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ABSTRACT

We investigate the longitudinal dynamics of multisection semiconductor lasers based on a
model where a hyperbolic system of partial differential equations is nonlinearly coupled
with a system of ordinary differential equations. We present analytic results of that system:
global existence and uniqueness of an initial-boundary value problem, existence of attract-
ing invariant manifolds of low dimension. The flow on these manifolds is approximately
described by the so-called mode approximations that are systems of ordinary differential
equations. Finally, we present a detailed numerical bifurcation analysis of the two-mode
approximation system and compare it with the simulated dynamics of full PDE model.

Key words: laser dynamics, invariant manifold theory, hyperbolic systems of partial
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1. MOTIVATION

In commercial and private communication, the exchange of multimedial in-
formation growths rapidly. Thus, the corresponding data traffic increases
exponentially and is characterized by the shift from voice communication to
package oriented data traffic. This fact implies a big challenge for a strong
increase of the data transmission rate. Due to their inherent speed, semicon-
ductor lasers are of great interest as optical devices for fast data regeneration
(reamplification, retiming, reshaping) in future photonic networks. Typically,
these devices have a non-stationary working regime. As an example we men-
tion the regime of high-frequency oscillations. Multisection lasers allow one
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to generate and to control such nonlinear effects by designing the longitudinal
structure of the device (see, e.g., [16; 19; 25; 28]).

However, prototyping of multisection semiconductor lasers is very expensive
and time consuming. The goal of this paper is to demonstrate that mathe-
matical models can be used to study the longitudinal dynamics of such lasers
and to optimize their working regime.

We focus on the traveling-wave model, a linear hyperbolic system of partial
differential equations (PDEs) which is nonlinearly coupled with a system of
ordinary differential equations (ODEs). It models the longitudinal dynamics
of edge emitting multisection semiconductor lasers by the interaction of two
physical variables: the complex light amplitude (in fact, its spatially slowly
varying envelope), which is spatially resolved in the longitudinal direction of
the laser and described by the linear hyperbolic PDE subsystem, and the
effective carrier density within the active zone of the device, which is section-
wise spatially averaged and described by the ODE subsystem.

This model has the advantage of meeting two seemingly contradictory cri-
teria, accuracy and simplicity (or rather accessibility to a detailed bifurcation
analysis). On one hand, it is accurate enough to describe all phenomena of
interest to the engineers. Moreover, it can easily be made more realistic by
gradually incorporating secondary physical effects that may play a role in lim-
iting the performance of a particular device. On the other hand, it allows one
to reduce the model to a low-dimensional system of ODEs by exploiting the
fact that the carrier density operates on a much slower time-scale than the
light amplitude. These ODEs in turn are accessible to a detailed bifurcation
analysis using standard software like AUTO [10]. Only this bifurcation analy-
sis gives insight into the mechanisms behind many nonlinear phenomena and
is able to reveal effects (for example excitability [27]) that may be invisible in
pure parameter studies.

Both aspects of the traveling-wave model have been implemented in the nu-
merical code LDSL (Longitudinal Dynamics of Semiconductor Lasers). Hence,
this numerical tool provides engineers, laser physicists, and mathematicians
with a whole hierarchy of models allowing them to “switch on or off” physical
effects to gain insight which of these effects causes the particular phenomenon
they are interested in. Besides numerical integration of the model equations
this tool solves also the spectral problem of the model equations, allows to
analyse the dynamics of individual longitudinal modes and in certain cases
enables effectively to compare the solutions provided by the PDE model and
the reduced mode approximation systems. This modeling approach has been
used quite successfully in the recent past to design new devices exhibiting
high-frequency oscillations [7; 8; 28].

In this paper we focus more on the aspect of model reduction than extension,
mostly because this part is more thoroughly supported by mathematical the-
ory. The paper is organized as follows: In section 2 we describe the traveling-
wave model and give a detailed physical interpretation of all coefficients and
variables. In section 3 we show that the corresponding initial-boundary value
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problem is well-posed. In section 4 we introduce a small parameter exploiting
the difference in the time-scale between light and carrier density. In section 5
we investigate the spectral properties of the infinite-dimensional linear part.
Section 6 combines the results of the previous sections to derive conditions
guaranteeing that the traveling-wave model can be reduced to an ODE sys-
tem. In section 7 by showing a detailed two-parameter bifurcation diagram we
demonstrate how useful the reduced model can be. We link this bifurcation
diagram to a parameter study with a more realistic version of the traveling-
wave model. In the last section we draw conclusions and give an outlook on
future projects.

