulated far-field data
m computed in 80 uniformly distributed direction

m FEM computation over finer FEM triangulation
(meshsize smaller at least by factor 0.25)

scaling:

m for Kirsch-Kress method with 44 discretization points
on each curve: ¢ =4000, ¢ =1, ¢; = 0.1, ¢, = 0.005
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Reconstruction by FEM based Newton method.

Convergence of FEM based Newton

far-field data simulated by FEM computation on higher level:
reconstruction error err := |[r —rrgym| - and number of iterations it depending on
meshsize h of FEM discretization

h [ er TJit]
1.2596 0 h [ er Tit]
0.5 0.0759 6 1.5733 0
0.25 0.0247 8 0.25 1.1435 20
0.125 0.00876 8 0.125 0.00924 | 17
0.0625 0.00329 | 10 0.0625 0.00401 | 15
0.03125 || 0.00156 | 10 0.03125 || 0.00157 | 18
egg domain non-convex domain
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Reconstruction by Kirsch-Kress method for egg domain.

Different optimization schemes for Kirsch-Kress method

Method of conjugate gradients: too slow or different limit
Gauss-Newton method with regularization: GNw
Levenberg-Marquardt method with regularization: LMw
Levenberg-Marquardt method “without” regularization: LMo
(code and standard choice of parameters by M. Lourakis)

Reconstruction by Kirsch-Kress method for non-convex domain.

initial solution and non-convex domain:

non-convex domain non-convex domain

curve —— |
in.circle -------
excircle -

curve
in.circle

excircle -

pnts. Y GNw LMw LMo ol al
onT’
1.2596 (0) | 1.2596 (0) | 1.2596 (0) P R P s
22 4.1078 0.05427 (13) | 0.05461 (30) | 0.06793 (30)
44 2.5-10713 || 0.002136 (13) | 0.002007 (320) | 0.002095 (320) Fory=10"%,¢=10000, ¢cr =1, ¢; = 1, ¢, = 0.2, and 352 discretization points on
88 4.10-'% || 0.0002126 (13) | 0.0002107 (80) | 0.0001997 (160) each curve:
initial deviation of radial functions: 0.296
Error ||[r —rgk ||~ and number of iterations for Kirsch-Kress method egg number of iterations: 11
domain reconstruction error: 0.000 279
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Reconstruction by Kirsch-Kress method for non-convex domain. Reconstruction by Kirsch-Kress method for non-convex domain.
m What shall we do with an initial solution like the disc?
m curves I'; and I, must be close to iterative solution: . . L
. . . . 1st step: initial solution and first iterate of Gauss-Newton method
update I'; and I', during the iterative solution process
e choose I'; and I', by their radial functions:
o= o1 of T T T T T T T T )
. = 5 | |
ro = r+ 1
e - 2 s 2
with r the radial function of the last iterative solution ' =T* = ~0
* Note that this is the setting for which the Kirsch-Kress method is
convergent according to the previous test! al
e for fixed I'; and T,: s ‘ s ‘

perform one step of Gauss-Newton method, but reduce the iteration

step s.t. solution curve remains between I'; and I,
e if the iteration step remains small:
fix I; and I, and perform more Gauss-Newton steps
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Reconstruction by Kirsch-Kress method for non-convex domain.

2nd step: initial solution and first iterate of Gauss-Newton method

domain

domain

Reconstruction by Kirsch-Kress method for non-convex domain.

T
curve
in.curve

ex.curve -

T
curve

in.curve ------- i

ex.curve -

domain

3rd step: initial solution and first iterate of Gauss-Newton method

domain

T
curve
in.curve

ex.curve -

T

curve
in.curve --
ex.curve -
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Reconstruction by Kirsch-Kress method for non-convex domain.

4th step: initial solution and first iterate of Gauss-Newton method

domain

domain
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Reconstruction by Kirsch-Kress method for non-convex domain.

T
curve
in.curve

excurve -

domain

5th step: initial solution and first iterate of Gauss-Newton method

domain

6 8
W
AS)
T
curve ]
in.curve -
excurve -
6 8

T
curve
in.curve

excurve -

T
curve

in.curve ------- i

excurve -
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Reconstruction by Kirsch-Kress method for non-convex domain.

6th step: initial solution and first iterate of Gauss-Newton method

domain

domain

Reconstruction by Kirsch-Kress method for non-convex domain.

T
curve
in.curve

ex.curve -

T
curve

in.curve ------- i

ex.curve -

7th step: initial solution and first iterate of Gauss-Newton method

domain

domain

T
curve
in.curve

ex.curve -

T

curve
in.curve --
ex.curve -
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Reconstruction by Kirsch-Kress method for non-convex domain.

8th step: initial solution and first iterate of Gauss-Newton method

domain

domain
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Reconstruction by Kirsch-Kress method for non-convex domain.

