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ABSTRACT

Possibilities are investigated for influencing the dynamical behaviour of diode lasers by means of integrated passive
dispersive reflectors (PDR). The specific configurations comprise DFB lasers complemented with different PDR, which
consist of a phase tuning section and a passive grating section. Among others, the potential of these configurations
will be investigated for generation and tuning the properties of self pulsations (SP), as e.g. the frequency and the
modulation depth. Our considerations are based on the Traveling Wave Equations (TWE) coupled to carrier rate
Equations. Together with numerical time domain computations of this system, a single mode approximation is
applied and checked as possible tool for tailoring the dynamic effects.
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1. INTRODUCTION

It is well known that optical feedback can considerably influence the dynamical behaviour of a semiconductor laser.
Already simple reflections at distant external mirrors like fiber connectors can cause interesting phenomena as, e.g.,
coherence collaps, low frequency fluctuations, or self-pulsations (SP). These effects have been investigated intensively
since many years (see, e.g.,' > and references therein).

In this paper, we consider a special situation where the feedback comes from a dispersive reflector (a Bragg
grating) that is integrated together with the laser within a compound and compact device as sketched in Fig. 1.
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Figure 1. Basic device structure. A DFB
laser is connected with a passive dispersive re-
flector (PDR) containing a tunable phase shift

passive dispersive reflector section and a passive grating section.

laser section

4 are used to generate high-frequency self-pulsations (SP) and serve very successfully as optical

5  Those devices use identical transverse structures for both DFB sections. But

Similar devices
clock in the data regeneration.
only the laser section is highly pumped and produces gain. In contrast, the DFB-reflector is driven close to the
transparency current.%® The carrier-light coupling is small in this regime and the section acts nearly as a passive
reflector. In the present paper, we draw the consequence and assume a completely passive DFB reflector. This design
could be realized, e.g., by using the same waveguide structure as in the phase tuning part. Here, the active 1.55um
layer is replaced by an layer at 1.3um not coupling to the laser light. The carriers generated in this layer by the
phase tuning current do not produce gain but mainly change the phase shift via the effective refractive index of the
waveguide. When using this design also in the DFB reflector part, no pump current has to be considered as sketched
in Fig. 1, which is our convention in the following. However, a pump current could possibly be useful to tune the
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spectral position of the stop band of the reflector. One question to be investigated theoretically in this paper is,
whether fast SP can also be generated with such completely passive dispersive reflectors (PDR). Furthermore, we
try to find out how much the properties of the SP can be tailored by appropriately designing the reflector.

The basic model equations will be presented in the next chapter. An analysis of the impact of a PDR on the
nonlinear dynamics by means of single mode equations follows. An increase of the resonance frequency of the laser
and a modification of its damping are obtained. Conditions for achieving either fast swiching between stationary
states or fast and well modulated SP will be derived. This single mode analysis is confirmed and deepened in chapter
4 by results of time domain simulations taking into account all relevant modes. Some tendency to undesirable mode
hopping is found as a new effect not visible in the single mode analysis. On this base, it is shown in section 4.2
that the detuning between the gratings of the laser and reflector sections can be used as a design parameter for
suppressing the mode hopping.

2. TRAVELING WAVE EQUATION MODEL

The optical field inside laser is decomposed into forward and backward propagating waves with corresponding slowly
varying amplitudes ¥t (z,t) and ¥~ (z,t), which obey the well known Traveling Wave Equations (TWE)7:
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The partial derivatives with respect to the time ¢ and the longitudinal position z are denoted by 8; and 8,, respectively.
Spontaneuos emission is neglected here, because the phenomena of interest appear well above threshold. The group
velocity vy, and the coupling coefficients k, and x_ of the Bragg gratings are constant within each section. For
the index grating parts of our device it holds k_ = k7% . The end facets (2 = 0 and z = L) are AR-coated and we
have no external injection of light, thats why the field amplitudes obey the boundary conditions ¥*(0,%) = 0 and
¥ (L,t) = 0. The relative wave number (3 is differently modeled in the different parts of the device.

In the grating part of the PDR, the constant value 8 = —ic,./2 is used with the optical losses a,.. This implies
that the center of the stopband of the reflector grating is taken as the central wavelength. In the phase tuning part
of the PDR which has the length [,, we use 8 = 6, — i0,/2. In general, the detuning parameter J, as well as the
losses a;, would depend on the injected current. For modelling purposes it is however more appropriate to use the
phase shift ¢ = §,l,/m as a control parameter.