2. THE COUPLED TRAVELING WAVE MODEL WITH NON-
LINEAR GAIN DISPERSION

The coupled traveling wave model, a hyperbolic system of PDEs coupled with
a system of ODEs, describes the longitudinal effects in narrow edge-emitting
laser diodes [1; 15; 23]. It has been derived from Maxwell’s equations for an
electro-magnetic field in a periodically modulated waveguide [1; 3] assuming
that transversal and longitudinal effects can be separated. In this section
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Figure 1. Typical geometric configuration of the domain in a laser with 3 sections.

we introduce the corresponding system of differential equations, explain the
physical interpretation of its coefficients and specify some physically sensible
assumptions about these coefficients.

The dynamics in a multi-section laser is described by the evolution of the
following quantities. The variable ¢(t,z) € C? describes the complex ampli-
tude of the slowly varying envelope of the optical field split into a forward
and a backward traveling wave. The variable p(t,z) € C? describes the cor-
responding nonlinear polarization of the material. Both quantities depend
on time and the one-dimensional spatial variable z € [0, L] (the longitudinal
direction within the laser; see Fig. 1). A prominent feature of multi-section
lasers is the splitting of the overall interval [0, L] into sections, that is, m
subintervals Sy that represent sections with separate electric contacts. We
treat the carrier density within the active zone of the waveguide as a section-
wise spatially averaged quantity n(t) € R™ (see Fig. 1). In dimensionless
form, the coupled traveling-wave model can be posed as an initial-boundary
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value problem for ¥, p, and n that reads as follows

[0 4B((0).2)  —in(2)
oitz) = [T TR ) ) ) .2 v )2
Ouplt,2) = (i (n(t), 2) — Tln(t), 2)] - plt, 2) + T(n(0), 2) (2, 2), (2.2
Enet) = 1= 29— L6y m(0) - pu(ra ()] RCORTOLE
P

—Epk(nk(t)) Re ( s P(t,2)"p(t, 2) dz) , k=1...m (23)

subject to the inhomogeneous boundary conditions for
$1(£,0) = rota(t,0) + a(t), a(t, L) = rova (t, L) (2.4)
and the initial conditions
$(0,2) = ¢°(2), p(0,2) = p’(2), n(0) = n’. (2.5)
The Hermitian transpose of the C2-vector 1 is denoted by ¢* in (2.3). We
will define the appropriate function spaces and discuss the possible solution

concepts in section 3. The quantities and coefficients appearing above have
the following meaning (see also Tab. 1 and Fig. 1). L is the length of the laser.

typical range explanation
P(t, z) 2 optical field, forward and backward traveling wave
p(t, z) 2 nonlinear polarization
ng(t) R4 spatially averaged carrier density in section Sy
Im dy R frequency detuning
Redy, <0, 0(1) decay rate due to internal losses
aQHk (0,10) negative of line-width enhancement factor
Ik ~1 differential gain in active section S
Kk (—10,10) real coupling coefficient for the optical field
due to Bragg grating in DFB section
Pr >0, O(1) amplitude of the gain curve
Ty 0(102) half width at half maximum of the gain curve
Qi 0(10) central frequency of the gain curve
Iy, 0(1072) current injection
Tk 0(102) spontaneous lifetime of the carriers
P (0, 00) scale of (4, p) (can be chosen arbitrarily)
ro, . C |rol,|rL] <1  facet reflectivities

Table 1.
Ranges and explanations of the variables and coefficients appearing in (2.1)-(2.4). See
also [3] to inspect their relations to the originally used physical quantities and scales.

The laser is subdivided into m sections Si of length [l with starting points
z for Kk = 1...m. We scale the system such that [y = 1 and set z,,41 = L.
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Thus, Sk = [2k, zk+1]. All coeflicients are supposed to be spatially constant
in each section and to depend only on the carrier density in that section, that
is, for z € Sy we have

K(z) = Kk, [(n,2) =Tx(ng), PB(n,z) =Pr(nk), pn,z) = pr(nk).

