
W e ie rstra ß -In stitu t fü r A n g e w a n d te A n a ly s is u n d S to c h a stik

A. Rathsfeld

245th Seminar on Scatterometry and Ellipsometry on Structured Surfaces

Modelling and Algorithms for
Simulation and Reconstruction in Scatterometry

Modelling and Algorithms for Simulation and Reconstruction in Scatterometry 2009, March 18 1 (41)



.

joint work with: Hermann Groß
Physikalisch-Technische Bundesanstalt, Working Group 8.41,

"Modelling and Simulation"

TPB

Modelling and Algorithms for Simulation and Reconstruction in Scatterometry 2009, March 18 2 (41)



Outline

Outline

1 Maxwell’s Equations and Rigorous Numerical Methods
Boundary Value Problems
Finite Element Method
Radiation Condition
Alternative Methods

2 Difficulties for Numerical Methods
3 Inverse Problems for Scatterometry

Full Inverse Problems
Finite Dimens. Operator Equation and Optimization Problem
Global Methods of Optimization
Gradient Based Methods

4 Sensitivity Analysis
5 Conclusions

Modelling and Algorithms for Simulation and Reconstruction in Scatterometry 2009, March 18 3 (41)



Maxwell’s Equations and Rigorous Numerical Methods

Outline

1 Maxwell’s Equations and Rigorous Numerical Methods
Boundary Value Problems
Finite Element Method
Radiation Condition
Alternative Methods

2 Difficulties for Numerical Methods
3 Inverse Problems for Scatterometry

Full Inverse Problems
Finite Dimens. Operator Equation and Optimization Problem
Global Methods of Optimization
Gradient Based Methods

4 Sensitivity Analysis
5 Conclusions

Modelling and Algorithms for Simulation and Reconstruction in Scatterometry 2009, March 18 4 (41)



Maxwell’s Equations and Rigorous Numerical Methods Boundary Value Problems .

Fast schemes (geometrical optics, Kirchhoff approximation, etc.) not
sufficiently accurate for polarization sensitive scattering by tiny objects!
Solve time-harmonic Maxwell’s equations with boundary conditions:

– Curl-Curl equation for three-dimensional amplitude factor of time
harmonic electric field (i.e. E(x1, x2, x3, t) = E(x1, x2, x3)e−iωt)

∇×∇× E(x1, x2, x3)− k2E(x1, x2, x3) = 0, k := ω
√

µ0ε0 n

– scalar 2D Helmholtz equation if geometry is constant in x3 direct-
ion and if direction of incoming plane wave is in x1-x2 plane

∆v(x1, x2) + k2v(x1, x2) = 0, v = E3, H3

– two coupled scalar 2D Helmholtz equations if geometry is constant
in x3 direction, direction not in x1-x2 plane
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Maxwell’s Equations and Rigorous Numerical Methods Boundary Value Problems .

Boundary value problems:

– conditions at boundary point with normal ν to boundary face

ν × E = ν × Eincident, ν ×∇× E = ν ×∇× Eincident

– impedance boundary conditions, perfect conductor at boundary
– quasi-periodic boundary conditions including period p

E(x, y, z + p) = qE(x, y, z), q :=
ei~k·(x,y,z+p)

ei~k·(x,y,z)

– coupling to solutions on outer domain satisfying the radiation
condition: no incoming wave mode contained in coupled outer
solution (represented as Rayleigh series or boundary integral)
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Maxwell’s Equations and Rigorous Numerical Methods Boundary Value Problems .

Rigorous?

– Is Maxwell’s system sufficient? Quantum physics needed?
– There will be errors in the numerical computation!
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Maxwell’s Equations and Rigorous Numerical Methods Finite Element Method .

Variational equation

∫
Ω
∇× E · ∇ × F −

∫
Ω

k2E · F +
∫

Γ
(TE) · F = −

∫
Γ+

EincidentF ,

for all F in H(curl, Ω)

a(E,F ) = b(F ), for all F in H(curl, Ω)

with: T operator of boundary condition
Ω domain of computation (over one period)
Γ ⊆ ∂Ω non-periodic boundary faces
H(curl, Ω) solutions with finite energy
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Maxwell’s Equations and Rigorous Numerical Methods Finite Element Method .