In the laser section we have to take into account an electronic contribution to 8 due to the gain and the influence
of the carrier density IV on the refrective index, as well as a possible static detuning § relative to the reflector grating,

1
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The parameters ag,ag,T,g’, and Ni., represent the internal optical losses, Henry’s linewidth enhancement factor,
the transverse modal fill factor, the differential gain, and the transparency concentration, respectively, of the corre-
sponding section. Excluding effects of spatial hole burning, the spatially constant carrier density is governed by the
balance equation
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is the photon density averaged over the volume V of the active zone, e is the electron charge and I represents the
total current injected into the laser section. All spontaneous channels are summarized in the second term, which is
parametrized as usual in the polynomial form R(N) = AN + BN? + CN3.

3. SINGLE MODE DYNAMICS

In many cases, the dynamics of a laser is governed by only one dominant mode. Then the TWE (1) can be replaced
by a photon rate equation that has been derived in.® This approximation has been very successfully applied to
devices with an active DFB reflector.? In this chapter, we use it to find possibilities for modifying the dynamics of
a laser by passive dispersive reflectors.



3.1. Dimensionless rate equations

The following dimensionless normal form of these equations is used:
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The dimensionless time variable 7 and the carrier life time 7' are measured in units of the photon life time, hence, T is
typically in the order of 103. J and n are dimensionless representatives for the pump current and the carrier density
in the laser section, with J = 0 and n = 0 at the threshold, respectively. p is a normalized photon number. More
details and a derivation of these equations as well as a proof of the following statements will be given elsewhere.'9

Without a reflector, i.e., for a solitary DFB laser, one finds always K(n) =1 and G(n) = n. This means

i) that any single section DFB laser is described by reduced rate equations with only two parameters, J and T,
and,

ii) that the qualitative influence of a dispersive reflector can come into the play only via the two functions K(n)

and G(n).

Thus, the task is to investigate the dynamics of Eqs. (5) in dependence on these two functions.

To solve this task, we have looked for the typical shape of K(n) and G(n). Some examples can be found in the
literature. Single section DFB-reflectors with a uniform index coupled grating were investigated in.!»"” A narrow
resonance-like enhancement was found as most prominent feature for the axial factor K, of excess spontaneous
emission, which is the main constituent of K(n). This behaviour could be attributed to a nearby point of mode
degeneracy at which K, diverges.” Similar results were obtained in® for more complicated reflectors composed of
a DFB section accomplished by a phase tuning section. We believe that such resonances of K, due to degeneracy
points are a rather general consequence of dispersive reflectors. Using the formulae of Ref.® , we have calculated
K (n) for different reflector structures and found always such a resonance. One typical example is drawn in Fig. 2

(solid line).
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cal DFB laser with dispersive reflector.

The position ng of the resonance, its width W and height A vary in wide limits depending on the parameters
of the reflector. To study the consequences of these different configurations on the dynamics, we use the simple
Lorentzian model

AW?
4(n —mng)2 + W2

K(n) =Ko+ (6)

and vary ng, W, and A. The parameter K is not free, but fixed by the normalization condition K(0) = 1.



The lower part of Fig. 2 gives a typical example for the influence of dispersive reflectors on G(n). It is mainly an
enhancement of its slope within a finite density interval. This feature is also modeled by a simple function,

G(n) =n+ a A tanh (%) . (7
Here, the maximum slope is 1 + & and the width of the slope enhancement region is characterized by A.

3.2. Stability of the Equilibria

Above threshold (J > 0), the on-state of the laser is given by the stationary solution (ni,p;) = (0,J) of Egs. (5). To
determine the stability of this solution we compute the eigenvalues of the Jacobian of the right-hand side of (5) at
this point. We find the pair of complex eigenvalues

Ar = —y+iv/w? —92 with 7:%[1+(1+K'(0))J], Ww?=TG'(0)J. (8)

In case of a solitary laser described by K(n) =1 and G(n) = n, the on-state (ny,p;) is a stable focus with damping
4 = (1+J) /2 and frequency w = +/T'J provided w? > 4%. The expressions in (8) show the different influences of
the values K'(0) and G'(0). The resonance frequency w of the laser becomes modified only by G'(0) =1+ a, i. e.,
by the slope enhancement due to the presence of the dispersive reflector. This effect has already been demonstrated
and exploited by Kjebon et al.!? to achieve very large modulation band widths up to 30 GHz. The damping 7, on
the other hand, that is responsible for the stability, is influenced by K'(0) only.