Tab. 1 collects the physical interpretation and the sensible ranges of all co-
efficients and variables. The model for the growth coefficient 8i(ni) € C in
section S} is

Br(v) = di + (1 +iamk)Gr(v) — pi(v)

where dj, € C accounts for the static internal losses (hence, Redy < 0) and the
static frequency detuning, and ag,; € Ry is the negative of the linewidth en-
hancement (or Henry) factor. A section Sy is either passive, then the functions
G and pg are identically zero, or Sy, is active. In the active case G, : R = R
is a smooth strictly monotone increasing function satisfying Gy (1) = 0. Its
limits are lim, o Gi(v) = —o0, lim, oo Gi(v) = oo. Typically, an affine
model for Gy in active sections is reasonably accurate, that is,

Gr(v) =g (v—1)

with a differential gain g = G}(1) > 0. In active sections S, that is, if
Gr # 0, the gain amplitude pg(v) is bounded for v < 1. Moreover, we
suppose that pg, Q, 1, and I'y : R = R are smooth and Lipschitz continuous,
and 'y (v) > 1 for all v. For passive sections Sy the variable ny is decoupled
from all other equations and can be dropped from the system.

The polarization function p and equation (2.2) has been included into the
coupled traveling wave model for a more realistic account of nonlinear gain
dispersion effects [3; 28]. Now, the frequency dependence of waveguide mate-
rial gain is modeled by a Lorentzian function with an amplitude p, half width
at half maximum T', centered at the frequency 2,.. That is, a monochromatic
light-wave 1 (¢,2) = e™*p(z) in an uncoupled, and a stationary waveguide
(k =0, n =0) is amplified or damped according to the equation

p(2)T(2)
-G+ PP

d:|p(2)]* =2 |ReB(2) + 2.

The facet reflectivities 7o and rz, in (2.4) are complex with modulus less
than 1. The inhomogeneity a(t) is complex and models an optical input at
the facet z = 0. We assume it to be L? in time on finite time intervals to
permit a discontinuous optical input.

The form of the right-hand-side of the equation (2.3) for the carrier density
can be clarified by introducing the Hermitian form

w0 |(2) ()] = & Jor@men (20 a0 (4E])
S

k
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Using the notation

) = -2 -ra) |(2).(2)] (27)

p p

for v € R and 9,¢, p, ¢ € L2 (Sk; C?) the carrier density equation (2.3) reads

%nk = fr(nk, (¥,p)) fork=1...m. (2.8)

Other secondary physical effects have been incorporated into the numerical
code LDSL which was developed for the simulation and analysis of longitudi-
nal dynamics in multi-section lasers. As example we mention the effects of
nonlinear gain compression, that is, the dependence of G on |¢|?, and spatial
hole burning, i.e., treating n as a fully spatially resolved variable [7; 28]. The
parameter study by direct simulations of the extended model equations shown
in Fig. 3 has taken both effects into account. However, even after an inclusion
of these effects, the traveling-wave model can describe the behaviour of semi-
conductor lasers still only approximately. Thus, in this paper we focus on the
analysis of the traveling-wave model in the rather simple form (2.1)-(2.4).

3. EXISTENCE THEORY

In a first step we investigate in which sense system (2.1)—(2.3) generates a
semiflow depending smoothly on its initial values and all parameters. We
want to write (2.1)—(2.3) as an abstract evolution equation in the form

Dow= At g(u), w(0) = o (3.1)

in a Hilbert space V where A is a linear differential operator that gener-
ates a strongly continuous semigroup S(¢), and g is smooth in V. A nat-
ural space for the variables ¢ and p is 1.2 ([0, L]; C?), such that V could be
L2 ([0, L]; C?) x L2 ([0, L]; C?) x R™ for u = (¢, p,n). However, the inhomo-
geneity « in the boundary condition (2.4) poses a conceptual difficulty in this
framework. Common approaches are boundary homogenization (used in [18])
or appending a as an auxiliary variable and an additional equation of the
form

d
%a(t) = a(t)

where a is the derivative of a (used in [12]). Then, the nonlinearity g in
the evolution equation depends explicitly on ¢ and it has the same regularity
with respect to ¢ as the time derivative of a. Hence, both approaches require a
high degree of regularity of a in time which is quite unnatural as the laser still
works with discontinuous input such as square waves. An alternative would
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be the introduction of a concept of “weakly mild” solutions as it was done in
[13]. However, this would require the extension of all needed classical results
of the theory of strongly continuous semigroups to this type of solutions.