Finite element method (FEM)

Replace continuous functions E,F in variational equation by
approximate functions from finite element space Fh(Ω) which contains
functions piecewise polynomial over a fixed FEM partition Ω = ∪J

j=1Ωj

with diam Ωj ≤ h

∫
Ω
∇× Eh · ∇ × Fh −

∫
Ω

k2Eh · Fh +
∫

Γ
(TEh) · Fh = −

∫
Γ+

Eincident
h Fh,

for all Fh in Fh(Ω)

a(Eh, Fh) = b(Fh), for all Fh in Fh(Ω)
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Maxwell’s Equations and Rigorous Numerical Methods Finite Element Method .

choose a natural finite element basis (ϕh,m) in Fh(Ω),
FEM system is equivalent to matrix equation

Eh =
M∑

m=1

ξmϕh,m

M(ξm) = (ηm), M =
(
a

(
ϕh,m, ϕh,m′

) )
m,m′
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Maxwell’s Equations and Rigorous Numerical Methods Finite Element Method .

For Helmholtz equation, piecewise linear nodal basis over hexagonal
two-dimensional mesh: hat function

ϕ
h,m

For Curl-Curl equation, edge elements (Nédélec):
– noncontinuous piecewise linear (polynomial) functions
– better approximation of {E : ∇×∇× E = 0}

ϕh,e = ϕh,m∇ϕh,m′ − ϕh,m′∇ϕh,m, e = (m, m′)
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Maxwell’s Equations and Rigorous Numerical Methods Radiation Condition .

Radiation condition:

– Coupling with potential solution in outer region (boundary
element method)

– Absorbing boundary conditions (PML, Bérenger): introduce
artificial ”absorbing” material surrounding the computational
domain

– Mortaring with Fourier mode solutions: solution in outer region
represented by superposition of Fourier mode solutions, weak
boundary conditions enforced by penalty terms over boundary
(Nitsche, Stenberg, Huber, Schöberl, Sinwel, Zaglmayr)

a
(
(E,EFM), (F, FFM)

)
= . . . +

∫
Γ

ν × (E − EFM) · ∇ × FFMdΓ + . . .

– Radiation condition for outer domain different from full or half
space (Hohage, Schmidt, Zschiedrich)
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Maxwell’s Equations and Rigorous Numerical Methods Radiation Condition .

Component of electric field in groove direction
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Maxwell’s Equations and Rigorous Numerical Methods Radiation Condition .

3D example
FEM grid and real part of x1 component of electric field

Modelling and Algorithms for Simulation and Reconstruction in Scatterometry 2009, March 18 15 (41)



Maxwell’s Equations and Rigorous Numerical Methods Alternative Methods .

Alternative methods:

– Finite Difference Methods (e.g. FDTD): similar to FEM,
fast on regular grids

– Rigorous Coupled Wave Analysis (RCWA): solution approximated
by truncated Fourier series expansion, domain split into slices,
differential equation for vector of Fourier coefficients in the slice,
S-Matrix propagation over the stack of slices

– Coordinate Transformation Method
– Differential Equation Methods
– Multipole Methods
– Integral Equation Methods (Boundary Element Methods):

perfect for small number of boundaries and interfaces

General principle for all methods:
split domain in subdomains, solve in subdomains, couple particular
solutions
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Difficulties for Numerical Methods
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Difficulties for Numerical Methods .

approximation of singularities and boundary layers
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meshes graded toward singular points or towards interfaces
h− p methods: variable polynomial degree of FE function
adaptive mesh generator controlled by local error estimator
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Difficulties for Numerical Methods .

Approximation of highly oscillating functions:
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numerical dispersion (pollution):
– generalized finite elements
– high order finite elements
– non-sparse discretization scheme
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Difficulties for Numerical Methods .

Solver for huge systems of linear equations:

B Direct solver: slow, large amount of memory, stable solver
B Direct solver for sparse matrices: less memory, faster

computation times, stable solver, good for 2D (Pardiso)
B Iterative solver

– standard iteration without preconditioner: no convergence
– multigrid method
– domain decomposition (Schwarz method)
– ultraweak formulation

No perfect solver has been found yet?
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Inverse Problems for Scatterometry
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Inverse Problems for Scatterometry Full Inverse Problems .

Full Inverse Problem:

. Given: the diffraction properties of structure (e.g. efficiencies E±
j,l)

. Seek: the structure, i.e., the geometry of the domains filled with
different materials and the refractive indices of these materials

♦ Diffraction limit: mathematically, a severely ill-posed problem,
i.e. small errors in data lead to large errors for the solution

♦ contributions to mathematical 2D theory of gratings by F. Hettlich,
A. Kirsch, G. Bruckner, J. Elschner, G. Schmidt, D.C. Dobson,
G. Bao, A. Friedman, M. Yamamoto, J. Cheng, K. Ito, F. Reitich,
and T. Arens

♦ avoid full inverse problems by using more a priori information on
the structure: seek grating in class defined by a few parameters
h = (hj)J

j=1 (parameter identification)
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Inverse Problems for Scatterometry Full Inverse Problems .
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Inverse Problems for Scatterometry Finite Dimens. Operator Equation and Optimization Problem .
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Inverse Problems for Scatterometry Finite Dimens. Operator Equation and Optimization Problem .