Now we study how the stability of the on-state depends on the parameters A and ng for fixed W. A simple
analysis shows that the damping v as a function of ng has at most two roots for any A and W. If A is sufficiently
large, the function y(ng) has two simple zeroes, its graph is shown in Fig. 3 (solid line). This curve visualizes that
the resonance of K (n) affects the stability of the on-state only if its position is within an interval near threshold. In
this region the damping is strongly enhanced for ng > 0. For large A and decreasing ng the stability of the on-state
changes rapidly near ng = 0 from a strongly damped focus to a strongly unstable focus. For |ng| 3> W the resonance
of K(n) does not influence the damping of the on-state. It is as small as without PDR (dashed line in Fig. 3). We
conclude that the introduction of a PDR changes essentially the behaviour of damping.
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Figure 5. A developing self-pulsation of the reduced photon
Figure 4. Influence of a reflector on the response of the number for the detuning no = ngz = —0.005 (negative damp-
reduced photon number p to a current step. Dashed: normal ing). Further parameters: J =2, W = 0.02, A=1, a = 5,
damping (no = no1 = 0.05). Solid: enhanced damping (no = A=0.1.

ng2 = 0.005). Parameters as in Fig. 5.

Now we demonstrate how the region of enhanced positive damping can be used to modify the switching between
stable steady states. For this purpose we apply a current step and compare the time behaviour of the reduced
photon number p for two different values of detuning (Fig. 4). The first one ng = ng; = 0.05 (dashed) corresponds
to the damping of a solitary laser (cf. Fig. 3). The most important feature of the transient response is here that
the switching is accompanied by weakly damped relaxation oscillations. The second detuning ng = ngz = 0.005



corresponds to the enhanced damping in Fig. 3. In this case, the transient response (full line) practically reflects the
form of the injected current such that the switching time is very much shorter compared with the solitary laser. For
the negative detuning ng = mgs, the stationary state corresponding to J=2 is unstable (cf. Fig. 3). Starting from
this state, numerical noise causes a transition into a self-pulsation (Fig. 5), even when keeping J constant. These

self-pulsations will be discussed in more detail in the following subsection.

3.3. Bifurcation Analysis
In the previous subsection we have shown that the stationary lasing state is unstable for sufficiently large amplitude

A if the detuning ng belongs to some interval By < ng < B; < 0. Since y(ng) has simple zeroes for ng = By and
no = Bj, these points are Hopf bifurcation points. In this subsection we explore the families of periodic solutions we
expect to emerge at the Hopf points B; and B; and compute the bifurcation curves in the (4, ng)-plane *.

Varying both parameters ng and A we obtain the Hopf curve P;-P»-P; in the (A4, ng)-plane where the curve P;-P»
is a supercritical Hopf curve and the curve P,-P;3 is a subcritical Hopf curve. At the point P, the Hopf bifurcation
is degenerated and a branch of saddle-node bifurcations of periodic solutions emerges (the curve P»-P, in Fig. 6).
These bifurcation curves divide the parameter plane into three regions. The on-state is the only attractor in region
I. It is unstable and the SP is stable in region III. In region II the stable stationary lasing state and a stable SP
coexist and are separated by an unstable periodic solution. Which of the two stable solutions hold depends on the
history of the device, i.e., hysteresis appears in this region. Coming from region I, the system stays in the stationary
stationary lasing state, whereas it stays in the SP state when coming from region III.

The other parameters influence the bifurcation curves of Fig. 6 in the following manner: a decrease of W contracts
the regions II and III where P; and P, are shifted towards P;. At the same time the minimum of the Hopf curve
tends to the origin. A change of a or A implies only a minor change of the line P;-P; and has no influence on the

line P1 - P2 - P3.
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Parameters: W =0.05, =2 and a = 0.

Now we are interested in tuning (in the sense of increasing) the frequency f of the stable self-pulsations compared
with the relaxation frequency fo = +/T.J/2m of the solitary laser. Without an enhanced gain slope (@ = 0), our

numerical investigations yield for any W the following results (see Fig. 6). It is f = fo just on the curve P, — P,

of supercritical Hopf bifurcation, where the modulation depth m = Pp,4¢/Pmin of the SP vanishes. With increasing
13

*The bifurcation detection and continuation software package AUTO has been used to perform the numeric computations.



distance from this curve, each curve of constant f is still very close to a curve of constant m. With increasing
modulation depth m the frequency f decreases.

Next we fix a point in region III and draw the curves of the constant frequency and the curves of the same
modulation depth in the (@, A)-plane (Fig. 7). This picture shows that the frequency and the modulation depth
increase with increasing « if A is sufficiently large, i. e. the interval of gain enhancement covers the variation of n
along the orbit of the SP. Furthermore, the frequency of the SP is larger than fy for @ > 0. At the same time, high
modulation depths can be achieved if o and A are sufficiently high.