Here, we choose an approach that is similar to that in [12] but does not
require any regularity of the inhomogeneity. We introduce the auxiliary space-
dependent variable a(t,z) (z € [0, 00)) satisfying the equation

Oia(t,z) = Oza(t, x) (3.2)
and change the boundary condition for z = 0 in (2.4) into
¥1(t,0) = rotp2(t,0) + a(t,0).

One may think of an infinitely long fibre [0,00) storing all future optical
inputs and transporting them to the laser facet z = x = 0 by the transport
equation (3.2). If we choose a(0,2) = a(z) as initial value for a, than the
value of a at the boundary z = 0 at time ¢ is «(¢). In this way, the formerly
inhomogeneous boundary condition becomes linear in the variables ¢) and a
requiring no regularity for a. We choose a weighted norm ]L2 for a, that is,

NZE= [ a 2(1 + z*)"dz with n < —1/2. In this way, we permit
the 1nput to be ]L°° but stlll keep V as a Hilbert space.

With this modification we can work within the framework of the theory
of strongly continuous semigroups [17]. The variable u has the components
(¢,p,n,a) € V =12([0, L]; C?) x L2 ([0, L]; C?) x R™ XL%([O, oo); C). We have
a certain freedom how to choose the splitting of the right-hand-side between
A and g. We keep A as simple as possible, including only the unbounded

terms
_8z1/)1
¢ [ 8zl/)21|
A 5 = 0
0
@ oza

The domain of definition of A is

D(A) = {(¢,p,n,a) € H' ([0, L]; C*) x L? ([0, L]; C*) x R™ x H ([0, 00); C) :
$1(0) = ro%2(0) + a(0),42(L) = rryp1 (L)}

In this way, A generates a strongly continuous semigroup S(¢) in V [22]. The
nonlinearity g is smooth because it is a superposition operator of smooth
coefficient functions, and all components either depend only linearly on the
infinite-dimensional components ¥ and p, or map into R™. Then, an a-priori
estimate implies the following theorem.

Theorem 1 (global existence and uniqueness). For any T > 0 there
exists a unique mild solution u(t) of (3.1) in [0,T]. Furthermore, if the initial
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value uq is in the domain of definition of A, then u(t) is a classical solution

of (3.1).

This theorem implies the existence of a semiflow S(¢;u) that is strongly
continuous in ¢ and smooth with respect to u and parameters. The a-priori
estimate has to be slightly more subtle than in [18]. It uses the fact that the
same functions Gy and py appear on the right-hand-side of (2.1) and on that
of (2.3) but with opposing signs. Due to this fact the function

DI + 3 1) — )
k=1

remains non-negative for sufficiently small n, and, hence, bounded, giving rise
to a bounded invariant ball in V; see [22] for details.

4. INTRODUCTION OF A SMALL PARAMETER

For all results about the long-time behavior of system (2.1)—(2.3) we restrict
ourselves to autonomous boundary conditions for v, that is,

(U (ta 0) = T0¢2(ta 0)7 ¢2(t7 L) =rri1 (ta L) (41)

The inhomogeneous case is an open question for future work. However, un-
derstanding the dynamics of the autonomous laser is not only an intermediate
step but an important goal in itself since many experiments and simulations
focus on this case; see for example [8] for further references.

An examination of system (2.1)—(2.3) reveals that the space dependent sub-
system is linear in ¢ and p:

) (f) — H(n) (f) . (4.2)

acts from

Y = {(¢,p) € H' ([0, L]; C?) x L.2([0, L]; C?) :
$1(0) = roh2(0), th2(L) =1 (L)}
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into X =12([0, L]; C?) x L2 ([0, L]; C?). H(n) generates a Cyp-semigroup Ty, (t)
acting in X. Its coefficients k, and, for each n € R™, 3(n), Q.(n), T'(n)
and p(n) are linear operators in L2 ([0, L]; C?) defined by the corresponding
coefficients in (2.1), (2.2). The maps 8,p,T',Q,. : R™ — L(L2(]0, L]; C?)) are
smooth.