Operator Equation:
measured data, efficiencies or phase shifts: Emeas = (Emeas

m )m∈M
comp.data corresponding to parameters h: E(h) = (Em(h))m∈M
constraints: hmin

j ≤ hj ≤ hmax
j

E(h) = Emeas

Optimization Problem:
minimize objective functional

Φ
(
Em(h)

)
−→ inf

Φ
(
Em(h)

)
:=

∑
m∈M

ωm |Em(h)− Emeas
m |2

box constraints: hmin
j ≤ hj ≤ hmax

j
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Inverse Problems for Scatterometry Global Methods of Optimization .

Nonlinear, nonquadratic, nonconvex objective functional
time consuming evaluation of objective functional
simple box constraints
difficulty: find global minimum among several local minima

Global methods-stochastic methods:
– e.g. Simulated annealing
– e.g. Evolutionary (genetic) algorithms
– stochastic transitions of iterative solution (cooling step of particle

system, adaption process of population of species)
– sufficiently large number of iterations: convergence to global

minimum with probability one
– realistic number of iterations: heuristic method only

Faster methods:
precompute finite dimensional operator, e.g. generate a library of
solution and search for solution in this library
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Inverse Problems for Scatterometry Gradient Based Methods .

gradient based methods:
first order method with superlinear convergence:

– conjugate gradients method
– interior point method
– Levenberg-Marquardt algorithm
– Gauß-Newton method
– modification for box constraints: SQP type method

compute hk+1 = hk + ∆h with ∆h the optimal solution of convex
quadratic optimization problem with box constraints:

min
∆h: hmin

j ≤[hk
j +∆h]j≤hmax

j

∥∥∥∥E(hk) +
∂E

∂h
(hk)∆h− Emeas

∥∥∥∥2
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Inverse Problems for Scatterometry Gradient Based Methods .

search direction

h

gradient

h
k+1

k

gradient computation: search direction for new iterate hk+1

line search for new iterate
new computations for objective functional required

Gauß-Newton method or methods with second order derivatives yield
step size in search direction
however: line search algorithm is more stable
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Inverse Problems for Scatterometry Gradient Based Methods .

Scaling of Parameters and Measurement Values:

. Normalization factors for parameters: expected errors of
parameters should correspond to uniform errors for normalized
parameters

. Normalization factors for measurement values: measurement
uncertainty should be the same for all normalized measurement
values

Φ
(
Em(h)

)
:=

∑
m∈M

ωm |Em(h)− Emeas
m |2

ωm ∼ 1
u(Emeas

m )2
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Inverse Problems for Scatterometry Gradient Based Methods .
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Inverse Problems for Scatterometry Gradient Based Methods .

lev. h1 h3 h4 h5 h6 h8

3 0.04719 0.26449 0.02184 0.73551 0.32085 0.27829
4 0.04939 0.27645 0.02276 0.73134 0.29526 0.26069
5 0.04988 0.27897 0.02295 0.73035 0.29177 0.25755
6 0.04997 0.27954 0.02299 0.73016 0.29099 0.25674

ex.v. 0.05000 0.27967 0.02300 0.73007 0.29068 0.25638
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Inverse Problems for Scatterometry Gradient Based Methods .
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Inverse Problems for Scatterometry Gradient Based Methods .
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Inverse Problems for Scatterometry Gradient Based Methods .

f(p6,p7) for optimal 12 efficiencies, EUV mask

f(p6,p7) for SimH4,N2s−12,GFEM(2,29,4)−Lev.3,BND−MESH−SIZE=0.4
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Sensitivity Analysis .

Tasks of sensitivity analysis:

. Theoretically: Huge amount of direct measurement data possible.
Which part of this data is really needed for an accurate and fast
reconstruction of the entities to be “measured” indirectly?
=⇒ minimize the condition numbers of the mapping: h 7→ E(h)

. Knowing the uncertainties of the direct measurement data,
estimate the measurement uncertainties of the indirect
measurement values!

. Estimate the uncertainties of the direct measurement data!
=⇒ maximum likelihood estimator
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Conclusions
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Conclusions

Conclusions

. Finite element method: good choice for the numerical
solution of Maxwell’s equations

. Reconstruction of geometric parameters possible
(beyond diffraction limit)

. Optimization of measurement data helpful

. Uncertainties of reconstructed parameters should be estimated
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Conclusions .
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