Summarizing this chapter, we draw the following conclusions: A PDR influences the dynamics of a single-mode
laser by a narrow resonance-like enhancement of the function K and a local gain enhancement. The amplitude and the
position of the resonance of the function K control the existence of self-pulsations and the stability of the stationary
lasing state. There are parameter constellations where the PDR laser can be used for fast optical switching. An
increase of the frequency of the SP beyond the relaxation frequency of a single section device can not be obtained by
means of the parameters of the function K, however an increasing of the slope of the local gain enhancement allows
to reach this goal.

4. MULTI MODE TIME DOMAIN SIMULATIONS

In this section we check the single mode analysis of the previous chapter by the more complicated numerical simulation
based on the full equations given in section 2. Details of the numerical model and its confirmation by comparison
with measurements will be given elsewhere.!* Here we focus on the demonstration that single mode SP can also be
generated by completely passive dispersive reflectors. From previous experimental and theoretical work on devices
with active DFB reflectors we know the following specific criteria for generating single mode SP by Dispersive self

Q-Switching (DQS):
a) the lasing mode is positioned on the negative slope of the reflectors reflectivity spectrum,

b) the SP are turned on by adjusting appropriate phase conditions.

Using the same set of device parameters as in'# but keeping the reflector grating passive, we indeed obtain SP of the
desired type when choosing the spectral situation depicted in Fig.8 and an appropriate phase condition. In a next
step we use the phase condition for controling the SP.
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4.1. Controling the dynamics by phase tuning

The phase of the light fed back from the reflector into the laser can easily be varied by changing the phase tuning
current. It is therefore an important parameter for controling the dynamics induced by the dispersive reflector. In
this subsection, we vary this parameter and keep all other parameters fixed.

The main results of the time domain simulations are collected in Fig.9 as thick full and dashed lines. Part a)
shows either the stationary output after the decay of the relaxation oscillations or the maximum and the minimum
power during one period of a self-pulsation. The vertical lines labeled by capitals mark some points for the discussion.
In all cases except at point B, the lasing emission is carried by one distinguished dominant mode. The + or - sign
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b) Carrier density in the laser section. Some mean car-
rier density during one period is drawn when the sim-
ulation yielded SP. Open circles and triangles: thresh-
old densities of the modes on the long wave side and
on the short wave side of the stop band of the laser
section, respectively.

¢), d) Small signal frequencies and damping constants. The
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above the lines marks whether the long wave mode or the short wave mode of the DFB laser is lasing, respectively.
To analyze the time domain data, we have independently calculated the individual threshold densities of the different
modes as well as their small signal resonance frequencies f = w/27 and damping constants y corresponding to Eq.
(8) and plotted as open symbols.

Several features agree with the predictions of the single mode analysis of the preceeding chapter.

Three different types of behaviour are observed as already in Fig. 6:

I) a stationary solution independent of the direction of phase change (between A to C and F to A),
III) self-pulsations only (C to E), and

IT) the coexistence of a stationary and a self-pulsating solution (E to F).

In the stationary states, the threshold density and the small signal parameters (8) agree very well with the
time domain data. It is the mode with the lowest threshold density that lases in these states.

Both the resonance frequency and the damping are considerably influenced by the dispersive reflector and can
be tuned by the phase shift.

The '+’ mode exhibits a wide region of negative damping with finite f that ranges from the phase /27 =~ 0.5
(point C) down to ¢/2m ~ —0.1 (equivalent to /27 = 0.9) and corresponds to region III of stable self-
pulsations in Fig.6 of the single mode analysis. In contrast, the '~ mode does not show this feature. This
result is consistent with the spectral situation of Fig. 8, where only the '+’ mode is on the negative slope of the
reflector spectrum (criterion a) of DQS).



e Point C is a Hopf bifurcation point of the lasing '+’ mode because the damping goes through zero at a finite
f- Accordingly, the time domain simulation exhibits a transition from a stationary state to a self-pulsation.
Our analysis shows, that this Hopf bifurcation is supercritical and corresponds to line P; — P» in Fig. 6.

e The frequency of the self-pulsation is smaller than the small signal resonance frequency of the corresponding
stationary mode.

e For decreasing phase the self-pulsations end abruptly (point F') and show hysteresis.
There are, however, also modifications and new features not obtained within the single mode approximation.