Furthermore, we observe that I; and T,;l in (2.7) are approximately two
orders of magnitude smaller than 1 (see Tab. 1). Hence, we can introduce
a small parameter € and set P = ¢ in (2.3), such that the carrier density
equation (2.8) reads as

e = fi () = () — gu () 5, ) (4.4

for E € X where the coefficients in Fy(ny) = e ! (Iy — ng7, ') are of order 1.
Although € is not directly accessible, we treat it as a parameter and consider
the limit € — 0 while keeping F}, fixed. At € = 0, the carrier density n is
constant. It enters the linear subsystem (4.2) as a parameter. Consequently,
the spectral properties of H(n) with fixed n determine the longtime behavior
of the system for e = 0. In particular, we are interested in such values of n
which imply an isolated non-empty but finite set of eigenvalues of H (n) located
exactly on the imaginary axis. In this case, we can expect a finite-dimensional
invariant manifold to persist for nonzero € in the spirit of Fenichel’s geometric
singular perturbation theory [11]. Thus, we would like to understand the
spectral properties of the operator H for fixed n and their correspondence to
the growth of the semigroup T, generated by H in the next step.

5. SPECTRAL PROPERTIES OF OPERATOR H

We drop the argument n in this paragraph for brevity. The long-time behavior
of the semigroup T generated by H can be described by the following theorem
(see [22] for details of the proof):

Theorem 2. Let & = %Z;’;l ReBili < 0, denote W = {iQ, — Ty : k =
1,...,m}, and let £ be in the interval (max{ReW, &},0). Then, there exists
a splitting of X = X1 ® X, into two H -invariant subspaces where X1 is finite-
dimensional and the semigroup T restricted to Xy decays according to rate
€:

IT(t)x,|| < Mest  for a constant M > 1 and all t > 0.

Since T is neither an analytical nor an eventually compact semigroup there
are no general theorems implying our result. However, the operator H has a
characteristic function h()) defined in C \ W (note that ReW < —1). The
function h is analytic in C \ W and known explicitly. Hence, most questions
about the spectrum of H can be answered by finding the roots of hA. In
particular, the spectrum of H is discrete in C\ W, that is, it consists only of
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eigenvalues of finite algebraic multiplicity. In order to obtain our result, we
have to distinguish two cases, rory, = 0 (that is, (4.1) are Dirichlet boundary
conditions) and rory, # 0 (corresponds to periodic boundary conditions).

It turns out that the semigroup T is eventually differentiable if rory = 0.
In this case, we can split X into two H-invariant subspaces. One corresponds
to the spectrum close to W. Thus, H is bounded and T decaying in this sub-
space. The semigroup T restricted to the complementary invariant subspace
is eventually compact. Hence, the desired result follows from the theory of
eventually compact semigroups [9].

If rorr, # 0 (the hyperbolic case), we treat the operator as a perturbation
of its diagonal part similar to [20]. Before applying the same result as [20],
the invariant subspace corresponding to the spectrum close to WW has to be
split off and treated separately in the same way as in the case rqry = 0.

In essence, Theorem 2 implies that we can treat H like a matrix: The
dominant eigenvalues determine the growth of the corresponding semigroup.

6. MODEL REDUCTION

Let us assume that there exists a simple connected open set U C R™ of carrier
densities n such that H(n) has a uniform spectral gap for all n € U in a strip
of the negative complex half-plane {z € C: £ < Rez < £/k} (£ < 0, integer
k > 2), and that the dominant part of the spectrum of H(n) is finite. Hence,
the spectral projection P.(n) onto the H(n)-invariant subspace corresponding
to the dominant part of the spectrum has a constant rank ¢ > 0. This
spectral gap assumption is quite natural and follows (in conjunction with
Theorem 2) for example from the existence of non-trivial dynamics that is
uniformly bounded for ¢ — 0 (e.g., relative equilibria, i.e., solutions of the
form E(t) = Epe'?, n = const) if rory = 0. We can split any E € X into
E = B(n)E. + E; where B(n) is a basis of Im P.(n) depending smoothly on
n,E.€C? and E; € X is E— P.(n)B(n)E.. Themap R: X xU — C? x U
given by (E,n) — (B(n)~!P.(n)E,n) is well defined, smooth and Lipschitz
continuous on any closed subset of X x U. Then, the main model reduction
theorem is as follows.