T
curve
in.curve

excurve -

T
curve

in.curve ------- 7]

excurve -

9th step: initial solution and first iterate of Gauss-Newton method

domain

domain

T
curve
in.curve

excurve -

T
curve

in.curve ------- i

excurve -
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Reconstruction by Kirsch-Kress method for non-convex domain.

Last step: 10 Gauss-Newton iterations

domain

domain

ex.curve -

T T
curve

in.curve
ex.curve -
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Noisy data.
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Perturbation of far-field data

perturbed far-field data of egg domain: Add random number uniformly distributed

in [—¢,€]
L& [lr—rreull- ]

0. 0.001568 e v | lIr—rkklle- |
0.001 || 0.002637 0. 2.5-10713 || 0.002136
0.005 || 0.007 156 0.0001 | 2.5-107!! || 0.003640
0.01 0.01368 0.001 2.5.1078 0.02041

0.05 0.054 33 0.003 | 2.5-1077 0.056 86

0.1 0.1087 0.005 1-107% || 0.09997

FEM with stepsize 0.03125

Kirsch-Kress with 44 points on T

Reconstruction of curve with 14 Fourier coefficients.

Curve with 14 Fourier coefficients: Reconstruction with only 10 coefficients.

m additional non-zero coefficients for the non-convex domain:
ag = 0.004, a7 = 0.001, bg = —0.004, and b7 = 0.001
m radial deviation of curve with 14 Fourier non-zero coefficients to curve with

= 0: convergence only for 1 = 0.03125)

10is 0.0075 N
m initial solution 4" = 0.75 a; (for /"
| h [ err Tit]
1.57 0
0.5 0.1147 7
0.25 0.03812 | 8
0.125 0.01878 | 7
0.0625 || 0.01688 | 7
0.03125 || 0.01678 | 7

FEM based Newton iteration for non-convex domain with 14 coefficients

Kirsch-Kress method for I'; and I', close to I': reduces radial deviation error to
0.00898 after 12 iteration
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Reconstruction of domain with Jones modes.

initial solution and non-convex domain:

initial solution

disc with Jones modes

curve
in.circle -------
excircle -

T

curve
in.circle -------
excircle -

m Kirsch-Kress algorithm:

20 -20 -15

-10

e nmb.discr.pnts. 176, y=4-10""4, ¢ =200, cy =1, ¢; =5, c. = 0.05

e initial deviation 1.26, 8 iterations, reconstruction error 0.000 814

m FEM based Newton iteration:

e direct solver “pardiso” yields partial solution of variational system,

e initial deviation 1.26, 13 iterations, reconstruction error 0.000 492
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H Conclusions.

Numerical reconstruction of elastic obstacles - WIAS, March 29, 2010 - Page 61 (64)

References.

Uniqueness results:

D. NATROSHVILI, S. KHARIBEGASHVILI, AND Z. TEDIASHVILI, Direct and inverse fluid-structure
interaction problems, Rend. Mat. Appl., VII Ser., Roma, 20 (2000), pp. 173—-198.

P. MONK AND V. SELGAS, An inverse fluid-solid interaction problem, Inverse Problems and Imaging, 3
(2009), pp. 173-198.

Numerical schemes:

A.H. BARNETT AND T. BETCKE, Stabilty and convergence of the method of fundamental solutions for
Helmholtz problems on analytic domains, J. Comput. Physics, 227 (2008), pp. 7003-7026.

O. IVANYSHYN, R. KRESS, AND P. SERRANHO, Huygens’ principle and iterative methods in inverse
obstacle scattering, Advances Comput. Math., to appear.

J. ELSCHNER, G.H. Hsia0, AND A. R., An Inverse Problem for Fluid-Solid Interaction, Inverse Problems
and Imaging, 2 (2008), pp. 83-120.

P. MONK AND V. SELGAS, An inverse fluid-solid interaction problem, Inverse Problems and Imaging, 3
(2009), pp. 173-198.

J. ELSCHNER, G.H. Hsia0, AND A. R., An optimization method in inverse acoustic scattering by an
elastic obstacle, SIAM J. Appl. Math., 70 (2009), pp. 168—187.

J. ELSCHNER, G.H. HsIA0, AND A. R., Comparison of numerical methods for the reconstruction of
elastic obstacles from the far-field data of scattered acoustic waves, WIAS-Preprint, 1479, 2010.

Conclusions.

m Advantage of Kirsch-Kress method:
e high accuracy of reconstruction.
e fast computation.

m Disadvantages of Kirsch-Kress method:

e sensitive to small perturbations of the far-field data.

e sensitive to scaling of optimization problem: a lot of parameters to be
adapted.

e ill-posed integral equations: The Kirsch-Kress method does not require
the solution of the direct problem. However, it works only if the direct
problem is solvable by the ill-posed integral equations. To decrease the
ill-posedness, the outer and inner curve should be chosen closer to the
unknown curve.

e The conjugate gradient method is too slow for the Kirsch-Kress method.
Advanced optimization schemes solve linear systems of equations
which are larger than those of the direct solvers.

m Algorithms work also for domains with Jones modes.
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Thank you for your attention!
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