¢ In point B two modes of opposite sides of the stop band coexist. We observe beating oscillations with a huge
frequency corresponding to the frequency difference between the modes. However, it is not clear yet whether
this phenomenon is stable.

e The SP of the long wave mode is terminated in point F by a jump into the stable '~” mode before its instability

region (III in Fig. 6) is finished. This limitation of the range of self-pulsations by the presence of the '~’ mode
is undesirable for the application of the device as optical clock.
e Between E and F, a self-pulsating state of the '+’ mode coexists with a stationary state of the =’ mode. In

Fig. 6 of the single mode model, the coexisting states in region II belong to the same mode.

e The transition in E from a stationary state to a self-pulsation is connected with a saddle node bifurcation.
s

When approaching this point from the right, a stable stationary mode is lasing. Beyond E this mode
disappears. This is a strong perturbation for the laser. Surprisingly, the lasing jumps into a self-pulsating short
wave state although there exists a state with a much lower threshold density on the opposite side of the stop

band. The nature of this transition and of the SP of the '’ mode between E and D is still under investigation.

e It should be emphasized that each of the coexisting states between D and F is stable, i.e., we have never observed
in our simulations a spontaneous transition from one of these states into the other one. The sensitivity with
respect to finite perturbations has however not been explored, yet.

Although being very interesting from a theoretical point of view, the participation of two modes from opposite
sides of the stop band is less useful for the application of the devices in the optical communication. It reduces the
phase range available for the wanted DQS self-pulsations of the '+’ mode. The hysteresis requires to follow carefully
a certain path to the desired point of operation. Therefore we are looking for a design of the dispersive reflector that
suppresses the influence of the competing modes.

4.2, Grating detuning as design parameter

For this purpose we have used the static detuning § between the two DFB gratings (cf. Fig.1) as a new design
parameter. This was motivated by the observation that the nonpulsating '~ mode in Fig.8 gets a larger feedback
from the reflector section than the pulsating '+’ mode. It can be expected that the region of self-pulsations is

enhanced when the feedback of the nonpulsating mode is diminished by, e.g., an appropriate detuning.

To check this hypothesis, the detuning parameter ¢ has been varied over a 15 nm wide range with steps of 0.1 nm
keeping the laser configuration and all parameters as in the previous subsection. For every §, the phase angle ¢ was
tuned downwards from 27 down to 0 in 50 equidistant steps. The SP-regions obtained are drawn in the upper part
of Fig. 10 as islands with thick black borders. Island 1 in the center belongs to the spectral correlation of Fig.8 and
can be addressed by the thermal A-shift in the present generation of devices.® Note, that the SP on the '+’ mode
discussed in the previous chapter are contained in this island.

For larger detunings, several new SP islands appear (note that islands touching the border ¢ = 27 continue at
¢ = 0 and vice versa, due to the phase periodicity). The reflectivity spectra drawn in the lower part of Fig. 10 for
the islands 2 to 5 show that they belong to other possible combinations of one of the two potentially lasing modes
with a negative slope of one of the different lobes of the reflector spectrum. One can see, that in some cases the
feedback from reflector section for the competing DFB mode is smaller. Therefore, in these cases we can expect
smaller sensitivity of the device to these modes and partially avoid the mode hops.
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Being larger and less sensitive to mode jumps, these new islands are improved compared to island 1. The existence
of such islands has been also verified experimentally using first devices with detuned gratings.!®

It is worth to note, that even having very small feedback for competing DFB mode, the changes of phase can
cause the jump to this mode from the more strongly feeded mode. These jumps are indicated in the upper part
of Fig. 10, where for the not very big detuning values we can see an exchange of white and grey backgroud areas.
Nevertheless, these mode jumps disappeared totally for large detunings, where the new SP areas were detected. As
expected, this suppression of the nonpulsating mode leaded to noticeable larger pulsation regions compared to region

1.

5. CONCLUSION

It has been demonstrated theoretically that the dynamical behaviour of a DFB laser can be goal-directed modified
by means of an integrated passive dispersive reflectors (PDR). We started with a comprehensive analysis of the single
mode case. In this frame it was shown that the resonance of the axial excess factor of spontaneous emission K,
caused by the PDR plays the crucial role. It can be used either for achieving fast switching by suppressing relaxation
oscillations or for generating self-sustained pulsations by undamping these oscillations. A typical bifurcation diagram
was constructed showing regions with either stable stationary states, or stable self-pulsations, or the coexistence of
stable stationary and stable self-pulsating states (hysteresis). A full time-domain simulation taking into account all
relevant modes and using the phase shift as experimentally accessable bifurcation parameter confirmed these results
but exhibited also new features. The laser emission was essentially single mode, however not always in the same
mode but either in a long wave mode or in a short wave mode. This presence of a second mode complicated the
bifurcation scenario and reduced the parameter region available for the application of the self-pulsations. The latter
effect can be avoided by using devices with appropriately detuned gratings.
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