Theorem 3 (model reduction). Let g9 > 0 be sufficiently small, A €
(£,0), and N be a closed bounded subset of C? x U. Then, for all € € [0,¢)
there exists a C* manifold C C X x R™ satisfying:

i. (Invariance) C is S(t, -)-invariant relative to R"'N. That is, if (E,n) € C,
t >0, and S([0,t]; (E,n)) C R™IN, then S([0,]; (E,n)) C C.

ii. (Representation) C can be represented as the graph of a map which maps

(E.,n,e) € N x [0,e0) = ([B(n) + ev(E.,n,e)|E.,n) € X x R™,

where v : N x [0,69) = L(C9;X) is C*2 with respect to all arguments.
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Denote the X -component of C by
Ex(E.,n,e) = [B(n) + ev(E.,n,e)|E. € X.

iti. (Exponential attraction) Let Y C X x R™ be a bounded set with RY C N
and a positive distance to the boundary of N'. Then, there exist a constant
M and a time t. > 0 with the following property: For any (E,n) € Y there
ezists a (E¢,n.) € N such that

||S(t + t¢; (Ea n)) - S(t; (EX (Eca ncaE)anc))” < MeAt

for all t > 0 with S([0,t+ t.];(E,n)) C Y.

. (Flow) The flow on CNR™IN is differentiable with respect to t and governed
by the following system of ODFEs:

d
d—Ec = [Hc(n) +eay(Ec,n,e) + 52a2(Ec,n,E)y(Ec,n,E)] E,

; (6.1)
—n = eF(E.,n,¢)

dt
where
H.(n) = B(n) 'H(n)P.(n)B(n)
a1(Ee,n,e) = —B(n) ' P.(n)8,B(n)F(E.,n,¢)
as(E.,n,e) = B(n) '8,P.(n)F(E.,n,&)(Id — P,(n))
F(EC: n, 5) = (Fk(nk) - gk(nk)[EX (EC7 Ne, 5): Ex (EC: Ne, E)]);nzl .

The idea to choose n-dependent coordinates for E in the construction of
a reduced model was introduced already in [1] by physicists. This choice
has the advantage that the graph of the center manifold itself enters the
flow (6.1) on the center manifold only in the form O(g2?)v. This fact has been
pointed out first in [24] where the same model reduction result has been proven
for ODEs of similar structure (big linear system coupled to a slow system)
using Fenichel’s theorem for singularly perturbed systems of ODEs [11]. Since
Fenichel’s theorem is not available for infinite-dimensional systems, we have to
adapt the proof of Fenichel [11] to our case starting from the general results in
[4; 5; 6] about invariant manifolds of semiflows in Banach spaces. In particular,
we apply the cut-off modifications done in [11] only to the finite-dimensional
components E, and n outside of the set A of interest. Moreover, we adapt the
modifications such that the invariant manifold for € = 0 is compact without
boundary as required by the theorems in [4].

Truncating all terms of order O(£2) in (6.1) gives rise to a system of ODEs in
C? x R™, where all terms in the right-hand-side can be expressed analytically
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as functions of the eigenvalues of H. The truncated system (6.1)

d

e = [He(n) +€a1(Ec,n,e)] E.

y (6.2)
%nk = ¢ (Fr(nk) — gk (n)[B(n)E., B(n)E,])

is called the mode approzimation. It is an implicit system of ODEs because
the eigenvalues of H are given only implicitly as roots of the characteristic
function h of H. The dimension of (6.1) is typically low: g is often either 1
or 2. The consideration of mode approximations has proven to be extremely
useful for numerical and analytical investigations of longitudinal effects in
multi-section semiconductor lasers; see for example [2; 21; 27] and section 7
for a demonstration.

7. PARAMETER STUDY AND BIFURCATION ANALYSIS FOR
A LASER SUBJECT TO DELAYED OPTICAL FEEDBACK

In this section we demonstrate how the traveling wave model helps to detect
and understand nonlinear phenomena occuring in multi-section lasers by a
bifurcation analysis using the mode approximations and the subsequent sys-
tematic parameter study for the full model. We investigate a three-section
laser where S; is a single-mode DFB laser (i.e., k1 # 0, G1 #Z 0), Sy is a
passive phase tuning section (i.e., kg = G = pa = ny = 0), and S3 is an
amplifier section (i.e., k3 = 0, p3 = 0, G3 #Z 0). Since r; # 0, this device
resembles the classical experiment of a single-mode semiconductor laser which
is subject to delayed optical feedback. Section S; plays the role of the single-
mode laser and the sections Sy and S3 form an integrated cavity providing
delayed optical feedback from the facet at z = L. In this three-section setup
the two most important parameters, the feedback strength and the feedback
phase ¢ ~Imds can be tuned continuously in the experiment by changing the
currents Iy and I3 into the sections Sy and S3 (up to feedback strengths close
to 1).

Bifurcation analysis Since numerical bifurcation analysis tools like AUTO [10]
are available for systems of ODEs only, the mode approximations justified in
Theorem 3 are extremely helpful.

It turns out that the number g of critical eigenvalues of H(n) is 2 for all
relevant carrier densities n. Thus, Theorem 3 applies with ¢ = 2 and m = 2
(the carrier density ny is constant since section Ss is passive). The center
manifold C has dimension 6 as it is a graph over C? x R?. The flow of (6.2) is
still symmetric with respect to complex rotation of E.. Hence, we can reduce
it to a 5-dimensional system of ODEs. In this system, equilibria correspond to
relative equilibria of the original traveling-wave model and periodic solutions
to self-pulsations, i.e., modulated rotating-wave solutions. Fig. 2 shows the
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Figure 2. Bifurcation diagram for the two-mode approximation (truncated (6.1) with
¢ = 2) in the parameter plane (i, I3) (see [7] for the particular parameter values).

results of two-parameter numerical continuations of the physically most rele-
vant codimension-1 bifurcation curves in the parameter plane (¢, I3), The two
different islands of self-pulsations are clearly visible along with their borders.
The nature of these borders and bifurcation theory serve as a guide for ex-
periment and simulation to investigate interesting phenomena that otherwise
could be missed due to hysteresis or limited basins of attraction. Most notably,
there are stable invariant tori with strong resonances above the torus bifur-
cation curve, excitability above the homoclinic bifurcation curve, and period
doubling and chaos at the border of the undamped relaxation oscillations.

Parameter study for the full PDE System Figure 3 gives an overview over
all stable stationary states and non-stationary regimes that can be found by
direct simulation in the parameter plane (¢, I3) in the full PDE system (2.1)—
(2.3). For the simulation, we also included the additional physical effects
mentioned at the end of section 2 to match the experimental results as closely
as possible. See [7] for a full description of the traveling wave model used in
the simulation.

The two large domains of periodic solutions within each period of ¢ are
quite prominent in Fig. 3 as well. The Hopf and the saddle-node curves can be
recognized in the simulation and give a full account of the number and stability
of all present stationary states in Fig. 3. The shadings in Fig. 3 mark the
different stable non-stationary regimes in the (¢, I3) parameter plane observed
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Figure 3. Parameter study of a three section laser by direct simulation of PDE model
with LDSL-tool. Full model and used parameter values (except of l; = 250 ym, lo = 400 pm
and a = 15cm™!) can be found in [7].

in the simulation. Single-pulse periodic solutions are typically born in Hopf
bifurcations. Double-pulse solutions existing nearby have approximately half
the frequency. Their occurrence is related to the period doubling bifurcations
(see also Fig. 2). Finally, multiple-pulse and irregular regimes account for
dynamics (and different resonances) on the tori, and chaotic attractors.

A well-known problem of direct simulations is that only one stable regime
will be observed for each parameter value depending on the choice of initial
values and the basins of attractions. However, the bifurcation analysis shows
that several stable regimes may coexist in some parameter regions. We took
into account this possible hysteresis by varying the parameters in small steps
in different directions from any stable non-stationary regime we found until we
hit a sharp transition. In this way, we always traced the hysteresis at sharp
transitions corresponding to subcritical or saddle-node bifurcations. Fig. 3
shows the most simple non-stationary regime in hysteresis parameter regions
(that is, mostly, the single-pulse periodic solution) because this is the most
interesting regime for potential applications.

8. CONCLUSIONS AND OUTLOOK

The coupled traveling wave model has proven its value in the exploration
of nonlinear phenomena in multisection laser structures. This can be seen
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impressively in recent results concerning delayed optical feedback effects [18;
14; 21; 27; 26] in multi-section lasers and subsequent new device designs [7; 8;
16; 19]. The model has been efficiently implemented in the code LDSL which
permits extensive parameter studies. The simulation of the model equations
with this code together with the bifurcation analysis of the reduced mode
approximation systems gives insight into the underlying dynamics. Moreover,
it allows the user to incorporate physical effects like spatial hole burning or
nonlinear gain compression, or experimental conditions like optical input or
electric modulation. This broadens the range of applications of the traveling-
wave model toward mode-locked lasers, optical amplifiers, ring lasers, etc.
However, the theory concerning some of these extensions of the traveling-wave
model is still incomplete, even concerning basic questions like the existence
of a smooth strongly continuous semiflow. Thus, an urgent task is to gain a
theoretical understanding of these more complex models, and whether they
can exhibit substantially more complex phenomena.
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